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Karst collapse, a sudden geological hazard with complex mechanisms and
low predictability, presents significant threats to urban safety and sustainable
development by jeopardizing human lives and infrastructure. To address the
limitations of conventional prediction methods, in this study, we introduce an
enhanced predictive model, the improved sparrow search algorithm-optimized
extreme learning machine (ISSA-ELM), for accurate karst-collapse susceptibility
assessment. The methodology incorporates two key innovations: first, it applies
a Singer chaotic mapping technique to enhance the sparrow search algorithm
(SSA), effectively mitigating local optima entrapment by increasing population
diversity and enhancing global search capabilities. Second, the optimized ISSA
automatically adjusts the initial weights and thresholds of the ELM, whereas
a five-fold cross-validation is used to determine the optimal hidden layer
configuration, forming an adaptive and intelligent prediction framework. When
validated against 20 datasets from a representative karst region, the proposed
model achieved exceptional performance, with a mean absolute error (MAE)
of 0.0544 and a coefficient of determination (R2) of 0.9914, significantly
surpassing the prediction accuracy of conventional ELM and SSA-ELM models.
The results underscore the ISSA-ELM’s superior nonlinear fitting capability,
enhanced generalization performance, and outstanding stability in practical
engineering applications. This research offers a solid scientific foundation for
risk classification and hazard mitigation strategies while introducing a novel
methodological framework through the integration of innovative algorithms.
The proposed technical pathway provides significant theoretical advancements
and practical engineering values for geological disaster prediction systems.

KEYWORDS

karst collapse, susceptibility prediction, improved sparrow search algorithm, extreme
learning machine, ISSA-ELM integrated model

1 Introduction

Karst collapse, a prominent geological hazard, arises from the interaction
between karst formation processes and groundwater dynamics. It often results
in sudden surface subsidence or structural failure which occurs due to the
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progressive development of subsurface voids and fractures
(Bouzerda et al., 2024; Wang et al., 2024; Xiaozhen et al., 2024).
With its concealed nature, intricate triggering mechanisms, and
significant destructive potential, karst collapse poses substantial
challenges to urban development and infrastructure security
in vulnerable regions. Conducting an accurate susceptibility
assessment is crucial for enhancing disaster prevention frameworks
and guiding sustainable land-use planning.

The development of karst collapse prediction methodologies
has progressed through distinct phases, evolving from qualitative
evaluations (Gao et al., 2009; Luo and Shen, 2018) to more
sophisticated quantitative analyses. Early research primarily
established qualitativemodels based on geneticmechanism analysis.
Subsequent interdisciplinary advancements introduced semi-
quantitative approaches, including Fisher discriminant analysis
(Huang et al., 2011; Jiang and Jiang, 2012) and the Analytic
Hierarchy Process (AHP) (Jiyuan et al., 2021; YanHua et al.,
2022). Additionally, quantitative frameworks such as fuzzy logic
systems (Zhang et al., 2021; Zhuang, 2022) and grey system theory
(Qiu, 2004; Meng et al., 2009; Gao et al., 2018; Ding et al., 2019)
were developed. More recently, machine learning techniques have
significantly enhanced prediction accuracy by modeling complex
nonlinear relationships. Techniques such as backpropagation neural
networks (BPNNs) (Bao and Hu, 2002; Chen et al., 2005; Yang et al.,
2023; Journal of Chemistry, 2023), entropy-weighted cloud models
(Chen et al., 2019; Wei et al., 2021), support vector machines
(SVMs) (Lai and Qiao, 2008; En et al., 2011; Zhou et al., 2020),
random forests (RFs) (Wang et al., 2022; Ren et al., 2023), and
extreme learning machines (ELMs) (Xie et al., 2021) have been
widely applied. Despite these advancements, current methodologies
face several limitations. First, conventional statistical methods (e.g.,
AHP and fuzzy analysis) rely heavily on expert judgment, leading to
subjective biases and challenges in determining objective weights.
Second, data-driven models (e.g., BPNN and RF) often experience
optimization challenges, including convergence to local minima
and sensitivity to parameter selection. Additionally, traditional
ELM implementations suffer from instability due to random
weight initialization, compromising their reliability in engineering
applications.

To address these constraints, in this study, we propose an
optimized prediction framework (ISSA-ELM) that integrates an
improved sparrow search algorithm (ISSA) with the extreme
learning machine architecture. The method uses a three-fold
optimization strategy: First, principal component analysis (PCA)
reduces the dimensionality of collapse-influencing factors,
minimizing multicollinearity while retaining essential diagnostic
information. Second, Singer chaotic mapping enhances the
standard sparrow search algorithm (SSA) by improving population
diversity, expanding the search space, and preventing premature
convergence. Third, an adaptive optimization framework combines
the refined ISSA with K-fold cross-validation to optimize ELM
hyperparameters, ensuring robust model generalization. Empirical
validation through case studies in representative karst regions
demonstrates that the ISSA-ELM outperforms conventional
methods in predictive accuracy, particularly for susceptibility
zonation.Thismethodological advancement offers a novel paradigm
for regional-scale geological risk management, providing both

theoretical insights and practical values for geological disaster
prevention and land-use planning.

2 Theory of the ISSA-ELM integrated
model

2.1 Principal component analysis

PCA, initially proposed by Pearson (1901), is a widely
adopted dimensionality reduction technique. It converts multiple
indicators into a smaller set of comprehensive variables
(Zhou et al., 2020; Cao et al., 2015). This approach not only
reduces data complexity but also preserves key relationships among
variables. The main steps of PCA are as follows.

2.1.1 Data standardization
Given n samples and p influencing factors, the original data

matrix is represented as shown in Equation 1:

Z = (zij)n×p, (i = 1,2,3,⋯,n; j = 1,2,3,⋯,p). (1)

Standardization is applied using the formula as shown in
Equation 2:

Z∗ = (zij∗)n×p, (i = 1,2,3,⋯,n; j = 1,2,3,⋯,p), (2)

where

z∗ =
zij −

1
n
∑n

i=1
zij

√ 1
n−1
∑n

i=1
(zij − zj)

2
, (i = 1,2,3,⋯,n; j = 1,2,3,⋯,p). (3)

In Equation 3, zij is the observed value of the jth variable of the
ith sample, and zj is the sample mean of the jth variable.

2.1.2 Correlation coefficient matrix calculation
The correlation coefficient matrix R can be calculated using

Equation 4:

R = 1
n− 1

Z∗TZ∗, (4)

where Z
∗
represents the standardized data matrix.

2.1.3 Eigenvalue and eigenvector computation
The eigenvalues λ1 ≥ λ2 ≥ λ3 ≥… ≥ λp of the correlation

coefficient matrix R are calculated, and their corresponding
orthogonal eigenvectors are as follows:

ai = (ai1,ai2,ai3,…,aip)
T, (i = 1,2,3,…,p).

2.1.4 Variance contribution rate and cumulative
Variance contribution rate

The variance contribution rate βi and the cumulative variance
contribution rate β(i) can be calculated using Equations 5, 6:

βi =
λi
∑p

i=1
λi
, (i = 1,2,3,⋯,p), (5)

β(i) =
p

∑
i=1

βi, (i = 1,2,3,⋯,p). (6)
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2.1.5 Principal component selection
Principal components are selectedwhen the cumulative variance

contribution rate reaches 85% or higher, ensuring most of the
original data information is retained (Zhou et al., 2020).

2.2 Sparrow search algorithm

The SSA is a swarm intelligence optimization algorithm
introduced by Xue and Shen (2020). It simulates the foraging and
anti-predation behaviors of sparrow flocks to find optimal solutions.
The sparrow population consists of discoverers, followers, and
sentinels, represented by an n× d matrix (as shown in Equation 7),
where n is the number of sparrows, d denotes the dimension,
and xnd represents the jth dimension of the ith sparrow. The
fitness value for each sparrow is represented as Fx (as shown
in Equation 8).

X =

[[[[[[[

[

x11 x12 ⋯ x1d
x21 x22 ⋯ x2d
⋮ ⋮ ⋱ ⋮

xn1 xn2 ⋯ xnd

]]]]]]]

]

, (7)

Fx =
[[

[

f([x11 x12 ⋯ x1d])
f([x21 x22 ⋯ x2d])

⋮
f([xn1 xn2 ⋯ xnd])

]]

]

. (8)

2.2.1 Discoverer update
Discoverers locate new food sources using Equation 9:

Xt+1
i,j =
{{
{{
{

Xt
i,j · exp(

−i
α · itermax

), R2 < ST

Xt
i,j +Q · L, R2 ≥ ST

, (9)

where itermax denotes the maximum number of iterations; Xt
i,j

is the position of the ith sparrow in the jth dimension at the
t-th iteration; α ∈ (0,1], Q ∈ [0,1], and R2 ∈ [0,1] are random
numbers, representing the warning values, respectively; L is amatrix
of ones; and ST takes values between [0.5,1], representing the
safety value.

