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Introduction: Remote sensing super-resolution (RS-SR) plays a crucial role in
the analysis of remote sensing images, aiming to improve the spatial resolution
of images with lower resolutions. Recent advancements in RS-SR research have
been largely driven by the integration of deep learning techniques, especially
through the application of Generative Adversarial Networks (GANs), which have
shown significant effectiveness in advancing this field. While GAN has achieved
notable advancements in this field, its tendency toward pattern collapse often
introduces artifacts and distorts textures in the reconstructed images.

Methods: This study introduces a novel RS-SR model, termed the Diffusion
Enhanced Generative Adversarial Network (DEGAN), designed to improve the
quality of RS-SR images through the incorporation of a diffusion model. At the
heart of DEGAN lies an innovative GAN architecture that fuses the adversarial
mechanisms of both the generator and discriminator with an integrated
diffusion module. This additional component utilizes the noise reduction
capabilities of the diffusion process to refine the intermediate stages of image
generation, ultimately improving the clarity of the final output and enhancing
the performance of remote sensing super-resolution.

Results: In the test dataset, the peak signal-to-noise ratio (PSNR) increased by
0.345 dB at 2× scaling and 0.671 dB at 4× scaling, while the structural similarity
index (SSIM) was improved by 0.0087 and 0.0166, respectively, compared to the
current state-of-the-art (SOTA) approach.

Discussion: These results indicate that DEGAN significantly improves the
super-resolution reconstruction performance of remote sensing images. The
introduction of the diffusion module and attention mechanism effectively
reduces noise and enhances image clarity, addressing common issues of
texture distortion and artifacts in remote sensing image super-resolution
reconstruction.
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1 Introduction

Recently, remote sensing imagery has found increasing use
in applications including environmental monitoring, object
detection, and scene categorization. However, inherent physical
and technological constraints during the data acquisition process
often result in image resolutions that fall short of the stringent
accuracy requirements. Consequently, various RS-SR techniques
have been proposed to generate high-resolution images from low-
resolution inputs, providing an effective approach to improve spatial
resolution without the need for new sensor hardware or optimizing
data transmission.

At present, image super-resolution techniques are commonly
divided into three main categories: interpolation-based methods,
traditional machine learning approaches, and deep learning
strategies. Interpolation-based SR methods enlarge an image using
a straightforward mathematical formula, offering computational
efficiency. However, they struggle to recover fine details and
texture, often resulting in lower-quality images. Traditional machine
learning-based SR techniques typically adopt strategies such as
dictionary learning, sparse representation, and neighborhood
embedding. By capturing the relationship between low- and
high-resolution data, these techniques generate high-resolution
images. Although they can restore fine details to some extent, their
performance is often constrained by the quantity and quality of
the training data, which leads to reduced generalizability and lower
adaptability in complex real-world applications. Deep learning-
based SR techniques have gained widespread adoption in recent
years, and by constructing deep models such as convolutional
neural networks (CNN), generative adversarial networks (GAN),
Transformers, etc., more complex and abstract image features
can be learned from massive data, thus realizing a more ideal
super-resolution effect.

In recent years, super-resolution techniques based on deep
learning have been widely used. By constructing deep models such
as Convolutional Neural Networks (CNN), Generative Adversarial
Networks (GAN), Transformer, etc., more complex and abstract
image features can be learned from massive data, thus realizing
more desirable super-resolution effects. In the field of computer
vision, end-to-end trained super-resolution techniques excel in
detail recovery and perceptual quality. The first end-to-end CNN
framework was introduced to facilitate the conversion from low-
resolution (LR) to high-resolution (HR) images using lightweight
networks (Dong et al., 2014); Lim et al.'s EDSR achieved then-
optimal performance by streamlining residuals and scaling up
the model (Lim et al., 2017), while MDSR achieves single-model
multiscale reconstruction. Dong et al.’s SMSR achieved lightweight
multiscale modeling using feature reuse (Dong et al., 2020), and
Wang et al. revolutionized contextual feature extraction (Wang et al.,
2021). Liebel and Körner verified the advantages of CNN on
Sentinel-2 multispectral data (Liebel and Körner, 2016); Zhang et al.
introduced a scene-adaptive strategy to efficiently extract multilevel
features (Zhang et al., 2020). The EDCNN was proposed for super-
resolution reconstruction of remote sensing images (Keshk and
Yin, 2021). Lei et al. designed LGCNet to capture the interaction
of local and global features (Lei et al., 2017), and their follow-
up work enhances the cross-scale structure with a mixed-scale
self-similarity module (Lei and Shi, 2021). Haut et al. (2019)

and Huan et al. (2021) enhance contextual understanding using
deep cataloging models and multiscale pyramidal residual networks
combined with null convolution, respectively; the multiscale
attention networks proposed by Zhang et al. (2020) and FeNet
with RDBPN (Wang et al., 2022a; Pan et al., 2019) further strike a
balance between efficiency and large-scale reconstruction balance
between them. However, convolutional neural networks often face
the problems of overfitting and local feature emphasis during
reconstruction, limiting the global context capturing ability and thus
affecting the generalization effect in complex scenes.

GAN, an important technique in deep learning, has been
successfully introduced to super-resolution tasks. By combining
perceptual loss with adversarial training, the generated images
become more realistic in subjective vision. The proposal of SRGAN
combines adversarial training with perceptual loss for the first time,
which not only significantly improves the detailed performance and
overall visual effect of the generated images, but also provides a
newway of thinking for super-resolution reconstruction (Yang et al.,
2017). Hu et al. (2024) proposed a super-resolution reconstruction
model combining a multi-scale attention mechanism and dense
residual connectivity for improving detail recovery and overall
reconstruction quality of remotely sensed images.Wang et al. (2025)
improved the visual effect and evaluation index of remote sensing
images by improving the SRGAN algorithm. The resolution of real
images from theWorldview satellite and Sentinel-2 was improved by
the improved ESRGAN algorithm (Salgueiro Romero et al., 2020).
The reconstruction quality and resolution of Sentinel-2 images were
significantly improved (Jain and Vatsavai, 2024). However, although
GAN-based super-resolution reconstruction methods perform well
in many scenes, there are still some problems. In some cases, the
generator is prone to pattern collapse, i.e., the generated images
exhibit too homogeneous patterns and lack the necessary diversity.
This phenomenon leads to limitations in detail recovery in the
reconstructed super-resolution images, which cannot adequately
restore the subtle features in the original images. In addition, since
the model may be affected by data distribution bias during the
training process, the generated high-resolution images may suffer
from missing details or uneven reconstruction in some regions.

Recently, super-resolution models that leverage visual
Transformers have been developed to boost the model’s
performance in complex scenes by incorporating a global
self-attention mechanism. Swin Transformer overcomes the
computational bottleneck of the traditional Transformer by utilizing
local window attention (Liu et al., 2021), and DAT realizes alternate
channel-spatial attention through alternate cross-layer feature
aggregation (Chen et al., 2023), providing a new paradigm for
SR tasks. Based on this, SwinIR establishes a benchmark model
for image recovery (Liang et al., 2021). In remote sensing, Lei
et al. were the first to integrate Transformer into super-resolution,
enablingmulti-scale feature fusion throughmultilevel enhancement
(Lei et al., 2021). SWCGAN combines the advantages of Swin
Transformer and convolution (Tu et al., 2022) and strengthens
deep layer feature extraction through residual dense blocks
(Shang et al., 2023). Sharifi and Safari proposed a Transformer-
based deep learning model for super-resolution reconstruction
of Sentinel-2 images through multi-head attention and spatial-
channel attention mechanisms (Sharifi and Safari, 2025). Rossi
et al. proposed an enhanced super-resolution model that effectively
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improves the super-resolution performance of remote sensing single
images (Rossi et al., 2025). Furthermore, a GAN model utilizing
Transformer architecture was introduced, which effectively learns
global context to recover intricate global features (Esser et al.,
2021). Although Transformer is good at capturing long-distance
pixel relationships, it may pay too much attention to global
information and ignore local details, resulting in blurred or
unnatural reconstruction results.

