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This study develops a spatio-temporal forecasting model for predicting wind
speeds across the Beijing-Tianjin-Hebei region over a 4-h horizon. The model,
built using advanced deep learning techniques, operates with a temporal
resolution of 1 hour and a spatial resolution of 9 km. The experiments were
first trained based on ConvLSTM and UNet, and improved by introducing the
Self-Attention (SA) mechanism module to construct two hybrid deep learning
models, Conv-SA as well as UNet-SA, respectively. The results show that the
spatio-temporal predictions of the UNet model are significantly better than
ConvLSTM, and the TS scores show that for the prediction of high wind, the
enhancement is more than 50% for the next 4 hours. The addition of the SA
module significantly improves the model prediction accuracy, and Conv-SA
improves significantly, compared to ConvLSTM by more than 60%. The models
weremore accurate in predictingwind speeds in the region of the terrestrial than
the oceanic subsurface. In addition, the model produces more accurate wind
speed predictions for coastal as well as plateau regions. This study provides a
new research idea for the proximity prediction of wind speed.
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1 Introduction

Wind is an extremely important meteorological element, which can reflect different
atmospheric circulation characteristics and is a key factor in climate analysis, a variety
of extreme natural disasters are also affected by winds (Nan et al., 2019; Aiqing et al.,
2016). Changes in wind speed can have a significant impact on the ecology of a region,
while wind energy is growing in demand worldwide as a major source of electricity
(Veers et al., 2019; Guoying and Xinyi, 2024). Therefore, the accurate prediction of wind
speed is of great importance in the fields of energy utilization and disaster warning.

The wind speed prediction methods include physics-based models, statistical models,
artificial intelligence methods and hybrid models (Chen J. et al., 2024; Yang M. et al.,
2024). Numerical Weather Prediction (NWP) provides a good account of the effects of
physical properties of meteorological elements on wind speed, yet its characteristics give
it an advantage over localized ultrashort-term forecasts for large-scale weather forecasting
(Landberg, 2001). The more commonly used statistical methods are Autoregressive
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model (AR), Moving Average Model (MA), Kalman filter (KF) etc
(Dai et al., 2024; Li et al., 2022). Wang et al. (2025) evaluated the
accuracy ofGaussian, Lognormal,Weibull, andGammadistribution
functions in simulating the probability density function (PDF) of
urban wind speed, providing a more appropriate statistical basis for
wind speed prediction.

The rapid advancement of computer technology and continuous
upgrades in hardware have facilitated the widespread application
of artificial intelligence techniques in meteorological element
forecasting (Ham et al., 2019; Chen et al., 2023; Price et al.,
2025). Artificial intelligence methods exhibit robust data fitting
capabilities and demonstrate proficiency in modeling complex
nonlinear relationships inherent in wind speed data (Wang J. et al.,
2023; Liu and Zhang, 2024). Deep learning methods based on
big data can effectively predict wind speed under the premise
of comprehensively considering a variety of influencing factors
(Zhao et al., 2022; Zhang et al., 2019). Commonly used methods
include Support Vector Machine (SVM), Artificial Neural Networks
(ANN), Feed Forward Neural Networks (FFNN) (Akhtar et al.,
2021; Liu et al., 2021; Masrur et al., 2016). Such methods
improve can effectively learn the nonlinear characteristic changes
among wind speed data (Neshat et al., 2021). For multi-step
prediction of wind speed, the classic methods are Long Short
Term Memory (LSTM), Convolutional Long Short Term Memory
network (ConvLSTM) (Al-qaness et al., 2024; Sun et al., 2023).
Yaghoubirad et al. (2023) compared the performance of several deep
learning models including Convolutional Neural Network (CNN),
Gated Recurrent Unit (GRU), and LSTM in a study on wind speed
prediction and concluded that GRU has higher accuracy.The robust
spatial data processing capability of Convolutional Neural Networks
(CNN) enables accurate forecasting of meteorological disasters
by comprehensively considering the influence of the surrounding
geographical environment (Chen Z. et al., 2024). Frequency Filter
Enhanced Dual LSTM (FDNET) is an improvement of the
traditional LSTM model, and studies have shown that it effectively
solves the problems of inefficiency of LSTM in dealing with long
time series and sensitivity to noisy data (Mo et al., 2024). Wang et al.
(2024) proposed a Conditional Local Convolution Recurrent
Network (CLCRN) model, which combines temperature, pressure,
and other meteorological factors for spatial and temporal prediction
of wind speed. The model has good prediction performance at
different prediction length. The Self-Attention (SA) mechanism can
assign different weights to different features to learn the importance
level among the influencing factors and improve the generalizability
of the model, which has also been applied to wind speed prediction
in related studies (Tian et al., 2022; Dai et al., 2023).