When R2 ≥ ST, it indicates that the foraging area is not safe, and
all sparrows need to fly to other safe foraging locations.

2.2.1.1 Follower update
Followers adjust their positions by tracking discoverers to

accelerate convergence using Equation 10:

Xt+1
i,j =
{{{{
{{{{
{

Q · exp(
Xt
worst −X

t
i,j

i2
), i > n

2

Xt+1
p + |X

t
i,j −X

t+1
p |A+ · L, i ≤

n
2

, (10)

where Xt+1
p is the best position where the discoverers are located,

Xt
worst is the current globallyworst position, andA

+ = AT · (A ·AT)−1

is a matrix, with each element being 1 or −1.
When i > n

2
, it indicates that the ith follower has not obtained

food and needs to move to other places to forage.

2.2.1.2 Sentinel update
Sentinels monitor threats and adjust their positions using

Equation 11:

Xt+1
i,j =
{{{
{{{
{

Xt
best + θ|X

t
i,j −X

t
best|, fi > fg

Xt
i,j +K|

Xt
i,j −X

t
worst

( fi − fw) + ε
|, fi = fg

, (11)

where Xt
best is the global optimal position in the sparrow

population at the t-th generation, ε is a constant, θ is the step–size
control coefficient, K ∈ [−1,1] is a random number, fi is the fitness
value of the ith sparrow currently, fg is the current global best fitness
value, and fw is the current global worst fitness value.

When fi > fg, it indicates that the sparrow is currently at the edge
of the population and is vulnerable to predator attacks; when fi = fg,
it indicates that the sparrows in the middle of the population are
aware of the danger of being preyed upon and need to move closer
to other sparrows.

2.3 Improved sparrow search algorithm

The conventional SSA often experiences issues related to
local convergence and reduced population diversity in later
iterations (Lv et al., 2021; Liu et al., 2022). To mitigate these
challenges, the Singer chaotic mapping is introduced to enhance
population initialization. The formula for Singer chaotic mapping
is shown in Equation 12:

Xk+1 = u(7.86xk − 23.32x2k + 28.75x
3
k − 13.3.2875x

4
k), (12)

where u ∈ (0.9,1.08) is a control parameter and xk ∈ [0,1] is a
random number.

As shown in Figure 1, the value range of the Singer mapping
lies within the interval [0, 1]. By replacing the random initialization
method with its chaotic characteristics, the search space can
be made more uniform, enhancing the uniformity and diversity
of the sparrow population, and thereby improving the global
search ability.

The steps of the improved SSA are outlined as follows:

(1) Use the chaotic mapping to initialize the population, the
number of iterations, and the proportions of discoverers and
followers.

(2) Compute the fitness values, and arrange them in order.
(3) Update the positions of discoverers.
(4) Update the positions of followers.
(5) Update the positions of sentinels.
(6) Recalculate the fitness values, and update the positions of

the sparrows.
(7) Repeat until the maximum number of iterations is reached.

The flowchart of the improved SSA is presented in Figure 2.

2.4 Extreme learning machine

The ELM is a computationally efficient algorithm designed for
training single-hidden-layer feedforward neural networks (SLFNs).
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FIGURE 1
Distribution of the Singer map after 100 iterations.

FIGURE 2
Flowchart of the ISSA.
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FIGURE 3
ELM structure.

FIGURE 4
Framework of the karst-collapse susceptibility prediction model based on the ISSA-ELM model.

First introduced by Huang et al. (2006), ELM offers significant
improvements in training speed and generalization capability. Its
applications are widespread across various domains, including
classification, regression, and prediction tasks.

The ELM algorithm follows a simple structure, as
illustrated in Figure 3, comprising an input layer, a hidden layer,
and an output layer. Unlike traditional neural networks, ELM
assigns random values to the input-layer weights and hidden-
layer threshold. The output-layer weights are then calculated
using a generalized matrix, enabling efficient and accurate chaotic
recognition outcomes.

The mathematical representation of the output model for a
single-hidden-layer neural network with L hidden-layer nodes and
an activation function g(x) is given in Equation 13:

yj =
L

∑
i=1

βig(ωi · xj + bi), (j = 1,2,3,⋯,n), (13)

where xj denotes the input value, yj represents the actual output
value, ωi is the input weight matrix, bi denotes the hidden-layer
threshold, βi is the output weight matrix, and g(x) is typically a
sigmoid function (Jiang and Shi, 2023)

The primary objective of the ELM algorithm is to minimize the
output error, which can be expressed in Equation 14:

‖Hβ−T‖ =min , (14)

where there exist βi, ωi, and bi such that

Hβ = T . (15)
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This relationship shown in Equation 15 consists of N equations
that can be represented in a matrix form as shown in Equation 16:

H =

[[[[[[[

[

g(ω1 · x1 + b1) ⋯ g(ωL · x1 + bL)

g(ω1 · x2 + b1) ⋯ g(ω1 · x2 + b1)

⋮ ⋱ ⋮

g(ω1 · xN + b1) ⋯ g(ωL · x1 + bL)

]]]]]]]

]

, (16)

where H is the hidden-layer output matrix, β is the weight matrix
connecting the hidden and output layers, and T represents the
desired output.

The least-squares solution for the output-layer weights can be
efficiently obtained using the Moore–Penrose generalized inverse
matrixH+, as shown in Equation 17:

β =H+T . (17)

A notable limitation of ELM is its sensitivity to the random
initialization of input-layer weights and hidden-layer threshold,
leading to potential instability. To mitigate this issue, the ISSA is
applied for parameter optimization. By enhancing the search process
and avoiding local optima, the ISSA improves both the accuracy and
robustness of the ELMmodel.

2.5 Hyperparameter optimization of the
prediction model

The ELM algorithm randomly assigns input-layer weights
and hidden-layer threshold. Without appropriate adjustment, this
randomness may reduce the functionality of certain hidden-layer
nodes, leading to algorithmic instability. Furthermore, although a
larger number of hidden-layer nodes can enhance performance,
an excessive number of nodes may result in overfitting, whereas
too few nodes can cause underfitting, thereby reducing the
prediction accuracy (Xie et al., 2021).

To mitigate these issues, in this study, we employ a combined
approach using the ISSA and K-fold cross-validation to optimize
the hyperparameters of the ELM prediction model. The optimized
parameters include input-layer weights, hidden-layer thresholds,
and the number of hidden nodes (N). The hyperparameter
optimization process consists of the following steps:

(1) Initialization: set the sparrow population size, maximum
number of iterations, proportions of initial discoverers and
followers, and the number of hidden nodes.

(2) Fitness function calculation: define the mean squared error
(MSE) between the predicted and actual values as the model’s
fitness function, represented in Equation 18:

Fitness = 1
n

n

∑
i=1
(yi − yi)

2, (18)

where yi represents the actual grade of karst-collapse susceptibility
of the ith sample, yi denotes the predicted value for the i-th sample,
and n is the number of samples.

(3) Ranking and selection: compute the fitness values
and rank individuals. Those with higher fitness
values are designated as discoverers in the sparrow
population.

(4) Position update: update the positions of discoverers, followers,
and vigilant individuals using Formulas 9–11, and then,
recalculate fitness values.

(5) Iteration check: assess whether the maximum number of
iterations is reached. If so, terminate training and output
the global optimal parameters (optimal weights, hidden-layer
biases, and N). Otherwise, repeat steps (2–4).

(6) K-fold cross-validation: perform five-fold cross-validation to
determine the optimal number of hidden nodes. The data
are split into five subsets, with each subset used once as a
validation set, whereas the remaining subsets form the training
set. The optimal number of hidden nodes is determined
by minimizing the average error across the five models,
as shown in Equation 19:

MAE = 1
5

n

∑
i=1
(yi − yi). (19)

(7) Output: provide the final optimal parameter combination,
including input-layer weights, hidden-layer threshold, and the
number of hidden nodes.

2.6 Prediction process of karst collapse
susceptibility using the ISSA-ELM model

The ISSA-ELM-based karst-collapse susceptibility prediction
model is illustrated in Figure 4, with its overall flowchart
depicted in Figure 5. The prediction process consists of the
following steps:

(1) Data collection and preprocessing: Real-world data are
collected from key karst collapse exploration areas. Data
preprocessing is performed by removing outliers and imputing
missing values using the mode. PCA is then applied for
dimensionality reduction.