In the field of remote sensing, traditional super-resolution
methods, such as interpolation and dictionary learning-based
methods, can provide smoother images, but it is difficult to recover
the high-frequency details of the image in complex backgrounds and
is computationally efficient. In contrast, GAN, as one of the deep
learningmethods, can effectively improve the quality of image detail
recovery through adversarial training.The advantage of the GAN
model is that it can generate more realistic high-resolution images,
but pattern collapse may occur during training, resulting in a lack of
diversity in the generated images.

Currently, diffusion models have demonstrated significant
advantages in image translation and hyper-segmentation tasks.
Diffusion model is a generative model that restores an image
from a noisy state to a high-quality state through a step-by-step
denoising and reconstruction process. In remote sensing super-
resolution tasks, the diffusion model helps to remove noise and
artifacts from the image generation process, thus improving the
detail and clarity of super-resolution images. DDPM, proposed
by Ho et al., constructs a complete denoising diffusion framework
(Ho et al., 2020), and its first application in SISR is realized
by SR3 (Saharia et al., 2022). ControlNet achieves stabilization
control through zero convolution (Zhang et al., 2023), and Stable
Diffusion’sinnovations in the latent space offer a new way for high
score generation provides new ideas (Rombach et al., 2022). Yang
et al. and Li and Ren reviewed the application of diffusion modeling
in image restoration and real scene repair (Yang et al., 2023; Li
and Ren, 2023). Despite the advantages of DDPM in modeling
complex distributions and mitigating GAN training instability, ab
initio training is costly and may corrupt pre-training to generate a
priori. To this end, Wang et al. employed a time-sensitive encoder
to achieve effective restoration while maintaining the pre-trained
model (Wang et al., 2024). The DiffBIR framework of Lin et al.
divides the blind image restoration into degradation removal and
information regeneration phases (Lin et al., 2024), while the PASD
network proposed by Yang et al. achieves excellent performance in
a variety of image enhancement tasks through pixel-aware cross-
attention and degradation removal modules (Yang et al., 2024).
By integrating the diffusion model into the GAN architecture,
image reconstruction performance is significantly improved, even in
challenging conditions, positioning it as a key area of focus in remote
sensing image super-segmentation research.

Recently, DiffGAN (Wang et al., 2022b) and SRDiff (Li et al.,
2022) combine the advantages of diffusion models and Generative
Adversarial Networks (GANs), which perform well under complex
image degradation.DiffGAN proposes to incorporate adversarial
training into the traditional diffusion process, and SRDiff generates
low-resolution (LR) images by stepwise back-diffusing the high
resolution (HR) images. Although these methods have made
breakthroughs in image reconstruction, they still face problems
such as insufficient recovery of high-frequency details, excessive

image smoothing, and noise effects. In this study, a new remote
sensing super-resolution (RS-SR) model called diffusion-enhanced
generative adversarial network (DEGAN) is proposed. Unlike the
above two frameworks, this paper focuses on applying the diffusion
module to the generator part of the GAN, which is introduced in the
intermediate step of the process of generating images for processing
the extracted features. The DEGAN framework effectively captures
high-frequency detail in images by incorporating the diffusion
model into the GAN generator, thereby improving the super-
resolution performance of remote sensing images and enhancing
efficiency in reconstruction tasks. Additionally, it maintains high
image quality even in the presence of complex environmental
factors, such as atmospheric perturbation, tele-imaging, and spectral
noise. Through comparative experiments, the model proposed in
this study outperforms current super-resolution methods across
all evaluation metrics, particularly in handling remote sensing
images with intricate textures and structures. This results in
notable enhancements in both the visual appearance and numerical
performance. In addition, this study investigates the model’s
applicability across various remote sensing scenarios, aiming to offer
a novel technical solution in the field of RS-SR.Themain findings of
this research are outlined as follows:

1. We present a new super-resolution network, DEGAN,
specifically designed for remote sensing tasks, which
incorporates the diffusion model into the GAN framework. By
leveraging the noise addition and stage denoising capabilities
of the diffusion model, DEGAN refines the intermediate
outputs from the generator, further improving the generated
outputs and enhancing the overall accuracy of the final
reconstruction. Comprehensive experiments show that
DEGAN exhibits significant advantages in recovering the
detailed information of remote sensing images.

2. To improve the detail generation capability of DEGAN, we
introduce Diffusion, a diffusion module based on the U-
Net architecture, which extracts feature information through
the encoder, obtains deeper feature representations, and
gradually recovers the resolution and details of the image
through the decoder. In addition, the incorporation of skip
connections to directly transfer feature data between the
encoder and the decoder significantly enhances the detail
recovery, enabling the Diffusion model to extend its detail
generation capabilities for DEGAN.

3. In the DEGAN model, we utilize a variety of techniques
to further enhance the quality of image reconstruction. By
incorporating an attention mechanism, the model can focus
on crucial regions of the image, thereby enhancing the
detail quality of the reconstructed image. Additionally, sub-
pixel convolution efficiently maps the input image’s channel
information to the spatial dimensions of the output, effectively
avoiding the blurring issues associated with traditional
transposed convolutions. By incorporating residual learning,
the model’s image reconstruction performance is significantly
improved, ensuring that the produced high-resolution images
maintain enhanced quality and better detail retention.

4. Extensive and in-depth experiments are carried out using
three publicly available remote sensing datasets: UC Merced,
AID, and NEG-Scene. The experimental results demonstrate
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that, compared to current SOTA methods, the DEGAN
model delivers significantly superior performance in SR tasks,
further validating its cutting-edge design and effectiveness in
enhancing remote sensing image quality.

This paper is organized as follows: Section 2 reviews the
relevant literature on super-resolution; Section 3 provides an in-
depth explanation of the DEGAN network architecture introduced
in this work; Section 4 presents the experimental setup, which
includes both objective and subjective evaluations, along with
ablation studies; and Section 5 wraps up with a summary of the
contributions.

2 Materials and methods

This section begins with the overall architecture presented.Then
the components of our proposed model are described in sequence,
startingwith the generator, followed by the discriminator, and finally
the loss function.

2.1 Network infrastructure

Numerous studies have shown that training frameworks relying
only on traditional super-resolution (SR) models often lead to loss
of image detail information as well as poor adaptation in complex
scenes. Particularly in remote sensing image super-resolution tasks,
currentmethods often face difficulties in effectively recovering high-
frequency details, and their performance is further constrained
when dealing with complex textures and fine edge features. To
overcome these challenges, we propose a novel framework for
enhancing remote sensing image super-resolution, termed the
Diffusion Enhanced Generative Adversarial Network (DEGAN),
which aims to improve reconstruction quality significantly.

As shown in Figure 1, DEGAN combines a traditional
super-resolution training framework and a diffusion model
network. Contrary to conventional GAN-based methods, DEGAN
integrates a diffusion model to produce superior images while
diligently restoring high-frequency details.This approach effectively
overcomes the detail loss typically associated with pattern collapse
in standard GAN frameworks. Specifically, the introduction of the
diffusion model effectively improves the performance of images
in complex scenes, improving its capacity to recover fine details,
textures, and edges.