Integrating traditional methods with machine learning can
achieve better prediction results. Liu et al. (2012) proposed a hybrid
wind speed prediction model EMD-ANN based on Empirical
Mode Decomposition (EMD) and ANN. The combination of
LSTM and Grey Wolf Optimizer (GWO) indicates that it has
better predictive performance than a single prediction model
(Altan et al., 2021). Srihari and Kiran (2024) integrated the
advantages of the Variational Mode Decomposition (VMD)
and Sample Convolutional Interactive and Network (SCINet)
architectures to predict wind speeds within different time ranges.
Experiments showed that the hybrid model significantly improved
the accuracy of wind speed prediction.

Hybrid deep learning methods have relatively limited research
in related fields, and a reasonable combination of the advantages
of different models can further improve prediction accuracy
(Zheng and Wang, 2024). The existing research integrates the
spatial correlation learning capabilities of CNN with the temporal
feature processing advantages of LSTM, thereby enhancing the
model’s spatio-temporal feature learning performance (Chen et al.,
2019; Wu et al., 2021). Zhu et al. (2018) proposed a Predictive
Deep Convolutional Neural Network (PDCNN) method for
spatio-temporal prediction of wind speed at multiple sites
simultaneously. This method, which combines CNN and Multi-
layer Perceptron (MLP), performs better than traditional models
and can effectively learn the spatio-temporal correlation of
wind speed. Jiang et al. (2023) combined Variational Mode
Decomposition (VMD), Graph Neural Network (Graph Neural
Network) and Temporal Convolutional Network (TCN) have
achieved remarkable results in the prediction of wind speed in
the next hour.

In summary, artificial intelligence methods have significant
advantages in current wind speed forecasting, and combining the
strengths of different models to improve the prediction accuracy
is of great research significance at present. The purpose of this
study is to use different deep learning methods to forecast the
wind speed in the Beijing-Tianjin-Hebei (BTH) region of China
in time and space under the premise of considering various
meteorological factors. The main research content is as follows: (1)
Based on the unique geomorphologic features of the BTH region, the
hybrid deep learning model ConvLSTM-Self-Attention (Conv-SA)
and UNet-Self-Attention (UNet-SA) with multiple meteorological
elements is constructed to predict the spatio-temporal wind
speed. (2) Explore the predictive performance of each model and
quantitatively analyze the improvement of thewind speed prediction
accuracy of the study area by SA mechanism under different
time steps.

2 Materials and methodology

2.1 Data sources

The study data are based on a multi-source fusion observational
1-km resolution product for Hebei Province. This dataset was
obtained by the Hebei Climate Center through quality-controlled
ground hourly observational data, utilizing multi-grid variational
analysis, fusion analysis parameter optimization, and terrain
height deviation correction. The data are specifically tailored for
application in the unique geomorphic environmental characteristics
of Hebei. The meteorological elements used in the research
include air temperature, humidity, pressure and wind speed,
with a time resolution of hourly. The spatial scope of the
dataset covers the BTH region, and the temporal distribution
is from October 2023 to October 2024. The research area
is shown in Figure 1.

In addition, the study classified the wind power levels with
reference to the Chinese standard “Wind Power Levels (GB/T
28,591─2012)”. For highwind samples ofmagnitude nine and above
with less data volume, they are grouped into one category in the
study, and the specific division is shown in Table 1.
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FIGURE 1
Geographical distribution of BTH region.