(2) Data division: The dataset is split into a training set and
a test set. The training set is used to train the ISSA-ELM
model, whereas the test set is used for prediction and model
evaluation.

(3) Hyperparameter optimization: The ELM model’s
hyperparameters, including the sparrow population size,
maximum iterations, proportions of discoverers and followers,
and the number of hidden nodes, are initialized. The initial
model is trained and evaluated using MSE and MAE. The
optimal hyperparameters are determined when the error
reaches its minimum.

(4) Prediction: The ISSA-ELM model, with the optimized
hyperparameters, is used to predict karst-collapse
susceptibility. The final model parameters are applied for
prediction tasks.
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FIGURE 5
Overall flowchart of the karst-collapse susceptibility prediction model based on the ISSA-ELM model.

FIGURE 6
Relationship diagram among karst development, strata, and faults in the study area.

2.7 Evaluation methods

To comprehensively evaluate the predictive performance of
various karst-collapse susceptibilitymodels, the following indicators
are applied.

2.7.1 Coefficient of determination (R2)

R2 = 1−
∑n

i=1
(yi − ̂yi)

2

∑n
i=1
(yi − y)

2
. (20)
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In Equation 20, yi is the actual value of the ith sample, ̂yi is the
predicted value of the ith sample, y is the mean of the actual values,
and n is the total number of samples. A coefficient value closer to 1
indicates a better model fit.

2.7.2 Mean squared error

MSE = 1
n

n

∑
i=1
(yi − ̂yi)

2. (21)

2.7.3 Mean absolute error

MAE = 1
n

n

∑
i=1
|yi − ̂yi|. (22)

Smaller MSE (Equation 21) and MAE (Equation 22) values
indicate a more accurate model, with the predicted values closely
matching the actual values.

3 General situation of the project

3.1 Overview of the geological
environment

The study area is located in Yonghe Town, in the northeastern
part of Liuyang City, Hunan Province. The terrain generally slopes
fromhigher elevations in the south and northeast to lower elevations
in the central and western regions. The primary geological and
environmental conditions are as follows:

(1) Physical geography: the region is characterized by
denudation–erosion hilly landforms and dissolution–erosion
valley landforms. The hills are primarily located in the
southern part and the Qibaoshan area to the east. These
positive landforms are composed mainly of sandstones, slates,
and dolomites from the Upper Sinian System (Zb), Cambrian
System (∈), Longtan Formation (P2l), and Changxing
Formation (P2c) of the Upper Permian System. In contrast,
negative landforms composed of dolomites, marls, and
limestones interbedded with shales are prevalent in the
northern and western parts.These belong to the Hutian Group
(C2+3ht) of the Middle and Upper Carboniferous Systems and
the Qixia Formation (P1q) of the Lower Permian System.

Dissolution–erosion valley landforms are dominant in the
northern and western regions, characterized by broad valleys
and alluvial plains formed through erosional and depositional
processes. These areas are covered by upper silty clay and sandy
gravel layers from the Holocene Series (Qh

al) of the Quaternary
System.Theunderlying bedrockmainly comprisesmarls, limestones
interbedded with shales, and dolomites. The area experiences an
average annual rainfall of 1574.7 mm,withmaximumandminimum
recorded rainfalls of 2096.1 mm and 1079.1 mm, respectively.
Rainfall is most concentrated in June, contributing over 16% of
the annual total. The Daxi River, the second largest tributary of
the Liuyang River, flows from north to west across the study area
(Figure 7).

(2) Stratigraphic lithology: the stratigraphic sequence in the
study area, from the oldest to the youngest, includes the
second segment of the second lithologic unit of the Lengjiaxi
Group (Ptln2-2), the Liantuo Formation (Z1l) and Nantuo
Formation (Z1n) of the Lower Sinian System, the Doushantuo
Formation (Z2d) of the Upper Sinian System, the Cambrian
System (∈), the Hutian Group (C2+3ht) of the Middle and
Upper Carboniferous Systems, the Qixia Formation (P1q) and
Maokou Formation (P1m) of the Lower Permian System,
the Longtan Formation (P2l) and Changxing Formation
(P2c) of the Upper Permian System, and the Quaternary
System (Q) (Figure 6).

Soluble rock strata are predominantly found in the Changxing
Formation, the Qixia Formation, and the Hutian Group.TheHutian
Group and the first (P1q1) and second (P1q2) segments of the Qixia
Formation consist of interbedded limestones, shales, argillaceous
limestones, and dolomites, displaying well-developed karst features.

(3) Geological structure: the Yonghe Syncline is a minor fold
structure oriented in a north-northwest direction.The syncline
core consists of the Changxing Formation, with the wings
comprising the Longtan Formation, the Maokou Formation,
and the Qixia Formation. The strata dip gently, with angles
ranging from 10° to 20°.

Several faults are present, including two strike-slip faults,
two reverse faults, one transverse thrust fault, and two
unidentified faults. The most prominent is the transverse thrust
fault, which traverses the northern edge of the Ma’anling
Phosphate Mine (Figure 6).

(4) Hydrogeological conditions: the groundwater in the area
consists of karst water, bedrock weathering fissure water, and
pore water within loose rock formations.

3.2 Overview of karst collapses

A total of 38 karst collapses were documentedwithin the 14-km2

exploration area (Figure 7), resulting in a collapse density of 2.71
occurrences per km2. These collapses are primarily concentrated in
regions with well-developed soluble rocks, significant fault activity,
and strong surface water–groundwater interactions. The most
affected areas include theYueshan-Ou’s-Dahe area of YongfuVillage;
the Juxiang Community, Yonghe Old Street, Huayuan Village of
Yanxi Town; and the Nanshan-Jiacheng Village, Li Zhen Primary
School (Old), Xinwan-Xinping regions.

Most collapses are small-scale, with long-axis lengths ranging
from 1 to 7 m, accounting for 73% of incidents (Figure 8).

XinwuGroup, Jiacheng Village collapse (Figure 9a): this circular
collapse pit has a long-axis length of approximately 3.5 m, a short-
axis length of 2.5 m, and a depth of 1.2 m. The pit contains water,
with the water level approximately 0.2 m below the surface. Bedrock
is not visible, and the surrounding area consists of alluvial gravel-
bearing silty clay, negatively impacting agricultural activities.

Xinwan Group, Jiacheng Village collapse (Figure 9b): this
collapse is nearly circular, with a long-axis length of 2.3 m, a short-
axis length of 2.2 m, and a depth of 10 m. The water level inside
the pit is approximately 5 m. The primary triggering factors were
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FIGURE 7
Distribution map of karst-collapse points in the exploration area (the blue solid line represents the scope of the exploration area, and the dotted line
represents the scope of the prediction area).

FIGURE 8
Scale situation of the long axis of the collapse pits.

groundwater extraction and heavy rainfall. Situated on a river
terrace, the surrounding soil consists of silty clay with pebbles,
forming a single-layer structure approximately 1 m thick. The
underlying bedrock is limestone. Due to its instability, this collapse
presents a continuous risk to local production and daily life.

3.3 Formation mechanism of karst
collapses

The occurrence of karst collapses results from the complex
interplay and cumulative effects of multiple formation mechanisms
(Hu et al., 2001; Chen and Cao, 2023; Feng, 2025). Based
on comprehensive investigations, in-depth research, and detailed
exploration within the study area, the primary formation conditions
include karst development characteristics, overburden properties,
and hydrodynamic features.

(1) Impact of the karst development degree on karst collapses:
karst development serves as the essential foundation and

prerequisite for the occurrence of karst collapses. Statistical
analysis indicates that most collapse pits in the study area
are located within or near intense karst development zones.
Notably, collapses are most prevalent in strata with well-
developed karst, particularly within the second segment of
the Qixia Formation (P1q2) of the Lower Permian System
and the Hutian Group (C2+3ht) of the Middle and Upper
Carboniferous Systems. This strong correlation underscores
the critical influence of karst development on the formation of
collapses.

(2) Influence of overburden characteristics on karst collapses: the
overburden comprises Quaternary loose soil layers that cover
the bedrock surface. Collapse pits are primarily concentrated
in covered karst regions, where the thickness of theQuaternary
loose layer generally does not exceed 20 m. Areas with
alluvial and diluvial deposits that lack a clay layer at the
base are particularly vulnerable to collapse formation. From
a geotechnical perspective, these soil layers exhibit low
shear strength and limited resistance to seepage-induced
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FIGURE 9
Examples of planar morphological characteristics of karst-collapse pits. (a) Karst collapse in the Xinwu Group of Jiacheng Village (T23). (b) Karst
collapse in the Xinwan Group of Jiacheng Village (T27). (c) Karst collapse in the Xinping Group of Jiacheng Village (T30). (d) Karst collapse in the
Shixing Group of Shijia Village (T32).

deformation, making them susceptible to piping processes and
subsequent collapses.