In the DEGAN generator, we incorporate a diffusion module
based on the U-Net architecture, aimed at overcoming the
limitations in detail recovery commonly observed in traditional
GANs. Initially, the module builds a hierarchy of multiscale features
through a sequence of convolutional downsampling steps. During
this process, the encoder gradually extracts features, progressing
from low-level to intermediate and then high-level representations,
with the high-level features (reduced to one-quarter of the original
resolution) processed at the bottleneck layer. To better leverage
the key role of the diffusion step in the generation process, we
treat the noise level as the diffusion step t and map it to a high-
dimensional vector using a fully connected layer. This vector is then
passed through a nonlinear activation function, aligned with the

bottleneck features, and incorporated into the bottleneck features as
residuals, enabling the network to dynamically adjust the denoising
intensity based on varying noise levels.This design explicitly uses the
number of diffusion steps t as a control variable, which helps to fine-
grain the effect of recovering image details during the generation
process. Unlike previous work that relied only on the convolutional
residual block, we introduce aTransformer encoder at the bottleneck
layer, which realizes the self-attentive modeling of global features
by spreading the feature maps into a sequence format, effectively
capturing the long-distance dependencies within the image, and
further enhancing the detail recovery capability. Subsequently, the
decoder employs inverse convolutional upsampling combined with
jump connections from the corresponding levels of the encoder to
fuse low-level features via 1 × 1 convolution to mitigate information
loss and suppress excessive smoothing. The entire diffusion module
enables the generated image to effectively suppress noise while
avoiding detail loss in reconstructing high-frequency information
by gradually removing noise and artifacts while preserving and
enhancing the original image details.

To further enhance the restoration of intricate image details
and overall reconstruction quality, DEGAN incorporates a
Convolutional Block Attention Module (CBAM) within the
generator, which merges channel and spatial attention mechanisms.
Our design inserts the CBAM module before up-sampling:
specifically, after extracting high-dimensional features through the
Conv layer, the CBAM module is used to adaptively adjust these
features before passing them to the sub-pixel up-sampling module
for up-sampling. This design enables fine-tuning of the features
before up-sampling to ensure that the key details are preserved and
enhancing the precision of the following reconstruction stages. The
CBAM module adaptively adjusts the significance of each channel
using the channel attention mechanism, while also incorporating
the spatial attention mechanism to prioritize important local
information in the image, effectively reducing unwanted noise
interference. The features processed by the CBAM module can
be more accurately transferred to the subsequent up-sampling and
refinement stages, enabling the network to generate more detailed
and accurate super-resolution images when processing remote
sensing images with complex texture and edge information.

DEGAN utilizes a deep convolutional neural network
architecture, which generates a scalar value representing the
authenticity of an image through several layers of convolution,
activation, pooling, and fully connected operations. It is worth
noting that to cope with the slight blurring effect that may be
introduced by the diffusion model during the generation process,
the discriminator is designed with a feature extraction module
in both the shallow and deep layers, where the shallow layer can
capture details and edge information, while the deep layer focuses on
global texture and structural features.This multi-scale design allows
the discriminator to effectively detect local blurring introduced by
diffusion enhancement while maintaining the overall structural
coherence of the image. The discriminator’s intricate architecture
strengthens its ability to analyze complex images, effectively
differentiating synthetic images from real ones and thereby elevating
the quality and authenticity of the generated outputs.

Unlike traditional super-resolution models, DEGAN greatly
enhances the recovery of image details by introducing a diffusion
module, especially in the processing of complex textures and
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FIGURE 1
Network infrastructure.

edges in remote sensing images, which demonstrates excellent
performance. By integrating the diffusion module into the
generator’s U-Net structure and utilizing skip connections with
an attention mechanism, DEGAN is better equipped to recover
fine-grained details and enhance the resolution of remote sensing
images. This method not only improves both visual quality and
quantitative performance but also maintains exceptional image
fidelity, even in the presence of challenges like atmospheric
interference, tele-imaging distortions, and spectral noise.

2.2 Generator design

In this study, we design a generator that integrates diffusion
modules, as shown in Figure 1. The upper part of the figure
illustrates the generator component. The low-resolution (LR) image
is generated through bicubic interpolation, with input dimensions
of N × 3×w × h, where N represents the batch size, 3 corresponds to
the RGB image channels, and w and h denote the image’s width and
height. In contrast, the super-resolved image has dimensions of N ×
3×w·s × h·s, with s being the magnification factor. The primary goal
of the generator is to model the transformation from low-resolution
(LR) images to high-resolution (HR) super-resolved images.

Initially, the input image undergoes processing through
several convolutional layers that progressively expand the feature
map’s channel count from 3 to 128. The detailed convolution
process is mathematically defined by the equation shown below
(Equations 1–4):

Iconv1 = Conv2D(ILR,3→ 16) (1)

Iconv2 = Conv2D(Iconv1,16→ 32) (2)

Iconv3 = Conv2D(Iconv2,32→ 64) (3)

Iconv33 = Conv2D(Iconv3,64→ 128) (4)

After the initial convolutional layers, the model employs a
series of residual blocks, each consisting of convolutional layers
and skip connections that facilitate direct gradient flow through the
network during backpropagation. The key to the residual blocks is
to learn the “residuals” between the inputs and outputs through
the jump connections, rather than predicting the outputs directly.
This technique effectively mitigates the vanishing gradient issue
commonly encountered in deep networks. The formula for the
residual module is as follows (Equations 5–7):

Iresidual = Iconv33 (5)

Iresidual_block = ResidualBlock(Iconv33) (6)

Iaf ter_residual = Iresidual + Iresidual_block (7)

Following the processing through multiple residual blocks, the
features are further refined using the CBAMmodule, where channel
weights are calculated by performing global average pooling. This
process helps to emphasize the crucial channel information in the
image, thereby improving the reconstruction quality, as shown in the
following formula (see Equation 8):

ICA = CBAM(Iaf ter_residual) (8)

Super-resolution reconstruction demands meticulous feature
selection across various channels.The channel attentionmechanism
plays a crucial role in emphasizing vital information, minimizing
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the impact of less significant channels, and ultimately boosting the
model’s overall performance.

Next, the model performs super-resolution upscaling using sub-
pixel convolution, where each block increases the feature map
resolution, effectively doubling the image resolution to the target
dimensions. The sub-pixel convolution operation is described as
follows (see Equation 9):

Isubpixel = SubPixelConvolution(ICA) (9)

After applying sub-pixel convolution, the model utilizes a
diffusion module. This module leverages a U-Net architecture to
refine and enhance the images, aiming to substantially improve the
final super-resolved output’s overall quality. The operation of the
diffusion module can be represented as follows (see Equation 10):

Idif f used = Dif f usion(Isubpixel) (10)

Finally, the model further processes the image through multiple
convolutional layers (conv44, conv4, conv55, conv6)and generates
the final high-resolution output image. The specific operation
formula is given below (see Equations 11–14):

Iconv44 = Conv2D(Idif f used ,128→ 64) (11)

Iconv4 = Conv2D(Iconv44,64→ 32) (12)

Iconv55 = Conv2D(Iconv4,32→ 16) (13)

Iconv6 = Conv2D(Iconv55,16→ 3) (14)

Finally, the output of high-resolution image is normalized by the
Tanh activation function (see Equation 15):

IHR = Tanh(Iconv6) (15)

The network structure in this paper aims to improve the
reconstruction performance of super-resolution images through
the collaboration of multiple modules. In this paper, we integrate
the residual block, CBAM module, and diffusion module of the
generator. The inclusion of jump connections in the residual
block mitigates the gradient vanishing problem and ensures that
the gradient can pass through the deep network smoothly, thus
capturing the image details efficiently.The CBAMmodule combines
the channel and spatial attention mechanisms to focus on the
key feature regions of the image, thus improving the recovery
of image details and structures. The diffusion module, based on
the U-Net architecture, progressively denoises the image while
preserving high-frequency details, thereby significantly improving
the quality and visual realism of the image. By combining these three
modules, the generator is able to effectively recover details from low-
resolution images, enhance the global structure and texture details of
the image, and ensure that the final high-resolution image generated
is of higher quality.