TABLE 1 Classification of wind power.

Wind power (level) Wind speed (m/s)

0 0.0∼0.2

1 0.3∼1.5

2 1.6∼3.3

3 3.4∼5.4

4 5.5∼7.9

5 8.0∼10.7

6 10.8∼13.8

7 13.9∼17.1

8 17.2∼20.7

≥9 ≥20.8

2.2 Methods

2.2.1 Deep learning models
In this study, a deep learning model is used for spatio-

temporal prediction by the ConvLSTM (Shi et al., 2015) and
UNet (Ronneberger et al., 2015) models. We introduce a SA
mechanism (Vaswani, 2017) to further improve the model
performance.

LSTM (Hochreiter, 1997) is good at handling tasks related
to time series prediction. ConvLSTM improves on this basis by
introducing CNN into the model structure to perform convolution
operations on time steps. CNN can effectively learn the spatial
distribution features of a dataset, thus ConvLSTM is commonly
used for spatio-temporal prediction tasks.TheUNetmodel principle
relies on CNN, and its infrastructure consists of an encoder
(downsampling) part and a decoder (upsampling) part, and
effectively combines the shallow and deep features of spatio-
temporal datasets by hopping layers of connectivity to enhance the
accuracy of the model prediction. The experiments are based on
ConvLSTM andUNet combined with the SAmechanism to propose
Conv-SA andUNet-SA respectively to evaluate themodel prediction
performance. Two baseline models (CNN and ConvGRU) were
added to the experiment for comparison to explore the predict
results of wind speed under different prediction lengths.

2.2.2 SA mechanism
Attention mechanism is a method that mimics human cognitive

attention, and in deep learning attention mechanism enables neural
networks to assign different weights to different parts of the data,
thus improving the accuracy and generalization of the model
(Wang H. et al., 2023). The SA mechanism operates by establishing
connections between all grid points in sequence data, computing
attention weights through pairwise similarity measurements. This
approach enables effective extraction of spatio-temporal features
across different regions, thereby enhancing prediction accuracy. In
our research, the ConvLSTM and UNet models are improved by
introducing a SAmechanismmodule to check whether the accuracy
of spatio-temporal prediction can be improved, and the structure of
the model is shown in Figure 2.
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FIGURE 2
Schematic diagram of model structure.

The calculation of the SA mechanism is shown in formulas 1, 2:

Q =WqX,K =WkX,V =WvX (1)

SA(Q,K ,V) = sof tmaxQK
T

√dk
(2)

The Q, K and V, are obtained by multiplying each data X in
the sequence with the three weight matrices Wq, Wk, and Wv
respectively after a linear transformation. The attention weights
are derived from the matrix multiplication of Q and KT, then
divide by √dk to stabilize the gradient. This process captures the
degree of mutual influence between different data points, effectively
controlling the range of attention weights to ensure smooth results
and prevent the generation of extreme values. The softmax function
is then applied to normalize these calculated values, after which they
are multiplied with the V matrix to produce the final SA output.

2.2.3 Persistence forecasting
The study used persistence forecasting (PF) as the benchmark

to evaluate the predictive performance of the deep learning model.
This method assumes that the predicted value of the adjacent wind
speed is equal to the current observed value, as shown in formula 3:

y′(tc + h) = y(tc) (3)

tc is the current time, y′(tc + h) is the wind speed forecasts at lead
time h. This method can effectively verify the improvement of the
model in the prediction accuracy of ultra-short-term wind speed.