For instance, in the collapse-affected section spanning the
ZhoushangGroup of HuayuanVillage, Juxiang Community, Yonghe
Old Street,MingshanGroupofYongfuVillage, Yueshan,Ou’sGroup,
andDaheGroup, the soil structure consists predominantly of gravel-
bearing silty clay formed through alluvial and diluvial processes,
along with residual slope-derived crushed stone soil. The total
thickness of the soil layer ranges from 5.5 to 13.5 m. In these areas,
the upper silty clay layer is relatively thin, and the absence of a
water-retaining clay layer at the base facilitates the infiltration of
atmospheric precipitation, surface water seepage, and the upward
movement of water and sand during the increase in the karst water
level. Consequently, the thickness and physical properties of the
overburden significantly regulate the collapse process.

(3) Effect of hydrodynamic characteristics on karst collapses:
the study area contains two distinct groundwater layers: the
upper-layer Quaternary pore water and the lower-layer karst
water. The upper-layer pore water is primarily stored in
silty clay, pebble-bearing soil, and residual crushed stone soil
from Quaternary alluvial and diluvial facies. Recharge sources
include atmospheric precipitation and seepage from nearby
surface water bodies such as the Daxi River. During recharge,
seepage forces can trigger piping within the soil layer, leading
to cavity formation, which may expand and eventually result
in collapse.

The lower-layer karst watermainly originates from the limestone
aquifer of P1q and the limestone karst–cave aquifer of C23ht, both
exhibiting significant karst development and high water-bearing
capacity. Groundwater extraction often lowers the karst water level,
prompting the continuous recharge of upper-layer pore water into
the karst aquifer. Fine-grained soil particles are transported by
the flowing water, further accelerating the collapse process. In
conclusion, the coexistence of the two-layer groundwater system, the
presence of a significant hydraulic gradient, and the infiltration of
surface water bodies jointly alter the hydrodynamic characteristics
of the region, playing a pivotal role in the formation of karst
collapses.

3.4 Determination of influencing factors
for the susceptibility of karst collapses

The development of karst collapses is influenced by the
combined effects of multiple factors. Nonlinear relationships exist
not only among these factors but also between each factor and
the occurrence of karst collapses (Chen and Cao, 2023). Through
extensive on-site investigations and comprehensive analyses of the
formation mechanisms of numerous karst collapses, this study
identified the key factors for predicting karst-collapse susceptibility.

3.4.1 Karst development degree
Soluble rocks provide the material basis for karstification, with

their solubility directly impacting the extent of karst development.
In the region extending from the Zhoushang Group of Huayuan
Village to Juxiang Community, Yonghe Old Street, Yueshan Group,
Ou’s Group, and Dahe Group, 29 karst collapses have occurred.
Borehole data from 15 boreholes revealed karst caves in five of
them, yielding a karst–cave encounter rate of 33.3%. Among the
six identified caves, five developed within the second member of
the Lower Permian Qixia Formation (P1q2), characterized by thick-
bedded dark gray limestone with a faint flesh-red tinge, interbedded
with thin layers of marl and dolomite. Geophysical interpretation
indicated that 76.98% of the 505 detected anomalies were karst
related, predominantly in the Qixia Formation.

3.4.2 Distance from intra-area faults
Fault structures provide conduits for groundwater flow and

play a decisive role in karst development. On-site investigations
revealed that karst collapses are concentrated along concealed
and unidentified faults on both sides of the NW-trending
secondary faults within the northern plate of the Henggu Fault.
Notably, four collapses in Yongfu Village, Yonghe Town, occurred
approximately 200 m west of a concealed fault. This positive
correlation highlights the influence of fault zones on collapse
occurrence.

3.4.3 Thickness of the overlying soil layer
The development and distribution of karst collapses are closely

linked to the thickness of the Quaternary layer. Survey results

Frontiers in Earth Science 10 frontiersin.org

https://doi.org/10.3389/feart.2025.1581090
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2025.1581090

indicated that the Quaternary layer in the Dahe Group, Yueshan
Group, Ou’s Group, and Mingshan Group of Yongfu Village, as well
as in the Zhoushang Group, Juxiang Community, and Yonghe Old
Street in Huayuan Village, ranged from 5.50 to 13.5 m. Additionally,
the thickness of the upper silty clay layer was generally ≤3 m.
The presence of a thin silty clay layer facilitates water infiltration
and groundwater-level fluctuations, increasing the likelihood of
collapses.

3.4.4 Groundwater fluctuation range
Karst water fluctuates between confined and unconfined states

near the bedrock surface, contributing to collapse occurrence.
Survey data from the Yueshan Group and Ou’s Group regions
indicated that groundwater levels ranged from 9.27 to 25.90 m
during the wet season, with the bedrock surface buried at depths of
15.00–30.70 m. During the dry season, groundwater levels decrease
by 5–10 m,maintaining their position near the bedrock surface.This
fluctuation promotes the “bellows effect,” characterized by piping
and suction erosion of the overlying soil, which increases the risk
of collapse.

3.4.5 Distance from the center of the artificial
pumping funnel

Before October 2016, mining at the Ma’an Phosphate Mine
reached an elevation of approximately ±0 m, affecting an area
within a 2-km radius, primarily around Huayuan Village,
Juxiang Community, Yongfu Village, and Yonghe Middle School.
Investigations documented 89 instances of house and ground
cracking, accounting for 44.9% of all cases, alongside 22 collapse
pits (57.9%). Since the cessation of mining activities, a significant
decrease in collapses and cracking incidents has been observed,
underscoring the impact of groundwater extraction on collapse
susceptibility.

3.4.6 Development density of existing ground
collapses

A total of 38 ground collapses were identified within the
study area, distributed as follows: 16 collapses in the Mingshan
Group, Yueshan Group, Ou’s Group, and Dahe Group of Yongfu
Village; 12 in the Zhoushang Group, Juxiang Community, and
Yonghe Old Street in Huayuan Village; three in the Yonghe Middle
School and Nanshan Group area of Jiacheng Village; seven in
the Li Zhen Primary School (Old), Xinwan Group, and Xinping
Group area; and four in the Tieshan Village and Qibaoshan
Village area. The density of existing collapses was considered a key
predictive indicator.

Following the relevant guidelines (Ministry ofNatural Resources
of the People’s Republic of China, 2023) and building on previous
studies (Huang et al., 2011; YanHua et al., 2022), in this
study, we integrated field survey results, geophysical exploration
data, and borehole data to identify six key factors influencing
karst-collapse susceptibility (Table 1). Through a comprehensive
analysis of the field survey data, the susceptibility levels of karst
collapse were assessed. To effectively represent the likelihood of
collapse occurrences, the susceptibility levels were classified into
three categories: low susceptibility, medium susceptibility, and
high susceptibility, corresponding to category labels 1, 2, and 3,
respectively (Table 2).

4 Case analysis

4.1 Data collection and preprocessing

The karst-collapse-affected area in Yonghe Town, Liuyang
City, Hunan Province, was selected as the research subject.
A total of 20 sets of sample data were collected within the
exploration zone, comprising 16 samples from collapsed pits and
four samples from non-collapsed pits representing locations with
no recent collapses within 1 km of the sampling points and
also considered similar geological settings (like lithology and
stratigraphy) and hydrogeological conditions (groundwater levels,
flow, and quality) (Table 3). This dataset was used to evaluate the
feasibility of the ISSA-ELM model for predicting the karst-collapse
susceptibility.

Given the complex interrelationships among various influencing
factors of karst collapses, using all factors as inputs could introduce
information redundancy. To mitigate this, PCA was applied to
reduce the dimensionality and remove correlations among six key
factors: the degree of karst development, the distance from faults,
the thickness of the overlying soil layer, the groundwater fluctuation
range, the distance from the center of the artificial pumping
funnel, and the development density of preexisting ground collapses.
This approach retained the essential information while minimizing
redundancy.

The original data were standardized to eliminate the impact of
differing units and magnitudes. A standardized covariance matrix
was then calculated (Table 4), followed by an in-depth correlation
analysis to explore the relationships among the influencing
factors. Eigenvalues and contribution rates were derived from the
covariance matrix, and principal components were selected based
on a cumulative contribution rate exceeding the widely accepted
threshold of 85% (Table 5).

As shown in Table 5, the cumulative contribution rate of the
first five principal components was 96.87%, surpassing the 85%
threshold. Therefore, these five principal components were chosen
to represent the original six variables.