2.2.1 Diffusion module
The module mainly features an encoder-decoder architecture

with skip connections, as illustrated in Figure 2. The encoder
section uses a convolutional layer to progressively extract

higher-order features from the image, while downsampling
the spatial resolution (with the convolutional layer’s stride
set to 2) to create a multi-scale feature representation.
The feature map X is convolved with the first layer X1 =
ReLU(Conv2D(X, Cin→ Cbase,3,1,1)). After the second layer
convolution X2 = ReLU(Conv2D(X1,Cbase→ Cbase × 2,3,2,1)).
After the third layer convolution X3 = ReLU(Conv2D(X2,Cbase ×
2→ Cbase × 4,3,2,1)), its space is 1/4 the size of the original image.

On this basis, the diffusion time step t ∈ [0,1] is encoded
into a 256-dimensional vector by a two-layer fully connected
network (implied layer dimension 256, ReLU activation), which
is summed element-by-element with X3 to realize the temporal
condition injection. At the bottleneck layer, the feature map X3 is
reshaped into [H×W,B,256] sequence format, fed into a single-
layer Transformer encoder (4-head self-attention, feed-forward
dimension 1024, Dropout rate 0.1), and recovered as a 2D feature
map after global feature interactions are realized through the self-
attention mechanism.

In the diffusion module, we gradually reduce the intensity of
the noise by diffusion time step (t). The time step (t) controls the
noise intensity in the image generation process. During the diffusion
process, the noise intensity is gradually reduced as the time step
(t) progresses to remove noise and artifacts from the image and to
recover the image details. The time step (t) is embedded through a
fully connected network and then added to the feature map element
by element, injecting the noise information into the network as a
conditional input, thus ensuring effective denoising of the image.

Subsequently, the decoder employs transposed convolution
operations to progressively restore the image’s spatial resolution.
After the first layer of transpose convolution for upsampling
D1 = ReLU(ConvTranspose2D(X3, Cbase × 4→ Cbase × 2,4,2,1)),
which is subsequently summed with the output of the jump-join
X2 D′1 = D1 +Conv2D(X2, Cbase × 2→ Cbase × 2,1,1,0). After a
second transposed convolutional layer to recover spatial resolution
D2 = ReLU(ConvTranspose2D(D

′
1, Cbase × 2→ Cbase,4,2,1)),

which is subsequently summed with the output of the jump-
connectedX1D

′
2 = D2 +Conv2D(X1, Cbase→ Cbase,1,1,0). Finally,

the reconstructed image Y = Conv2D(D′2, Cbase→ Cout ,3,1,1)
is output by a convolutional layer, i.e., Idiffused in 2.2. During
the decoding process, the spatial resolution of the image is
gradually restored, combined with a denoising operation, a process
that effectively prevents excessive smoothing and preserves the
high-frequency details of the image.

The overall network structure improves the accuracy and detail
of image reconstruction by merging shallow and deep features to
achieve both efficient information compression and full utilization
of detailed information in the reconstruction stage.

2.2.2 Attention mechanism CBAM
In this paper, the design of the CBAM incorporates several

important hyperparameter configurations aimed at improving the
visual quality of images. The channel attention module computes
attention through a shared multilayer perceptron, as well as using
two convolutional layers with a convolutional kernel size of 1. A
ReLU activation function is inserted between them to enhance
nonlinear representation. To reduce the computational complexity,
a reduction ratio of 16 is set to efficiently extract important channel
information.
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FIGURE 2
Diffusion model.

FIGURE 3
Attention mechanism CBAM.

The spatial attention module to enhance the information related
to key spatial locations in the image uses a 2D convolutional layer
of size 7 to generate the spatial attention weights by calculating
the average and maximum values of each channel and finally
connecting them.

Channel attention focuses on the importance of different
channels, while spatial attention emphasizes the key spatial locations
in the image.Through the effective combination of channel attention
and spatial attention, CBAM ensures the balance of both in feature
enhancement. Utilizing this combination, CBAM can adaptively
adjust the feature response to effectively improve the detail recovery
and high-frequency parts, which significantly improves the overall
image reconstruction quality.

In the CBAM module, the network’s ability to emphasize
important features is enhanced by sequentially applying both
channel and spatial attention mechanisms. This process adaptively
refines the feature responses across both the channel and spatial axes,
as shown in Figure 3.

Initially, the input feature map is X, i.e., I_(after_residual) in
2.2. Global pooling operations are performed on X, including

global average pooling Xavg = AdaptiveAvgPool2d(X) and global
maximum pooling Xmax = AdaptiveMaxPool2d(X), to obtain the
feature maps Xavg and Xmax. The feature maps Xavg and Xmax
are inputted into the shared multilayer perceptron (MLP). The
channel attention is computed by the shared MLP with Cavg =
MLP(Xavg) and Cmax =MLP(Xmax). The shared MLP comprises
two convolutional layers, with a ReLU activation function inserted
between them. Then Cavg and Cmax are summed to generate
the channel attention map Mc = σ(Cavg +Cmax) by the Sigmoid
activation function, where σ is the Sigmoid activation function.
Ultimately, the channel attentionweights are used to adjust the input
feature maps Xca =Mc ×X, multiplying them pixel by pixel.

The result Xca obtained from the pass attention is input into the
spatial attention module for spatial information extraction. Firstly,

calculate the average value of each channel Xavg =
1
C

C
∑
i=1

Xca[i], here
C represents the channel count. Next, calculate the maximum value
of each channel Xmax = max (Xca, dim = 1). And, splice Xavg and
Xmax in channel dimension Xcat = Concat(Xavg ,Xmax). The spliced
features are mapped to the convolutional layer to generate spatial
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attention weights Ms, Ms = σ(Conv2D(Xcat)). Finally, the spatial
attentionweights are used to adjust the input featuremapXsa =Ms ×
Xca, with each weight corresponding to a specific spatial location.
Ultimately, the module ends up with the final output Xcbam = Xca,
which is ICA in Section 2.2.

2.3 Discriminator design

The discriminator section employs a convolutional neural
network (CNN) to construct a deep model comprising several
convolutional layers, activation functions, pooling operations, and
fully connected layers, which ultimately produces a scalar value
indicating the image’s authenticity.

First, the discriminator passes through multiple convolutional
blocks, each comprising a convolutional layer, batch normalization,
and a LeakyReLU activation function (see Equation 16). The
operation of each block can be described as follows:

Convi(imgs) = LeakyReLU(BatchNorm(Conv2D(imgs,W i,bi))) (16)

whereConvi(imgs) denotes the 2D convolution operation,Wi and bi
are the convolution kernel and bias respectively, BatchNorm(Conv)
denotes the batch normalization layer, and LeakyReLU(BatchNorm)
is the activation function. The batch normalization step is designed
to standardize the output of each layer, preventing issues such
as gradient explosion or vanishing gradients during training (see
Equation 17). The formula is as follows:

Xnorm =
X − μ
σ
× γ + β (17)

where μ and σ are the average and variance of the current batch
of data, and γ and β are learnable parameters. The LeakyReLU
activation function is given by (see Equation 18):

f (x) =
{
{
{

x,x > 0

αx,x < 0
(18)

where α is a small constant used to solve the “dead neuron”
problem of ReLU.