2.2.4 Samples generation
The research is to predict the wind speed in the BTH region.

Historical 4-h air temperature, humidity, pressure and wind speed
are utilized to make spatial and temporal predictions of the next
4 hours of wind speed in BTH region. This research intends to train
the deep learningmethods and evaluate the prediction performance
of the models for different regions in BTH. The original 1 km
spatial resolutionmulti-source fusion observational dataset product
is upscaled to 9 km to increase the model running rate and reduce
the consumption of computational resources while meeting the
evaluation requirements. The model predicts wind speed based on
historical meteorological elements and continuously outputs the
wind speed values for the next 4 h during the training process. We

conducted quality control of the research data and divided the data
into samples by the sliding window method, as shown in Figure 3.
We suppose that the total sample length is s, the sample contains
historical temporal sequencesM and predicted temporal sequences
N.When the history input duration ism and the prediction duration
is n, M = {xt-m, xt-m+1, . , xt}, N = {xt+1, xt+2, . , xt+n}, where t
represents the current moment and xt denotes the value of the
meteorological element at the current moment. Each data sample
contains 4 h of historical meteorological element data and 4 h
of wind speed prediction labels. The experiment also verified all
samples in the data preprocessing stage, and removed the samples
with time missing to ensure the continuity of the 8-h time series in
each sample. This is crucial for the model to capture the features of
the time dimension. After completing the data integration process,
we obtained a total of 7,264 samples that satisfied the training
requirements.

The experiment divides the sample data into training set,
validation set and test set with the ratio of 8:1:1, the order of the data
set was randomly shuffled to ensure the robustness of the model. All
sample data are normalized before training to speed up the model
convergence. The formula 4 is as follows:

X∗t =
Xt −Xmin

Xmax −Xmin (4)

where t denotes the time in the dataset, Xt is the value of the
meteorological element at hour t, Xmin is the minimum value of
the corresponding latitude and longitude time series, and Xmax is
the maximum value of the corresponding latitude and longitude
time series.

2.2.5 Experimental setup
The composition of ConvLSTM mainly includes the input

layer, the layer combining convolution operation and LSTM,
the max pooling layer and the fully connected layer. Conv-SA
connects SA mechanism after the Max pooling layer to further
learn the important characteristics of the wind speed retained by
the max pooling layer, better capture the global characteristics, and
reduce the consumption of computing resources to a certain extent
at the same time. For the UNet model, we used 3D convolution
based on its infrastructure, enabling the model to learn the spatio-
temporal characteristics of wind speed and combine SAmechanism
with bottleneck. The SA mechanism is implemented with eight
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FIGURE 3
Schematic diagram of the sliding window method for generating training samples for spatio-temporal datasets.

TABLE 2 Comparison of model parameters and iteration time.

Model ConvLSTM Conv-SA UNet UNet-SA

Parameters 7,219,506 192,107,716 4,800,769 874,321,241

AIS 0.029 0.033 0.038 0.078

independent heads, where each head independently computes the
attention weights. During the experiment, the deep learning model
used relu as the activation function.

The hyperparameters of the model were set uniformly in order
to ensure the fairness of the experimental results. We use the adam
optimizer. The initial learning rate is set to 5e-5, the batch size is
8, and the training epoch is 100. We employed the early stopping
technique with a patience of 10 epochs. The minimum delta of the
experiment is set to 0.0001.This means that the training process will
only be considered improved when the change in the verification
metric exceeds this threshold. We record the number of parameters
of each model and the average number of seconds consumed by one
iteration (AIS) in Table 2. It is worth noting that the Conv-SA and
UNet-SA models have a significantly higher number of parameters
than traditional methods.

2.2.6 Evaluation metrics
In this study, Mean Square Error (MSE), Root Mean Square

Error (RMSE), Mean Absolute Error (MAE), andThreat Score (TS)
are chosen to evaluate the model prediction performance, in which
MSE is the loss function for model training, The calculation are
shown in formulas 5–8

MSE(y,y′) =
∑n

i=1
(yi − y

′
i )

2

n
(5)

RMSE = √MSE (6)

MAE(y,y′) = 1
n

n

∑
i=1
|yi − y

′
i | (7)

TS = NA
NA+NB+NC

(8)

where yi is the true value, y
′
i is the predicted value of the model at

the corresponding moment, NA is the number of correct forecasts,
NB is the number of null reports, and NC is the number of missed
reports.

3 Results

Table 3 takes RMSE as the evaluation index and lists the
prediction results of wind speed for different deep learning models
and PF.The prediction accuracy of ConvLSTM is slightly lower than
that of the other models. However, the performance of the models is
significantly better than that of the benchmark methods.