Based on the eigenvector matrix (Table 6), the principal
components were expressed as follows:

The karst-collapse-affected area in Yonghe Town, Liuyang City,
Hunan Province, was selected as the research subject. A total of
20 sets of sample data were collected within the exploration zone,
comprising 16 samples from collapsed pits and four samples from
non-collapsed pits representing locations with no recent collapses
within 1 km of the sampling points (Table 3). This dataset was
used to evaluate the feasibility of the ISSA-ELM (improved sparrow
search algorithm-extreme learning machine) model for predicting
karst-collapse susceptibility.

Given the complex interrelationships among various influencing
factors of karst collapses, using all factors as inputs could introduce
information redundancy. To mitigate this, PCA was applied to
reduce dimensionality and remove correlations among six key
factors: the degree of karst development, the distance from faults,
the thickness of the overlying soil layer, the groundwater fluctuation
range, the distance from the center of the artificial pumping
funnel, and the development density of preexisting ground collapses.
This approach retained essential information while minimizing
redundancy.
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TABLE 1 Classification of influencing factors for karst-collapse susceptibility.

Factor Karst-collapse susceptibility levels

Low-susceptibility criteria Medium-susceptibility criteria High-susceptibility criteria

Drilling saturation/% <3 3∼10 >10

Distance to faults/m >100 50∼100 0∼50

Overburden thickness/m Total >20 m; upper clay >3 m 10< Total ≤20 m; upper clay ≤3 m Total ≤10 m; upper clay ≤3 m

Groundwater fluctuation/m·a−1 <3 3∼8 >8

Distance to pumping center/m >500 200∼500 0∼200

Collapse density (per 10 km2) <2 2∼10 >10

TABLE 2 Class labels for the grading of expected output parameters.

Susceptibility level Low Medium High

Label 1 2 3

The original data were standardized to eliminate the impact of
differing units and magnitudes. A standardized covariance matrix
was then calculated (Table 4), followed by an in-depth correlation
analysis to explore the relationships among the influencing
factors. Eigenvalues and contribution rates were derived from the
covariance matrix, and principal components were selected based
on a cumulative contribution rate exceeding the widely accepted
threshold of 85% (Table 5).

As shown in Table 5, the cumulative contribution rate of the
first five principal components was 96.87%, surpassing the 85%
threshold. Therefore, these five principal components were chosen
to represent the original six variables.

Based on the eigenvectormatrix, the principal components were
expressed as follows:

X1 = −0.0407 Z∗1 + 0.6521Z
∗
2 − 0.0783Z

∗
3 + 0.3718 Z

∗
4

+ 0.6459 Z∗5 + 0.1069Z
∗
6,

X2 = −0.5044 Z∗1 − 0.0975Z
∗
2 − 0.6139Z

∗
3 + 0.4390 Z

∗
4

− 0.2019 Z∗5 − 0.3543Z
∗
6,

X3 = 0.3891Z∗1 − 0.1321+ 0.2367Z
∗
3 + 0.1785Z

∗
4 + 0.2218Z

∗
5 − 0.8330Z

∗
6,

X4 = −0.0242 Z∗1 − 0.2971Z
∗
2 + 0.4789Z

∗
3 + 0.7582 Z

∗
4

− 0.1295 Z∗5 + 0.2999Z
∗
6,

X5 = 0.1712Z
∗
1 + 0.6665Z

∗
2 + 0.1441Z

∗
3 + 0.1148Z

∗
4 − 0.6869Z

∗
5 − 0.1431Z

∗
6,

where Z1
∗, Z2
∗, Z3
∗, Z4
∗, Z4
∗, Z5
∗, and Z6

∗ represent the standardized
values of the degree of karst development, the distance from
faults, the thickness of the overlying soil layer, the groundwater
fluctuation range, the distance from the pumping funnel center,

and the development density of existing ground collapses,
respectively.

The principal components were subsequently calculated using
these expressions (Table 7) and used for training the ISSA-
ELMmodel.

4.2 Optimization of model parameters

From the PCA-processed dataset, 14 samples were designated
as the training set, whereas the remaining six samples were
used as the test set. This 7:3 split ensured a balanced approach,
maintaining sufficient data for training while reserving a
representative subset for evaluating the model’s generalization
performance.

The ISSA-ELM model parameters were configured as follows:
population size N = 20, maximum iterations = 100, warning
threshold ST = 0.6, proportion of discoverers PD = 0.7, and
proportion of scouts SD = 0.2.

The number of hidden-layer nodes significantly affects model
performance. In the ELM model, the number of input-layer nodes
was set to 5, corresponding to the number of principal components.
The sigmoid function was applied as the activation function. The
number of hidden-layer nodes was selected within the range [2n+1,
N] (where n is the number of nodes in the input layer n = 5, and
N denotes the total number of input samples N = 20), resulting in a
range of [11, 20] (Jiang and Shi, 2023). A five-fold cross-validation
approachwas used to determine the optimal number of hidden-layer
nodes, balancing computational efficiency and robust evaluation.
The MAE index results (Figure 10) indicated that the optimal
number of hidden layers was 12 as it produced a concentrated MAE
distribution without significant outliers.

The PCA-processed data were input into the ISSA-ELM
and SSA-ELM models for iterative comparisons. The resulting
optimization curves (Figure 11) showed that the ISSA-ELM model
achieved rapid convergence. After 63 iterations, its fitness value
stabilized at approximately 0.0047. In contrast, the SSA-ELMmodel
exhibited a slower convergence rate, requiring 70 iterations to reach
a fitness value of approximately 0.009. These findings demonstrate
that the ISSA-ELM model is closer to the global optimal solution
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TABLE 4 Covariance matrix of six variables.

Variable Z
∗
1 Z

∗
2 Z

∗
3 Z

∗
4 Z

∗
5 Z

∗
6

Z
∗
1 1.0526 −0.1031 0.1103 −0.1029 0.1080 0.0525

Z
∗
2 −0.1031 1.0526 −0.0776 0.2224 0.7858 0.1873

Z
∗
3 0.1103 −0.0776 1.0526 −0.2154 0.0873 0.0397

Z
∗
4 −0.1029 0.2224 −0.2154 1.0526 0.3014 −0.0652

Z
∗
5 0.1080 0.7858 0.0873 0.3014 1.0526 0.0141

Z
∗
6 0.0525 0.1873 0.0397 −0.0652 0.0141 1.0526

TABLE 5 Eigenvalues of the covariance matrix for each variable.

Principal component variable X1 X2 X3 X4 X5 X6

Eigenvalue 2.00 1.34 1.06 0.97 0.76 0.20

Variance contribution rate, % 31.74 21.16 16.73 15.28 11.96 3.13

Cumulative variance contribution rate, % 31.74 52.90 69.63 84.91 96.87 100.00

TABLE 6 Eigenvectors corresponding to the eigenvalues of the
covariance matrix of six variables.

Variable X1 X2 X3 X4 X5

Z
∗
1 −0.0407 −0.5044 0.3891 −0.0242 0.1712

Z
∗
2 0.6521 −0.0975 −0.1321 −0.2971 0.6665

Z
∗
3 −0.0783 −0.6139 0.2367 0.4789 0.1441

Z
∗
4 0.3718 0.4390 0.1785 0.7582 0.1148

Z
∗
5 0.6459 −0.2019 0.2218 −0.1295 −0.6869

Z
∗
6 0.1069 −0.3543 −0.8330 0.2999 −0.1431

and outperforms the SSA-ELMmodel in terms of both optimization
capabilities and search speed.

4.3 Prediction of karst-collapse
susceptibility

The optimal parameter combination was identified using the
ISSA in conjunction with a five-fold cross-validation technique.
These optimized parameters were then applied to the ELM model,
resulting in the ISSA-ELM model. To comprehensively evaluate
the effectiveness of PCA for data preprocessing and to assess
the predictive capability of the ISSA-ELM model in karst-collapse
susceptibility prediction, validation experiments were conducted
using two independent datasets. One dataset consisted of 20 sets
of raw field-measured data from the exploration area, whereas the

other contained PCA-processed data to reduce dimensionality and
mitigate redundancy.

The training datasets were used to develop the ISSA-ELM
model, which was subsequently applied to the test datasets to
generate predictions. The predicted values were then compared to
the actual values to assess the model’s predictive accuracy (refer
to Figures 12–14). A comparative analysis was also performed to
evaluate the relative performance of the ISSA-ELMmodel, the SSA-
ELMmodel, and the conventional ELMmodel.