In the first convolutional block, the output channels are set to n_
channels, and this value is doubled after every other convolutional
layer in the subsequent blocks. The convolution kernel size of
each convolution block is kernel_size, and the convolution step
stride is 1 or 2, when the step is 1, the image size remains
unchanged, and when the step is 2, the image size is halved.
The overall convolution process can be expressed as follows
(see Equation 19):

conv_output = Convi(conv_output) (19)

Aftermultiple convolutional layers, the image’s spatial resolution
is gradually reduced and the number of channels is gradually
increased to capture more abstract features.

After multiple convolutional blocks, the output feature maps
undergo changes in their spatial dimensions, and the result is then
processed with an adaptive average pooling operation. Adaptive
pooling resizes the output’s spatial dimensions to 6 × 6, ensuring that

the feature map size remains constant, regardless of the input image
size. The pooling operation can be expressed as (see Equation 20):

adaptive_pool_output = AdaptiveAvgPool2D(conv_output)
(20)

In this case, the output after adaptive pooling is a fixed-size
feature map adaptive_pool_output with the size of N × C×6 × 6 and
C is the number of channels. The fundamental concept of adaptive
pooling is to reduce the input image to a fixed output size through
average pooling.

Next, the pooled feature map is flattened and passed
through a fully connected layer, which maps all values in the
feature map to a fixed-size vector. The flattening operation is
denoted as (see Equation 21):

f latten_output = f latten(adaptive_pool_output) (21)

It is subsequently passed through the fully connected layer fc1,
with the formula for the first layer given as follows (see Equation 22):

f c1_output =W f c1 × f latten_output + bf c1 (22)

whereWfc1 is the weight matrix of the fully connected layer and bfc1
is the bias term. After processing through the fully connected layer,
a vector of dimension N × fc_size is obtained.

Then, the LeakyReLUactivation function is applied to the output
fc1_output of the first fully connected layer (see Equation 23), and
the output after the activation function is obtained:

leaky_relu_output = LeakyReLU(f c1_output) (23)

At this point, a second fully connected layer, fc2, is passed,
mapping the output from the previous layer to a scalar value that
indicates whether the image is a true HR image (see Equation 24).
The second fully connected layer Eq:

logit =W f c2 × leaky_relu_output + bf c2 (24)

where Wfc2 and bfc2 are the weights and bias terms of the second
fully connected layer, respectively, and the output logit is a scalar
indicating the rating of the image. Ultimately, the discriminator’s
output is a scalar score that reflects the authenticity of the input
image, which is then used to assess whether the image originates
from a genuine HR image distribution.

2.4 Loss function

This research develops a composite loss strategy is developed
by integrating multiple loss functions, aiming to enhance the
perceptual quality of the generated images through simultaneous
refinement of pixel-level accuracy and high-level visual features.
Specifically, the loss functions employed include content loss, VGG
feature loss, and adversarial loss. The synergistic combination of
these loss functions helps to further enhance the image’s fine
details and high-frequency components, improving upon pixel-level
restoration, and thus boosting the realism and visual appeal of the
generated image.
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2.4.1 Loss of content
Content loss quantifies the pixel-level differences between the

generated and real images. We employ the mean square error (MSE)
loss function to calculate the content loss. This loss function aids
the generator in progressively restoring image details byminimizing
pixel-wise differences between the generated and high-resolution
images. The formula for content loss is as follows (see Equation 25):

Lcont =MSE(IHR, ISR) (25)

Here, IHR denotes the ground truth high-resolution image, while
ISR denotes the super-resolution image produced by the generator.
During the training process, content loss is used to reduce the visual
differences between the generated image and the real image, thus
ensuring an accurate reconstruction of the image. Although content
loss is effective in reducing pixel-level differences, it struggles to
recover high-frequency details in the image.Therefore, in this study,
content loss is combinedwith other loss functions tomore effectively
restore both the fine details and higher-level features of the image.

2.4.2 Perceived loss
To enhance the visual quality of the generated images, we

incorporate the feature loss from the VGG19 model. VGG19
has demonstrated exceptional performance in capturing high-
level semantic features of images, especially in applications like
image classification and generation. In this study, we utilize the
convolutional layers of VGG19 (excluding the final classification
layer) to capture high-level features from an image and assess the
discrepancy between the generated and real images within these
feature spaces.

The VGG feature loss guides the generator by comparing the
VGG features of the generated image to those of the real image,
enabling the model to not only minimize pixel-level discrepancies
but also capture the high-level structural and semantic content of the
image. The formula for the VGG feature loss is (see Equation 26):

Lperceptual =∑
n
ρ(vf eatn(IHR) − vf eatn(ISR)) (26)

Here, v featn(I) represents the VGG19 features from the nth
layer, while ρ denotes the Charbonier loss function, which helps
stabilize the computation process. During the training process,
VGG feature loss differs from content loss in that it mainly helps
to capture high-level semantic information in the image while
maintaining the overall structure and texture details. By using the
Charbonier loss function, the generator is able to learn finer details
and structural information, making the generated images more
natural and realistic.VGG loss is important in improving perceptual
quality and visual consistency, especially when dealing with detail-
rich and semantically complex image generation tasks, and it can
help the generated images better alignwith human visual perception,
thus enhancing the image’s naturalness and realism.

2.4.3 Adversarial loss
Adversarial loss is a key part of Generative Adversarial Networks

(GANs), optimizing the generator to create more convincing images
that can be progressively refined through feedback from the
discriminator. In the GAN framework, the discriminator’s task is to
determine whether an image originates from a real dataset or is a

synthetic one created by the generator. Simultaneously, the generator
strives to improve the quality of the images through adversarial
learning, making it progressively harder for the discriminator to
differentiate between real and generated images.

The expression for computing the adversarial loss is
given by (see Equation 27):

Ladv = −EIHR
[log D(IHR)] −EISR[log(1−D(ISR))] (27)

where D(I) denotes the true probability output of the discriminator
for image I. During the training process, the adversarial loss helps
the generator to optimize the details and complexity of the image,
especially the high-frequency part, through the feedback from the
discriminator, thus making the image more natural and realistic. By
minimizing the adversarial loss, the generator gradually improves
the realism and visual finesse of the image, especially in the case
of complex backgrounds or rich textures. Adversarial training
motivates the generator to continuously improve the details, so that
the realism and visualization of the image are improved, and the final
generated image is more vivid in details and complexity.

To balance the influence of each loss function, we introduced
hyperparameters λ1, λ2, and λ3 into the total loss, which control
the contributions of content loss, VGG feature loss, and adversarial
loss, respectively. In this study, the weight coefficients for content
loss and VGG feature loss were both set to 0.5, while the
weight coefficient for adversarial loss was set to 0.1. These
hyperparameters were adjusted experimentally to ensure high-
quality image reconstruction, effective guidance of high-level
features, and enhanced visual realism.

3 Results

To assess the effectiveness of the proposed DEGAN method,
experiments are conducted using publicly available remote
sensing datasets.

3.1 Experimental setup

Our model was trained and evaluated on three remote sensing
datasets: UCMerced, AID, andNEG-Scene.TheUCMerced dataset
consists of 21 different remote sensing scenes, such as farmland,
airports, and buildings. Each scene category contains 100 images,
each with a resolution of 256 × 256 pixels and a spatial resolution
of 0.3 m per pixel. The dataset has clear feature boundaries, is
suitable for remote sensing image super-resolution tasks, and is
effective in testing high-resolution reduction performance.The AID
dataset includes 30 distinct scenes, such as farmland, airports, and
buildings. Each image in this dataset has a resolution of 600 × 600
pixels and a spatial resolution of 0.5 m per pixel.The dataset contains
a variety of complex backgrounds andmultiple feature types,making
it suitable for testing the effectiveness of reconstructing a variety
of complex scenes in remote sensing image super-resolution tasks.
The NEG-Scene dataset consists of 1000 high-resolution images,
each with a spatial resolution of 0.5 m and dimensions of 400 ×
400 pixels. The dataset contains remotely sensed imagery from
a variety of environments and geographic regions, providing a
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TABLE 1 Evaluation indicators.