The study systematically evaluated the spatio-temporal
prediction performance of various deep learning models up to a
4-h forecast horizon on a point-by-point basis. Figure 4 shows the
spatial distribution of RMSE in BTH region, calculated from the
prediction results and true values of ConvLSTM, UNet, Conv-SA,
and UNet-SA. While the spatial distribution of the predictions of
eachmodel has a similar trend, the RMSE for the prediction of wind
speed in the offshore region is obviously high (red box in the figure).
This is due to the smoother subsurface of the sea whichmakes it easy
to increase thewind speed (Chunyan et al., 2014), and fewer offshore
observatories, which makes the quality of the observational fusion
product relatively low, and further enhances the difficulty of model
prediction.The SAmechanism substantially enhances offshore wind
speed prediction accuracy in the ConvLSTMmodel. For the test set
as a whole calculating the RMSE weakens the effect of extreme
values, so the study visualizes the prediction results for different
classes of wind speed to evaluate the performance of the model.

Figure 5 shows the MAE calculated separately according to
different wind classes, with reference to Table 1 for the specific
division criteria. As illustrated in the figure, the deviation of
each model progressively increases as the wind level increases,
and the prediction accuracy of the model decreases with the
increase of the prediction length. When the wind is weak, the
gap between the model predictions is not obvious, when the wind
reaches level 6 and above, the MAE of the UNet model is lower
than that of the ConvLSTM. For high wind conditions, the SA
mechanism significantly reduces the MAE of the model prediction,
particularly when integrated with ConvLSTM architectures. When
the prediction length is long, the enhancement effect of the SA
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TABLE 3 Comparison of model predictions with PF.

Methods PF ConvLSTM UNet Conv-SA UNet-SA

RMSE 1.306 1.063 0.936 0.988 0.967

FIGURE 4
RMSE distribution of predictions and true values for each model.

mechanism is relatively obvious, and for the prediction of the
next hour, the UNet model is better than UNet-SA. This is also
a shortcoming of the model, the principle of parallel operation of
the SA mechanism can be more effective in learning the features
of data with long time series, but the training for the samples
and the consumption of computational resources is relatively large
(Zhou et al., 2021; Wei et al., 2023). It is also reflected from the
training process of the model that Conv-SA and UNet-SA take
much more time to train than ConvLSTM and UNet. Expanding
the training samples can further enhance the benefits of the SA
mechanism, but synthesizing the prediction results for the next
4 h, the addition of the SA mechanism effectively improves the
wind speed prediction accuracy of the model, which is particularly
effective for large wind speed.

The wind speed TS score can comprehensively assess the
reliability and accuracy of the forecast, reflecting the forecast by
analyzing the false alarm rate, the empty alarm rate and the hit rate;
the higher the TS score, the more accurate the prediction. Table 4
shows the TS scores of different deep learning models for high wind
(wind of level 6 and above) at different predict length. It can be seen

that the accuracy of themodel prediction decreases as the prediction
length increases, which is consistent with previous results. For the
prediction of high wind, the UNet model is significantly better
than ConvLSTM, with 75%, 63%, 61%, and 53% improvement for
the next 4 h, respectively. The prediction of ConvLSTM improved
significantly after the addition of the SA mechanism, with the
improvement in the prediction of the next 4 hours at 75%, 68%,
61%, and 64%, respectively. Comparing the UNet and UNet-
SA models, the enhancement effect after the addition of the SA
mechanism is relatively limited, mainly in the long time-series
prediction (3 or 4 h).