The fitting results demonstrated that the predicted and actual
values for all three models exhibited a generally linear relationship,
indicating a reasonable degree of accuracy. However, the coefficient
of determination (R2 = 0.9914) for the PCA-processed ISSA-ELM
model was significantly higher than that for both the non-
PCA-processed ISSA-ELM model (R2 = 0.8945) and the SSA-
ELM model (R2 = 0.9837). This finding suggests that applying
PCA preprocessing effectively enhances the predictive accuracy by
reducing noise and eliminating redundant information.

Furthermore, the ISSA-ELMmodel’s predicted values displayed
a superior alignment with actual values, reflecting themodel’s ability
to capture complex nonlinear relationships among the influencing
factors of karst collapse. This improvement in predictive capability
highlights the robustness and reliability of the ISSA-ELM model
as an effective tool for karst-collapse susceptibility assessment. Its
strong performance offers valuable insights for practical applications
in geological hazard management and regional risk assessment.

4.4 Analysis of error metrics

To further evaluate the performance of the ISSA-ELM model,
three quantitative metrics were applied: R2, MSE, and MAE, as
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TABLE 7 Sample principal components of 20 sets of original data.

Sample X1 X2 X3 X4 X5 Label

1 0.1951 0.8412 0.2243 0.8250 0.4164 3

2 −1.1088 −0.8936 −0.6128 −1.1902 −0.1288 3

3 −1.1156 1.1636 −1.8450 −0.4318 0.2906 3

4 1.0692 −1.4289 −0.3521 0.2497 −0.4030 3

5 0.1672 −1.0043 −0.9085 1.4766 0.2303 3

6 0.8426 1.6515 1.0372 −0.4781 0.3287 3

7 −0.3019 −1.1554 −0.5059 −1.5938 −0.8299 1

8 0.3988 −2.0851 1.5171 −0.6149 −0.3268 1

9 −0.1935 0.3527 −0.7559 1.8877 0.5824 3

10 0.3567 0.2279 −0.5183 0.2046 −0.1037 3

11 −0.5726 0.2954 1.2158 0.6263 1.3463 1

12 −0.8876 −0.1501 1.1124 −0.2751 −0.8738 3

13 −0.6103 −0.4283 0.0356 −0.9649 0.9998 3

14 0.7837 0.2155 0.0255 1.6396 −0.1804 3

15 −0.0526 −1.2964 1.6167 0.4785 0.8863 1

16 0.0057 −1.3587 0.4027 0.1493 0.1907 3

17 −0.9001 0.8008 −1.4816 −0.2934 0.4536 3

18 1.9534 1.9457 −1.1564 −1.2251 −1.8506 3

19 0.6418 0.7898 0.5852 0.7657 −1.5597 3

20 −0.6714 1.5165 0.3638 −1.2357 0.5313 3

FIGURE 10
Error graph of five-fold cross-validation.
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FIGURE 11
Adaptation graph.

FIGURE 12
Prediction results of the ISSA-ELM model (without PCA processing).

described in Section 2.7. A comprehensive comparative analysis
was conducted to assess the predictive accuracy and generalization
capability of the ISSA-ELMmodel against the SSA-ELMmodel and
the conventional ELMmodel (Figure 15)

The results presented in Figure 15 indicate that the ISSA-ELM
model achieved the lowest MSE (0.0047) and MAE (0.0544) among
all models. In comparison, the SSA-ELM model reported an MSE
of 0.0091 and an MAE of 0.0766, whereas the ELMmodel exhibited
a significantly higher MSE of 0.9988 and an MAE of 0.6903. These
results clearly demonstrate the superior predictive accuracy and

robustness of the ISSA-ELM model. The enhanced convergence
of the ISSA, facilitated by the integration of the Singer chaotic
map, effectively mitigated the limitations of traditional sparrow
search algorithms, preventing premature convergence and ensuring
optimal parameter selection.

Furthermore, the goodness-of-fit coefficient (R2) of the ISSA-
ELM model was markedly higher than those of the SSA-ELM and
ELM models. This result reflects the ISSA-ELM model’s excellent
generalization performance, indicating its ability to make accurate
predictions across diverse datasets. The reduced error values and
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FIGURE 13
Prediction results of the ISSA-ELM model (with PCA processing).

FIGURE 14
Prediction results of the SSA-ELM model.

consistent prediction accuracy further validate themodel’s reliability
and stability.

In summary, the ISSA-ELM model exhibits substantial
advantages in karst-collapse susceptibility prediction. Its remarkable
accuracy, minimized prediction errors, and robust generalization

capacity make it an effective and reliable tool for geohazard risk
assessment. Consequently, the model can serve as a valuable
decision-support system for policymakers, urban planners, and
geotechnical engineers engaged in geological disaster prevention
and management.
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FIGURE 15
Comparison of error metrics among various models.

FIGURE 16
Zoning map of karst-collapse susceptibility grades in Yonghe Town, Liuyang City, Hunan Province conclusions.

4.5 Model validation

To comprehensively evaluate the effectiveness and accuracy of
the ISSA-ELM model in predicting the karst-collapse susceptibility,
the evaluation area shown in Figure 7 was designated as the
primary study region. Subsequently, the prediction scope was
expanded to cover the entire Yonghe Town. A karst-collapse
susceptibility zoning map was generated using MAPGIS software,
as illustrated in Figure 16.

The results reveal that Yonghe Middle School, Lizhen Primary
School—Xinwan Group of Jiacheng Village, Sanfeng Group—Dahe
Group, and Zhangshu Group are classified as high-susceptibility

zones. Conversely, Duijin Group and Zhoushang Group are
identified as low-susceptibility areas, with other regions falling
under medium-susceptibility zones.

Notably, numerous collapse pits were identified in Jingquan
Village, Tieshan Village, and Qibaoshan Village, all located in
proximity to the Qibaoshan mining area. Although most pits
have been backfilled, a substantial secondary collapse occurred
in the Zhangshu Group of Tieshan Village. This incident further
substantiates the predictive reliability of the ISSA-ELM model,
which accurately identified high-susceptibility regions. The model’s
capacity to predict secondary collapses post-backfilling highlights its
practical applicability in real-world scenarios.
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FIGURE 17
Correlation diagram of influencing factors of karst collapses.

The correlation analysis of influencing factors, presented
in Section 4.1 (Figure 17), further corroborates these findings.
Proximity to intra-area faults and the distance from the pumping
funnel center were identified as primary determinants of karst-
collapse susceptibility. These insights provide a strong basis
for the implementation of targeted disaster prevention and
mitigation measures.

To mitigate the risk of karst collapses effectively, comprehensive
monitoring and preventive measures are essential in high-
susceptibility regions. Advanced remote sensing, geophysical
exploration techniques, and real-time monitoring systems
can provide early warnings and facilitate rapid response
efforts. Additionally, evidence-based management strategies,
including regulated groundwater extraction and optimized
land-use planning, should be prioritized to minimize collapse
incidents.

Furthermore, this research provides valuable theoretical
support for urban planning, particularly in the determination
of disaster-avoidance distances. Policymakers and urban
planners can utilize the susceptibility zoning map to make
informed decisions, ensuring that critical infrastructure
and densely populated areas are located outside high-
susceptibility zones.

5 Conclusion

(1) In this study, we used PCA for dimensionality reduction in
karst-collapse susceptibility factors. Comparative analysis
confirmed that the application of PCA significantly enhanced
the predictive accuracy of the ISSA-ELMmodel, resulting in a

10.83% increase in R2. This demonstrates the effectiveness
of PCA in reducing data redundancy and extracting
critical features.

(2) To overcome the limitations of the traditional SSA, including
local optima convergence and slow convergence speed,
the Singer chaotic map was introduced for population
initialization. This enhancement resulted in the development
of the ISSA, which was integrated with the ELM model. The
ISSA-ELM model exhibited superior predictive performance
across 20 measured datasets, achieving an MAE of 0.0544,
an MSE of 0.0047, and an R2 of 0.9914. These results
highlight the model’s exceptional accuracy and robust
generalization capability compared to conventional ELM and
SSA-ELMmodels.

(3) The optimal number of hidden-layer nodes in the
ELM model was determined through a rigorous five-
fold cross-validation approach. This method effectively
mitigated the risks of underfitting and overfitting while
maximizing the use of limited data. The selected optimal
number of nodes (N = 12) further demonstrated the
effectiveness of this approach in fine-tuning model
hyperparameters.

(4) The ISSA-ELM model was applied for the first time
to predict karst-collapse susceptibility. The generated
susceptibility zoning map showed a significant spatial
correlation between high-susceptibility zones and densely
populated areas, including schools and villages. Through
correlation analysis, the primary influencing factors were
identified, offering a solid theoretical foundation for
determining disaster-avoidance distances in urban planning.
The findings provide essential guidance for policymakers in
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developing evidence-based disaster prevention and mitigation
strategies.