Indicator Formula Description

PSNR PSNR = 10× log10 (
MAX2

I

MSE
) MAXI is the maximum pixel value of the image (usually 255). Larger values indicate better image quality

SSIM SSIM(x,y) =
(2μxμy+c1)(2σxy+c2)

(μ2x+μ2y+c1)(σ
2
x+σ2y+c2)

μx and μy are the mean values of the two images, σx and σy are the standard deviation, σxy are the covariance, c1 and c2 are
constants. The SSIM values range from [0, 1], and the closer the value is to 1, the more similar the two images are

more complex test environment for super-resolution tasks. For
these datasets, we consider the images as high-quality images
and generate their corresponding low-quality versions by applying
bicubic interpolation. Our objective is to recover the high-resolution
images from their low-resolution versions. The experiments were
carried out using the PyTorch framework, and the computations
were performed on a single NVIDIA GeForce RTX 4090 GPU
featuring 24 GB of memory. To ensure a fair comparison, each
model was trained on the identical dataset and assessed individually
through an end-to-end process. The evaluation metrics include
the Peak Signal-to-Noise Ratio (PSNR) as well as the Structural
Similarity Index (SSIM). PSNR quantifies pixel-level variations
between two images, whereas SSIM assesses the similarity in
structure. An increased PSNR value signifies superior image quality,
while an SSIM score approaching 1 implies that the generated image
closely resembles the original high-resolution version.

3.2 Evaluation indicators

We quantitatively assessed the effectiveness of our method in
comparison to other approaches using two key metrics: PSNR and
SSIM. The formulas and detailed descriptions of these metrics are
provided in Table 1.

PSNR assesses image quality bymeasuring pixel-level variations,
whereas SSIM evaluates the structural similarity between a super-
resolved image and the original high-resolution version. In general,
higher PSNR and SSIM scores indicate superior image quality.

3.3 Experimental procedure

For our experiments, we have chosen three remote sensing
image collections: the AID dataset for scene classification, the UC
Merced dataset, and theNEG-Scene dataset. In this paper, we inspect
and crop all remote sensing images used for training to remove color
distortion. Our study concentrates on the super-resolution task with
two levels of magnification: ×2 and ×4. The high-resolution images
are sized at 256 × 256, while the low-resolution counterparts are
generated by downsampling using double cubic interpolation.

All experiments were performed with PyTorch, and the models
were trained on a single NVIDIA GeForce RTX 4090 GPU with
24 GB of memory. In this paper, we set the batch size to 16 to
ensure that the model does not experience memory overflow during
training. If a larger batch size is required, it can be adjusted according
to the available GPU memory.

During training, we used the Adamoptimizer with β1 initialized
to 0.9 and β2 initialized to 0.999. The initial learning rate was

set to 0.0001. To accelerate convergence, we used a learning rate
decay strategy, where the learning rate was reduced to 10% of the
original after 50 cycles of training. This strategy can fine-tune the
model at a later stage to make the image reconstruction more stable
and accurate.

3.4 Experiments with simulated image
datasets

To evaluate the effectiveness of our proposed DEGAN model,
we conducted comparative experiments using the double-cubic
interpolation technique along with seven advanced super-resolution
methods, including EFDN, DBPN, SRGAN, ESRGAN, HSENet,
TransENet, and SwinIR. These models are highly valuable for
tasks related to super-resolution of remote sensing images. We re-
implemented each of these approaches using publicly available code
and carried out evaluations under the same testing conditions.
EFDN (Edge-enhanced Feature Distillation Network) is an
innovative method presented at the 2022 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), which leverages
edge-enhanced feature distillation. HSENet is an efficient super-
resolution model introduced in the 2021 issue of IEEE Transactions
on Geoscience and Remote Sensing (TGRS), which focuses on
enhancing image details through adaptive learning. TransENet and
SwinIR are bothTransformer-framedmodels. To ensure anunbiased
evaluation, all models are trained and tested on the UCMerced
dataset, with consistent batch sizes and the same evaluation metrics
(PSNR and SSIM).

Table 2 presents the effectiveness of the DEGAN model
alongside six other comparison models for x2 and x4 super-
resolution reconstruction tasks on the UCMerced dataset. While
many contemporary methods, such as SwinIR, EFDN, and DBPN,
perform well in terms of PSNR and SSIM, DEGAN surpasses them
in both metrics. Notably, at ×4 magnification, DEGAN achieves a
PSNRof 28.901 and an SSIMof 0.7962, which significantly surpasses
the other models.

The experimental results in Table 2 reveal that among
all the methods, Bicubic interpolation yields the poorest
performance, particularly at ×4 magnification, with a PSNR of
23.83 and SSIM of 0.6468. This suggests that it significantly
lags behind deep learning-based methods in terms of detail
recovery and high-quality reconstruction. In contrast, deep
learning-based methods (such as SRGAN and ESRGAN)
show some improvement at ×2 magnification. However, at ×4
magnification, their PSNR and SSIM values remain relatively low,
highlighting the challenges these methods face when dealing with
high-magnification images.
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TABLE 2 Performance comparison of algorithms on the UC Merced dataset
∗
.

Method Batch size Ratio 2x

PSNR SSIM Params FLOPs

Bicubic — 27.22 0.7873 — —

SRGAN 16 28.95 0.8166 1.41M 5.94G

EFDN 16 34.25 0.9392 0.26M 15.72G

DBPN 16 34.17 0.8966 5.95M 57.41G

HSENet 16 34.22 0.9327 5.29M 149.73G

TransENet 16 34.03 0.9301 37.31M 23.72G

SwinIR 16 34.83 0.9377 11.75M 115.49G

DEGAN 16 35.175 0.9464 6.99M 64.35G

Method Batch size Ratio 4x

PSNR SSIM Params FLOPs

Bicubic — 23.83 0.6468 — —

SRGAN 16 25.31 0.6844 1.59M 9.128G

EFDN 16 27.71 0.7785 0.27M 16.73G

DBPN 16 28.47 0.7195 10.43M 109.11G

ESRGAN 16 28.09 0.6775 16.7M 165.23G

HSENet 16 27.73 0.7623 5.43M 155.35G

TransENet 16 27.78 0.7635 37.46M 71.26G

SwinIR 16 28.23 0.7796 11.90M 121.12G

DEGAN 16 28.901 0.7962 7.58M 125.38G

∗Bold values indicate the best performance.

EFDN and DBPN are more advanced methods proposed in
recent years with better edge recovery and global feature modeling
capabilities, but at ×4 magnification, their PSNR values are 27.71
and 28.47, respectively, and their SSIM values fail to reach the
desired level, especially in the detail recovery, which still has some
room for improvement. HSENet, TransENet, and SwinIR achieve
relatively high performance by adopting more convolutional layers
and feature extraction strategies, especially SwinIR, which shows
further improvement in detail and global information recovery by
introducing the attention mechanism of Transformer, with a PSNR
of 28.23 and SSIM of 0.7796.

However, despite the progress made by SwinIR and other
methods, our proposed DEGAN model shows stronger advantages
at both zoom factors (x2 and x4). Specifically, in the 4x zoom
task, DEGAN reaches a PSNR of 28.901 and an SSIM of 0.7962,
outperforming SwinIR (28.23/0.7796) by 0.67 dB in PSNR and
0.0166 in SSIM. This indicates a notable enhancement in image
detail recovery and visual quality with our method. DEGAN

achieves this objective through a carefully designed module,
incorporating mechanisms such as attention and diffusion, which
significantly improve the model’s performance to recover details
and perform well in high-magnification scenarios. It also addresses
the issue of detail loss that is common in existing methods when
processing remote-sensing images.