A sample of high wind was also selected for evaluation. Figure 6
shows the wind speed forecast results for the next 4 h for eachmodel
at 8:00 a.m. on 18 October 2024, at which the wind speeds in the
study area are generally high. The average wind speed in the BTH
region reaches 4.97 m/s, with the proportion of gale force wind as
high as 8.9%.The figure shows that there is a general overestimation
of offshore wind speed and an underestimation of terrestrial wind
speed by ConvLSTM. Conv-SA significantly improves the forecast
results after the inclusion of the SA mechanism, but the forecast
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FIGURE 5
Predicted results of wind speed grading for each model, the horizontal coordinate is the wind level and the vertical coordinate is the MAE.

values of offshore wind speeds are gradually low as the predict
length increases. While the UNet model demonstrates superior
performance compared to ConvLSTM, the predicted values of
land areas are high. The UNet-SA is relatively accurate for the
offshore wind speed prediction, whereas there is an underestimation
of the terrestrial wind speed prediction. For the north Hebei
plateau region, where wind speed values are generally high due
to topographic factors, the predictions of the UNet and Conv-SA

models are relatively accurate, and there is some overestimation in
the ConvLSTM and UNet-SA models.

Figure 7 shows the comparison of the prediction results of
hybrid deep learning models Conv-SA and UNet-SA with baseline
models (CNN and ConvGRU). Figure 7a evaluated the RMSE of
the predicted values and the true values at all wind speed levels.
The performance of the model decreased with the increase of the
prediction length. Conv-SA and UNet-SA achieve lower RMSE
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TABLE 4 TS scores for each model at different prediction length.

Model ConvLSTM UNet Conv_SA UNet_SA

1 h TS score 0.20 0.35 0.35 0.35

2 h TS score 0.19 0.31 0.32 0.33

3 h TS score 0.18 0.29 0.29 0.31

4 h TS score 0.17 0.26 0.28 0.30

than the two baseline models. Figure 7b only retains samples with
a wind speed level above 6, thereby evaluating the performance
of the model under this specific condition. It is evident that the
RMSE of each model has increased substantially. Meanwhile, the
application of SA mechanism enhances the prediction accuracy of
the hybrid deep learning model, making it significantly superior to
the baseline model.

In summary, the SA mechanism can effectively improve the
model prediction accuracy. Three regions with representative
geomorphological characteristics, Zhangjiakou, Chengde and
Qinhuangdao, were selected for further evaluation of the model,
where Zhangjiakou and Chengde were chosen to be distributed
in the Bashang Plateau area in the northern part of the city, and
Qinhuangdao was chosen to be distributed in the eastern coast.
Figures 8, 9 respectively show the comparison between the predicted
value and the true value of Conv-SA and UNet-SA models in each
region when the predict length is 1 h and 4 h. The solid black lines
in the figure are the true values, and the red and blue dashed lines
are the predicted values of the model output.

Thewind speed is generally high in the coastal and plateau areas.
As can be seen from the figure, the selected areas in the experiment
all produced different degrees of high wind in the test set. For the
fluctuating trend of wind speed, Conv-SA and UNet-SA can make
effective predictions. Compared with the prediction for the next
1 hour, the output stability of themodelwith a prediction duration of
4 hours is relatively poor, mainly manifested in the lag in predicting
extreme values. Comparing the two different times, the prediction
effect of UNet-SA is better than that of Conv-SA model, which is
mainly reflected in the prediction result of high wind.

The deep learning models are relatively stable for wind speed
prediction in the region of BTH, and the wind speed prediction in
the land area is better than that in the offshore area. The advantage
of the UNet model is more significant, in addition, SA mechanism
can effectively improve the prediction accuracy of the model.

4 Conclusion and discussion

Based on ConvLSTM and UNet models, this study constructed
a spatio-temporal prediction model of wind speed in the BTH
region in the next 4 h. This study experimentally validated the
potential improvement in model prediction accuracy through the
incorporation of the SAmechanism.Themain research conclusions
are as follows.

(1) The spatio-temporal prediction trends of the deep learning
methods are similar, and the prediction accuracies of the
models decrease with the prediction duration as well as with
the increase of the wind level.The RMSE of the terrestrial wind
speed prediction is significantly lower compared to the oceanic
subsurface.

(2) The spatio-temporal prediction accuracy of the UNet model is
significantly better than that of the ConvLSTM. Notably, the
addition of the SA mechanism module substantially enhances
model prediction accuracy for high wind, with particularly
pronounced improvements observed in the ConvLSTM.