(5) Despite its promising results, this study has certain limitations:
① Limited dataset: the dataset used for model training and

validation was relatively small, which may affect the
model’s generalizability.
② Activation function selection: only the sigmoid activation

function was applied, with no comparative analysis
involving other functions. Future studies could explore
Tanh or ReLU activation functions to assess their impact
on model performance.
③ Data imbalance: the dataset contained limited non-

disaster-point data, potentially resulting in an incomplete
representation of non-disaster areas. Techniques such as
the synthetic minority over-sampling technique (SMOTE)
could be applied to address this imbalance.
④ Normalization methods: the study did not investigate

the effects of different normalization methods,
leaving the potential impact of alternative approaches
unexplored.

(6) To further refine and validate the ISSA-ELM model, future
research should focus on the following aspects:
① Dataset expansion: incorporating additional data from

various karst regions will improve model training and
validation.
② Activation function evaluation: comparative studies of

different activation functions, including Tanh and ReLU,
can optimize model performance.
③ Algorithmic enhancements: developing hybrid

optimization strategies could further mitigate the risk of
local optima in the sparrow algorithm.
④ Data balancing: applying algorithms like SMOTE will

balance the sample distribution and enhance model
robustness.
⑤ Normalization analysis: evaluating the impact of different

normalization methods will provide insights into their
influence on prediction accuracy.
⑥ Generalizability assessment: applying the ISSA-ELM

model to other karst regions with diverse geological
and hydrological conditions will assess its broader
applicability.

By addressing these aspects, future research can further enhance
the predictive accuracy, stability, and practical applicability of
the ISSA-ELM model. Ultimately, this will contribute to more
effective karst-collapse prevention and improved risk management
strategies.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial; further inquiries can be directed
to the corresponding author.

Author contributions

JW: conceptualization, data curation, and writing – original
draft. YY: methodology, supervision, and writing – review and
editing. XY: data curation, supervision, validation, and writing –
original draft. YuL: data curation, investigation, andwriting – review
and editing. YaL: data curation, investigation, and writing – review
and editing. DH: software, validation, and writing – review and
editing. YH: software and writing – review and editing.

Funding

The author(s) declare that no financial support
was received for the research and/or publication of
this article.

Acknowledgments

The authors are grateful to the Hunan Institute of Territorial
Spatial Survey and Monitoring, providing access to field data and
technical support.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/feart.2025.
1581090/full#supplementary-material.

Frontiers in Earth Science 20 frontiersin.org

https://doi.org/10.3389/feart.2025.1581090
https://www.frontiersin.org/articles/10.3389/feart.2025.1581090/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2025.1581090/full#supplementary-material
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2025.1581090

References

Bao, H. M., and Hu, C. S. (2002). Neural network prediction of karst
ground collapse. J. Eng. Geol. 10 (3), 299–304. doi:10.3969/j.issn.1004-9665.
2002.03.014

Bouzerda, M., Mehdi, K., Boualla, O., Fadili, A., Najib, S., and Saied, M. (2024).
Inventory and geomorphological analysis of karstic collapse dolines in Sahel-Doukkala
(Morocco). Carbonates Evaporites 39 (4), 93. doi:10.1007/s13146-024-01007-7

Cao, B., Bai, G., and Li, H. (2015). Prediction and analysis of gas content based on
PCA-GA-BP neural network. J. Saf. Sci. Technol. (5), 84–90. doi:10.11731/j.issn.1673-
193x.2015.05.013

Chen, D., and Cao, Y. (2023). Numerical simulation of karst collapse in
qingling Town, wuhan. J. Phys. Conf. Ser. 2565 (1), 012034. doi:10.1088/1742-
6596/2565/1/012034

Chen, X. J., Chen, L. J., Song, Y., and Pengyan, B. (2019). Prediction and analysis
of karst collapse with entropy - normal cloud model. J. Eng. Geol. 27 (6), 1389–1394.
doi:10.13544/j.cnki.jeg.2018-347

Chen, H. F., Zhu, M. Q., Xia, R. Y., Tang, J. S., and Liang, B. (2005). Analysis on
epikarst spring with BP ANN in Luota, Hunan Province. Carsologica Sin. (4), 300–304
doi:10.3969/j.issn.1001-4810.2005.04.008

Ding, H., Wu, Q., Zhao, D., Mu, W., and Yu, S. (2019). Risk assessment
of karst collapse using an integrated fuzzy analytic hierarchy process and grey
relational analysis model. Geomechanics Eng. 18 (5), 515–525. doi:10.12989/gae.2019.
18.5.515

En, W., Long-Cang, S., Li-Hong, L., and Bi-Juan, H. (2011). Prediction model for
water level of sinkholes in karst region based on improved SVM. J. Hohai Univ. Nat. Sci.
39 (1), 20–23. doi:10.1007/s12182-011-0118-0

Feng, T. (2025). Mechanism and stability analysis of karst collapse
in jingquan water source area of tengzhou city. Singapore: Springer.
doi:10.1007/978-981-97-7251-3_20

Gao, C., Li, S.,Wang, J., Li, L., and Lin, P. (2018).The risk assessment of tunnels based
on grey correlation and entropy weight method. Geotech. Geol. Eng. 36, 1621–1631.
doi:10.1007/s10706-017-0415-5

Gao, Z. J., Ma, H. H., Wang, M., and Cheng, S. C. (2009). Preliminary exploration of
the prediction model for karst ground collapse. Chin. J. Geol. Hazard Control. 20 (4),
66–71. doi:10.3969/j.issn.1003-8035.2009.04.014

Hu, R., Yeung, M., Lee, C., S., W., and J., X. (2001). Regional risk assessment
of karst collapse in Tangshan, China. Environ. Geol. 40 (11), 1377–1389.
doi:10.1007/s002540100319

Huang, G. B., Zhu, Q. Y., and Siew, C. K. (2006). Extreme learning
machine: theory and applications. Neurocomputing 70 (1/3), 489–501.
doi:10.1016/j.neucom.2005.12.126

Huang, R. D., Han, M., Zhang, X. J., Zhang, H., Jin, H., and Hua, Z. (2011).
Classification and prediction of karst collapse tendency grade based on Fisher
discriminant method. China Saf. Sci. J. 21 (9), 70–76. doi:10.3969/j.issn.1003-
3033.2011.09.012

Jiang, C. L., and Jiang, Z. Q. (2012). Prediction of karst collapse based on Fisher
discriminant analysis method. J. Earth Sci. Environ. 34 (1), 5. doi:10.3969/j.issn.1672-
6561.2012.01.012

Jiang, S. Q., and Shi, B. (2023). Prediction of failure pressure of pipelines with
corrosion defects based on the ISSA-ELM model. Hot Work. Technol. 52 (12), 70–75
+ 80. doi:10.14158/j.cnki.1001-3814.20221045

Jiyuan, H., Mahdi, M., Jiayao, W., Qin, F., Zhang, J., Wu, W., et al. (2021). Karst
collapse risk zonation and evaluation in wuhan, China based on analytic hierarchy
process, logistic regression, and InSAR angular distortion approaches. Remote Sens. 13
(24), 5063. doi:10.3390/rs13245063

Journal of Chemistry (2023). Retracted: study on early warning of karst collapse
based on the BP neural network. 1. doi:10.1155/2023/9818621

Lai, Y. B., and Qiao, C. S. (2008). An intelligent prediction model for karst collapse
based on support vectormachine. J. Beijing Jiaot. Univ. 32 (1), 5. doi:10.3969/j.issn.1673-
0291.2008.01.009

Liu, C. A., Feng, X. L., Sun, C. H., and Zhao, L. J. (2022). Maximum 2 - D entropy
image segmentation method based on improved sparrow algorithm. Laser Technol. 46
(2), 274–282. doi:10.7510/jgjs.issn.1001-3806.2022.02.020

Luo, X. J., and Shen, J. (2018). Research progress andprospect of karst ground collapse
in China. Carsologica Sin. 37 (1): 101–111. doi:10.11932/karst20180106

Lv, X., Mu, X. D., Zhang, J., and Wang, Z. (2021). Chaotic sparrow search
optimization algorithm. J. Beijing Univ. Aeronautics Astronautics 47 (8), 1712–1720.
doi:10.13700/j.bh.1001-5965.2020.0298

Meng, Y., Huang, J. M., Lei, M. T., Li, Y., andDai, J. L. (2009). Quantitative forecasting
method of karst collapse based on grey Verhulst model. Carsologica Sin. (1), 17–22.
doi:10.3969/j.issn.1001-4810.2009.01.004

Ministry of Natural Resources of the People’s Republic of China (2023). DZ/T
0447-2023 specification for karst collapse survey. 1. Beijing: China Standard Press.
10–31.