We also compare the performance of the different algorithms on
two evaluationmetrics, namely, the number of parameters (Params)
and the amount of floating-point operations (FLOPs).Params refers
to the total number of weights and biases that need to be learned
and stored in the model.The higher the Params, the more expressive
the model is, but it may also lead to greater memory usage and
risk of overfitting.FLOPs denotes the number of floating-point
operations required for the model to perform one forward number
of floating-point operations required for the model to perform
one forward inference.The higher the value of FLOPs, the more
computationally intensive the model is, and the inference may be
slower and more demanding on hardware computational power. In

Frontiers in Earth Science 11 frontiersin.org

https://doi.org/10.3389/feart.2025.1578321
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Li et al. 10.3389/feart.2025.1578321

the Params metric, EFDN and SRGAN have smaller Params, which
helps to reduce memory occupation and improve computational
efficiency. In the FLOPs metric, HSENet and ESRGAN have higher
FLOPs and higher computational requirements. The improvement
of our model DEGAN in these two metrics will be an important
direction for future work.

Figures 4, 5 illustrate the 2× super-resolution reconstruction
outputs of each algorithm on two remote-sensing images. The
subfigures are arranged in a sequential order, starting from the
upper-left corner and proceeding to the bottom-right, showing the
reconstruction results for the HR reference image, double-cubic
interpolation, SRGAN, EFDN, DBPN, HSENet, TransENet, SwinIR,
and the DEGANmethod introduced in this study. From the figures,
it can be seen that the overall clarity of the reconstructed image
using bicubic interpolation is insufficient, the loss of details is more
serious and the edges are too smooth, presenting an obvious blurring
effect; SRGAN results have improved the blurring problem to a
certain extent, but it is still accompanied by some artifacts; the
edges of the reconstructed image by EFDN are softer, but it is
slightly insufficient in terms of sharpness, and at the same time
there are fewer artifacts; DBPN excels in accurately reproducing
both structural forms and intricate textures, whereas EFDN achieves
even more impressive reconstruction outcomes. HSENet yields
reconstructions with excellent clarity; however, minor artifacts are
evident in regions featuring intricate backgrounds; TransENet is
excellent in controlling the artifacts, but the texture performance
in some areas still needs to be improved; Visually, the output of
SwinIR resembles that of our proposed DEGAN approach; however,
DEGAN’s reconstructions more faithfully capture the appearance
of authentic high-resolution images. Overall, the outputs of SwinIR
and our proposed DEGAN approach display similar visual quality;
however, DEGAN’s reconstruction more effectively recovers the
global structure and closely mimics the visual characteristics of the
authentic high-resolution image.

Figures 6, 7 display the 4x upscaled outputs produced by
various methods when applied to two simulated images. In these
figures, the subfigures arranged row-wise from the top-left to
the bottom-right, each sequentially illustrating the reconstruction
outcomes of theHR reference image, bicubic interpolation, SRGAN,
EFDN, DBPN, ESRGAN, HSENet, TransENet, SwinIR, and the
proposed DEGAN algorithm.The reconstruction results of SRGAN
are slightly blurred in texture rendering, and the reconstruction
of EFDN is smooth, but the texture details are not sufficiently
detailed, and the artifacts are slightly visible in the high-contrast
region. The reconstruction results of EFDN are smooth, and
although the artifacts are effectively controlled, the texture details
are insufficient and lack realism; DBPN has excellent overall clarity,
but artifacts can still be observed in some high-contrast areas; the
reconstruction results of ESRGAN and HSENet are more balanced,
and only a small number of artifacts are detected in local areas; the
reconstructed image of TransENet has fewer artifacts but the texture
hierarchy is insufficient; the reconstruction results of SwinIR and
DEGAN are less blurred in the texture rendering. The TransENet
reconstructed image has fewer artifacts, but the texture level is
insufficient; the SwinIR reconstructed image shows high clarity,
although there are still artifacts in some areas. By contrast, our
DEGAN approach significantly improves the restoration of the
overall structure and true textures while preserving image clarity,

resulting in a visual output thatmore accurately reflects the authentic
high-resolution image.

By comparing the reconstruction results of different methods,
the experiments show that our proposed DEGANmethod performs
superiorly in the super-resolution task of remote sensing images.
Compared with other methods, DEGAN is able to recover the
global structure more efficiently and capture the visual features
of real high-resolution images, especially in complex background
and detail recovery. Although other methods like SwinIR also
perform well in terms of visual quality, DEGAN is more stable in
image recovery and can maintain high-precision reconstruction at
different scales.This suggests that DEGAN has a strong potential for
application in the field of remote sensing image super-resolution,
especially when dealing with remote sensing images with complex
backgrounds.

3.5 Ablation experiment

In this part of the research, we perform a series of ablation
experiments to assess the influence of attention mechanisms and
diffusion modules on super-resolution performance.

3.5.1 Effectiveness of attention mechanisms
To assess the effect of the attention mechanism (CBAM) on

super-resolution performance, we performed an ablation study
with a 4x scaling factor, comparing the effects of various attention
modules, including SE, CAM, SAM, and the integrated CBAM.
We evaluated the performance improvements brought by each
attentionalmechanism in the super-resolutionmodel and compared
themwith a baselinemodel that lacks any attentionmechanism.The
findings from these experiments are presented in Table 3.

The results of the experiments show that incorporating the
CBAM module leads to a 0.2 dB improvement in PSNR and a
slight improvement in SSIM (by 0.002). This suggests that the
CBAM module provides a small but significant gain in the image
feature extraction process, which is especially helpful in recovering
the edge details of the image. Our further analysis reveals that
the CBAM module, especially in low-contrast regions and regions
with more details, optimizes the ability of detail reconstruction.
Compared to other attention mechanisms, CBAM can better
balance channel and spatial attention, thus improving the overall
reconstruction quality.

In addition, we conducted comparison experiments with
various attention mechanisms. The results indicate that
although the SE module has some improvement on the super-
resolution task, its effect is slightly inferior compared to CBAM.
In terms of performance, the CBAM module outperforms
other types of attentional mechanisms in both PSNR and
SSIM, and shows superior visual effects. Especially in detail
recovery and edge sharpness, the CBAM module shows a
clear advantage.

In this experiment, the CBAM module contains two main
parts: the Channel Attention Module (CAM) and the Spatial
Attention Module (SAM). CAM enhances important features
mainly by adaptively adjusting the inter-channel weights, while
SAM further improves the model’s ability to capture the spatial
structure of the image. The combination of the two makes
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FIGURE 4
Comparison of 2x super-resolution reconstruction results of each algorithm on an analog image in the UCMerced dataset.

CBAM more efficient than a single module in processing complex
image details.

3.5.2 Effectiveness of diffusion modules
To assess the impact of the diffusion module (Diffusion) on the

image super-resolution task, we compare amodel incorporating this
module with a baseline model that excludes it. Table 4 presents the
PSNR and SSIM values for each model at a 4x scaling factor.

Based on the data in Table 4, integrating the diffusion module
leads to an increase in PSNR by 0.446 dB. Although the change in
SSIM isminimal, the significant boost in PSNRhighlights the crucial
role of the diffusion module in improving the image’s structural
clarity. The diffusion module effectively restores the high-frequency
details in the image by gradually removing noise and artifacts. In
the reconstruction process, the module utilizes the noise level as
the diffusion step t. By mapping through the fully connected layer
and incorporating the bottleneck features as residuals, the network
can dynamically adjust the denoising intensity according to varying
noise levels, thereby improving the accuracy of texture and edge
restoration. Second, the introduction of the Transformer encoder
in the bottleneck layer enables self-attentive modeling of the global
features, enabling the network to capture long-range relationships
within the image, which is crucial for restoring fine details. It is the
effective integration of fine-grained details and abstract semantics
that enhances the realism of the reconstructed image in terms of
both structure and details, thereby demonstrating a clear advantage
in the PSNR metric.