The improvement of prediction performance by SA mechanism
is significant. SA mechanism can effectively improve the prediction
result of the complex landform features in the BTH region.
Judging from the prediction of high winds in Figure 6, Conv-SA
has significantly improved the forecast accuracy of wind speed
in the Bohai region and the Bashang Plateau. Furthermore, a
comparisonwith the traditionalmodel reveals that the improvement
of SA mechanism in terms of high winds prediction accuracy is
particularly noteworthy. According to the experimental results, the
improvement of model performance depends on larger parameters
and training time.

Wind as a meteorological factor is usually difficult to predict,
the neural network can effectively learn the dynamic change law
between the data, which greatly improves the previous problems
in wind speed prediction (Tian et al., 2024; Li et al., 2023).
However, it should be noted that although the model can capture
the characteristics of wind speed changes to a certain extent, the
process of wind speed changes has strong nonlinear characteristics
and will accumulate over time. Long-term predictions will increase
the difficulty of model learning, and the prediction accuracy will
also decrease as the duration increases. This is also consistent with
previous studies (Zhang et al., 2025; Wu et al., 2022).

The experimental findings reveal that the model’s prediction
error exhibits a progressive increase with rising wind levels. As
the wind level escalates, the corresponding wind speed increase
while the sample size becomes sparser. The high wind values that
the model can learn during the training process are relatively
limited, further increasing the difficulty of the model’s prediction.
In some terrains such as mountains and plateaus, wind speed is
significantly affected by terrain factors, and it is difficult for the
model to capture the variation characteristics of wind speed in such
situations. In addition, the ocean is limited by the geographical
environment, the observation stations are sparse, and the data
quality is relatively low, which brings challenges to the model
prediction of offshore wind speed (Dong et al., 2024). The wind
speed at sea is generally high, which also makes the prediction error
of the model significantly higher than that on land. However, the
addition of SA mechanism weakens this phenomenon.

ConvLSTM and UNet, as commonly used basic models,
can effectively predict wind speed in time and space. However,
meteorological conditions in BTH region are complex, they tend
to ignore the influence of terrain changes and have relatively
limited predictive capabilities for high wind (Xue et al., 2024).
Attention-based models such as transformer need to be trained on
a large amount of data in order to demonstrate good performance.
High-resolution meteorological data for short-term forecasting are
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FIGURE 6
Wind speed predict for the next 4 h by model at 8:00 a.m. on 18 October 2024, the color bar indicates the magnitude of the wind speed.

FIGURE 7
(a) The prediction results of each model under different prediction lengths. (b) The prediction results of high wind of each model under different
prediction lengths.
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FIGURE 8
A time series comparison of predicted and true values with a predict length of 1 h.

FIGURE 9
A time series comparison of predicted and true values with a predict length of 4 h.

relatively limited, and samples of high winds are particularly scarce.
The main contribution of the research lies in integrating the
advantages of different modules. From the perspective of model
structure, the basic model extracts the spatial characteristics of

local meteorological elements through convolution operations. The
addition of the SA mechanism can effectively combine local and
global features. Dynamic allocation of weights is conducive to
learning the details ignored by convolution operations, such as
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the variation process of strong winds and the fluctuations of
wind speed caused by the influence of mountainous terrain,
and focuses on improving the prediction of wind speed at
high levels. At the same time, the study takes into account the
effects of multiple meteorological factors on the variation of wind
speed to further improve the reliability of the model predictions
(Wang et al., 2024).

This study shows the advantages of hybrid deep learning model
in prediction, but there is still room for further improvement.
In the experiment, Conv-SA and UNet-SA models require much
more parameters to train than the basic model, and they also
consume more time. The parallel computation principle of SA
mechanism makes them extremely complex in time and space
(Keles et al., 2023). In addition, the study is relatively deficient in
the consideration of large time scales. Wind speeds are susceptible
to seasonal as well as inter-annual variations and exhibit different
fluctuation characteristics, which is weakened by the sample
size of the dataset for model training (Yang X. et al., 2024;
Han et al., 2018).
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