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space.
Philosophical Magazine Series 6. 2 (11), 559–572. doi:10.1080/14786440109462720

Qiu, X. R. (2004). Grey - fuzzy comprehensive evaluation on the stability
of karst collapse. Hydrogeology and Eng. Geol. 31 (4), 4. doi:10.3969/j.issn.1000-
3665.2004.04.010

Ren, T., Tian, G. L., Ning, Z. J., Zhou, A. H., Li, K., and Chen, S. (2023). Evaluation
of karst collapse susceptibility based on geographical detector and random forest. J.
Catastrophology 38 (3), 227–234. doi:10.3969/j.issn.1000-811X.2023.03.035

Wang, G., Hao, J., Wen, H., and Cao, C. (2022). A random forest model of karst
ground collapse susceptibility based on factor and parameter coupling optimization.
Geocarto Int. 37 (27), 15548–15567. doi:10.1080/10106049.2022.2102216

Wang, Z. Z., Zhuang, Z. H., Hu, F. Y., and Huang,W. L. (2024). Formation conditions
and susceptibility assessment of karst collapses in the northern hilly area of Guangzhou
City. J. China Geol. Hazard Control 35 (4), 163–172. doi:10.16031/j.cnki.issn.1003-
8035.202311008

Wei, A., Li, D., Zhou, Y., Deng, Q., and Yan, L. (2021). A novel combination approach
for karst collapse susceptibility assessment using the analytic hierarchy process,
catastrophe, and entropy model. Nat. Hazards 105, 405–430. doi:10.1007/s11069-020-
04317-w

Xiaozhen, J., Jianling, D., Zhiwen, Z., Li, X. J., Ma, X., Zhou, W., et al. (2024). An
overview on karst collapse mechanism in China. Carbonates and Evaporites 39 (3), 71.
doi:10.1007/s13146-024-00986-x

Xie, J. F., Tan, F., Jiao, Y. Y., Zou, J., and Mao, Z. (2021). Prediction of karst
ground collapse based on factor analysis-GA-ELMmodel. J. Eng. Geol. 29 (2), 236–544.
doi:10.13544/j.cnki.jeg.2020-219

Xue, J. K., and Shen, B. (2020). A novel swarm intelligence optimization approach:
sparrow search algorithm. Systems Science and Control Engineering 8 (1), 22–34.
doi:10.1080/21642583.2019.1708830

Yang, Z., Li, B., Wu, H., Li, M., Fan, J., Chen, M., et al. (2023). Water consumption
prediction and influencing factor analysis based on PCA-BP neural network in karst
regions: a case study ofGuizhou Province.Environmental Science and Pollution Research
30 (12), 33504–33515. doi:10.1007/s11356-022-24604-2

YanHua, X., BingHui, Z., YuXin, L., Liu, B. C., Zhang, C. F., and Lin, Y. S. (2022).
Evaluation of the karst collapse susceptibility of subgrade based on the AHP method
of ArcGIS and prevention measures: a case study of the quannan expressway, section
K1379+300-K1471+920.Water 14 (9), 1432. doi:10.3390/w14091432

Zhang, J., Bi, P., Wei, A. H., Tao, Z. B., and Zhu, H. C. (2021). Assessment of
susceptibility to karst collapse in the Qixia Zhongqiao district of Yantai based on fuzzy
comprehensive method. Carsologica Sinica (2), 215–220. doi:10.11932/karst2021y07

Zhou, A. H., Niu, P. F., Yuan, Y., and Huang, H. C. (2020). Prediction of karst surface
collapse risk in Fankou lead - zinc mine area based on PCA-PSO-SVM. Carsologica
Sinica (4), 622–628. doi:10.11932/karst2020y30

Zhuang, S. Y. (2022). Assessment of karst collapse susceptibility in yongding district,
Longyan city using the fuzzy analytic hierarchy process. Geology of Fujian 41 (4),
323–331. doi:10.3969/j.issn.1001-3970.2022.04.008

Frontiers in Earth Science 21 frontiersin.org

https://doi.org/10.3389/feart.2025.1581090
https://doi.org/10.3969/j.issn.1004-9665.2002.03.014
https://doi.org/10.3969/j.issn.1004-9665.2002.03.014
https://doi.org/10.1007/s13146-024-01007-7
https://doi.org/10.11731/j.issn.1673-193x.2015.05.013
https://doi.org/10.11731/j.issn.1673-193x.2015.05.013
https://doi.org/10.1088/1742-6596/2565/1/012034
https://doi.org/10.1088/1742-6596/2565/1/012034
https://doi.org/10.13544/j.cnki.jeg.2018-347
https://doi.org/10.3969/j.issn.1001-4810.2005.04.008
https://doi.org/10.12989/gae.2019.18.5.515
https://doi.org/10.12989/gae.2019.18.5.515
https://doi.org/10.1007/s12182-011-0118-0
https://doi.org/10.1007/978-981-97-7251-3_20
https://doi.org/10.1007/s10706-017-0415-5
https://doi.org/10.3969/j.issn.1003-8035.2009.04.014
https://doi.org/10.1007/s002540100319
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.3969/j.issn.1003-3033.2011.09.012
https://doi.org/10.3969/j.issn.1003-3033.2011.09.012
https://doi.org/10.3969/j.issn.1672-6561.2012.01.012
https://doi.org/10.3969/j.issn.1672-6561.2012.01.012
https://doi.org/10.14158/j.cnki.1001-3814.20221045
https://doi.org/10.3390/rs13245063
https://doi.org/10.1155/2023/9818621
https://doi.org/10.3969/j.issn.1673-0291.2008.01.009
https://doi.org/10.3969/j.issn.1673-0291.2008.01.009
https://doi.org/10.7510/jgjs.issn.1001-3806.2022.02.020
https://doi.org/10.11932/karst20180106
https://doi.org/10.13700/j.bh.1001-5965.2020.0298
https://doi.org/10.3969/j.issn.1001-4810.2009.01.004
https://doi.org/10.1080/14786440109462720
https://doi.org/10.3969/j.issn.1000-3665.2004.04.010
https://doi.org/10.3969/j.issn.1000-3665.2004.04.010
https://doi.org/10.3969/j.issn.1000-811X.2023.03.035
https://doi.org/10.1080/10106049.2022.2102216
https://doi.org/10.16031/j.cnki.issn.1003-8035.202311008
https://doi.org/10.16031/j.cnki.issn.1003-8035.202311008
https://doi.org/10.1007/s11069-020-04317-w
https://doi.org/10.1007/s11069-020-04317-w
https://doi.org/10.1007/s13146-024-00986-x
https://doi.org/10.13544/j.cnki.jeg.2020-219
https://doi.org/10.1080/21642583.2019.1708830
https://doi.org/10.1007/s11356-022-24604-2
https://doi.org/10.3390/w14091432
https://doi.org/10.11932/karst2021y07
https://doi.org/10.11932/karst2020y30
https://doi.org/10.3969/j.issn.1001-3970.2022.04.008
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	1 Introduction
	2 Theory of the ISSA-ELM integrated model
	2.1 Principal component analysis
	2.1.1 Data standardization
	2.1.2 Correlation coefficient matrix calculation
	2.1.3 Eigenvalue and eigenvector computation
	2.1.4 Variance contribution rate and cumulative Variance contribution rate
	2.1.5 Principal component selection

	2.2 Sparrow search algorithm
	2.2.1 Discoverer update
	2.2.1.1 Follower update
	2.2.1.2 Sentinel update


	2.3 Improved sparrow search algorithm
	2.4 Extreme learning machine
	2.5 Hyperparameter optimization of the prediction model
	2.6 Prediction process of karst collapse susceptibility using the ISSA-ELM model
	2.7 Evaluation methods
	2.7.1 Coefficient of determination (R2)
	2.7.2 Mean squared error
	2.7.3 Mean absolute error


	3 General situation of the project
	3.1 Overview of the geological environment
	3.2 Overview of karst collapses
	3.3 Formation mechanism of karst collapses
	3.4 Determination of influencing factors for the susceptibility of karst collapses
	3.4.1 Karst development degree
	3.4.2 Distance from intra-area faults
	3.4.3 Thickness of the overlying soil layer
	3.4.4 Groundwater fluctuation range
	3.4.5 Distance from the center of the artificial pumping funnel
	3.4.6 Development density of existing ground collapses


	4 Case analysis
	4.1 Data collection and preprocessing
	4.2 Optimization of model parameters
	4.3 Prediction of karst-collapse susceptibility
	4.4 Analysis of error metrics
	4.5 Model validation

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