Furthermore, we investigate how various U-Net architectures
affect super-resolution outcomes by comparing the standard U-
Net with a variant that incorporates a Transformer structure in its
bottleneck layer. The experimental results (see Table 5) show that
the structure after the introduction of the Transformer has certain
advantages in global feature modeling, especially when dealing
with complex texture and edge information, which can further
improve the ability to recover image details and thus achieve finer
reconstruction results.

Based on the ablation experiments discussed above, the
diffusion module demonstrates notable advantages in merging
low-level and high-level features while also strengthening the
restoration of high-frequency details. Its significant improvement
in PSNR is mainly due to the following reasons: on the one
hand, by accurately modeling the noise level and dynamically
adjusting the denoising strength, the diffusion module can retain
the detailed information more efficiently; on the other hand,
the introduction of the Transformer in the bottleneck layer
further enhances the ability to model the global information,
allowing it to capture long-range dependencies and, as a
result, more effectively restore complex textures and edge
details. The results of different U-Net variants also show that
a reasonable design of the network structure can significantly
improve the image reconstruction quality while maintaining
computational efficiency. These results provide valuable references
and improvement directions for further optimization of super-
resolution networks.
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FIGURE 5
Comparison of 2x super-resolution reconstruction results of each algorithm on another simulated image in the UCMerced dataset.

FIGURE 6
Comparison of 4-fold super-resolution reconstruction results of each algorithm on a simulated image in the UCMerced dataset.

4 Discussion

4.1 Comparison with previous methods

In this study, a novel super-resolution reconstruction method
for remote sensing images is proposed, which improves the quality
of super-resolution reconstruction of remote sensing images by
embedding the diffusion module and attention mechanism into
the generative adversarial network. And certain improvements are

made to address the problems of insufficient detail information
and adaptability to complex environments. Numerous experimental
results show that the DEGAN model proposed in this study
performs well in the task of super-resolution reconstruction of
remote sensing images, surpassing many existing methods in detail
recovery and global structure reconstruction.

Compared with the SEG-ESRGAN model, DEGAN is able to
better adapt to complex scenes and is clearer in the recovery
and reconstruction of edge information (Salgueiro et al., 2022).
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FIGURE 7
Comparison of the results of 4-fold super-resolution reconstruction of each algorithm on another simulated image in the UCMerced dataset.

TABLE 3 SR results using the attention module.

Model Scaling factor PSNR SSIM

Baseline ×4 28.455 0.794

Baseline + SE ×4 28.530 0.795

Baseline + CAM ×4 28.565 0.795

Baseline + SAM ×4 28.570 0.794

Baseline + CBAM ×4 28.621 0.796

TABLE 4 SR results using the diffusion module.

Model Scaling factor PSNR SSIM

Baseline ×4 28.455 0.794

Baseline + Diffusion ×4 28.901 0.796

TABLE 5 SR results for different U-Net variants.

Model Scaling factor PSNR SSIM

U-Net ×4 28.814 0.794

U-Net + transformer ×4 28.901 0.796

Compared with the MBGPIN model, DEGAN improves its
reconstruction quality in high-frequency texture by introducing
the attention mechanism, which makes the texture details in the
generated image more realistic and natural (Sharifuzzaman et al.,
2024). Compared with the TBMRA model, DEGAN further
improves the image quality by introducing the diffusion module,
which enables the model to obtain more detailed information
in complex scenes, showing similar advantages to the TBMRA
model (Patnaik et al., 2024). Compared with the MRENet model,
DEGAN captures the detail information more effectively through
adversarial training and better handles the edge information in

the image, thus improving the reconstruction quality of remote
sensing images (Safarov et al., 2025).

Therefore, DEGAN not only has unique advantages in
detail recovery of remote sensing images, but also provides an
important reference in improving the quality of super-resolution
reconstruction and enhancing the detail information.

4.2 Limitations and future work

The DEGAN model proposed in this paper performs well in
most of the remote sensing image super-resolution tasks, but still has
some limitations. First, in some cases where high noise exists, extreme
noise and complex scenes may affect the reconstruction results of the
model. In addition, themodelmay suffer fromexcessive smoothing or
artifactson imageedgesanddetail information insomespecificscenes.
Futureworkwill focusonoptimizing thedenoisingprocess, enhancing
the robustness to extreme noise, and improving the reconstruction
results in complex scenes.

Although the model in this paper has successfully processed
remote sensing images with a maximum resolution of 600 ×
600, high-resolution remote sensing images usually contain more
detailed information, so in future research we will consider
extending the model to support higher resolution image processing.
At the same time this brings higher computational complexity
and memory requirements. To address this issue, future work will
focus on optimizing the network structure and improving the
computational efficiency of the model so that it can process images
with larger resolution. In addition, we will explore methods such as
self-supervised learning to improve the robustness and efficiency of
the model so that it is better adapted to the task of super-resolution
reconstruction of high-resolution images.

To further boost the model’s efficiency and resilience,
subsequent enhancements may be implemented across three
distinct areas: network structure optimization, self-supervised
learning and pre-training strategies, and software and hardware
co-optimization for computational complexity. First, in network
structure optimization, multi-scale feature fusion technology can
be adopted to effectively fuse feature information of different
resolutions by designing multi-scale branching or pyramid
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structure, which not only improves the detail recovery ability,
but also helps to minimize the computational complexity; in
addition, the use of techniques such as depth-separable convolution,
pruning, or quantization to construct a lightweight network
architecture, which can reduce the model’s parameter size and
computational requirements while preserving reconstruction
performance. Secondly, in terms of self-supervised learning and
pre-training strategies, designing self-supervised pre-training tasks
based on contrast learning or occlusion recovery, and utilizing a
large dataset of unlabeled remote sensing images for pre-training
to capture additional latent image features and enhance the
robustness of super-resolution reconstruction; at the same time,
by adopting multi-task joint learning and integrating tasks such
as image segmentation and object detection, the model can share
underlying features, enhancing its generalization capability and
improving performance in detail recovery across various remote
sensing scenarios. Finally, for the computational complexity, we
can also start from software and hardware co-optimization, study
the efficient inference mechanism of the model on embedded
devices or GPUs, and further shorten the inference time through the
combination of algorithm optimization and hardware acceleration;
at the same time. With the help of distributed training and
model compression techniques, the performance and flexibility
of large-scale data processing can be improved while maintaining
reconstruction quality. In summary, although DEGAN has shown
considerable advancements in the super-resolution reconstruction
of remote sensing images, future work should address the challenges
related to computational complexity and detail processing. This
will help enhance the model’s efficiency and robustness, enabling
broader practical applications in remote sensing image processing.

5 Conclusion

In this study, we propose an improved method for super-
resolution reconstruction of remote sensing images, DEGAN. By
incorporating the diffusion module and the attention mechanism
into the generator, the model improves the adaptability to complex
remote sensing scenarios while enhancing the detail restoration
and improving the image realism. The diffusion module further
improves image details and suppresses blurring through denoising,
thus significantly enhancing the visual effect of the generated results.
Through adversarial training, our model is optimized in terms of
pixel accuracy and perception, thus enhancing the super-resolution
reconstruction quality of remote sensing images. Through a large
number of experimental results, it is shown thatDEGANoutperforms
the traditional super-resolution algorithm and other existing state-
of-the-art SRmodels, and significantly improves the super-resolution
reconstruction performance of remote sensing images.
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