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Monitoring data-driven dynamic
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deep foundation pit construction
based on grey clustering and
moment method
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1Sinohydro Bureau 14 Co., Ltd., Kunming, China, 2College of Civil and Transportation Engineering,
Shenzhen University, Shenzhen, China

To address the safety challenges of deep foundation pit construction under
complex conditions, this study proposes a dynamic assessment framework
based on grey clustering theory and a moment estimation composite weighting
method. A three-level indicator system was constructed, integrating subjective
and objective weights through order relationship and entropy weight methods.
Grey clustering was employed to classify real-time monitoring data and
assess safety levels dynamically. Application to a large-scale water diversion
shaft project in Shenzhen verified the model’s effectiveness, with assessment
results closely matching observed risks during excavation. The framework
improves accuracy and responsiveness in uncertain monitoring environments
and supports intelligent risk management.
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1 Introduction

When there is a need to build underground structures such as shaft foundations,
basements, or tunnels, a foundation pit is usually excavated. As urbanization continues
to advance and calls for constructing more underground infrastructures, the scale and
depth of deep foundation pit engineering are continuously expanding, and their safety
issues are receiving increasing attention, especially in densely populated urban areas and
karst-prone regions. The pit excavation triggers significant unloading effects and usually
negatively disturbs the greenfield ground, which imposes high risks to the surrounding
environment and may lead to the disastrous collapse of pit bracing structures and damage
to adjacent buildings (Chen et al., 2023). In recent years, multiple foundation pit accidents
have occurred, such as the collapse of a metro station project in Hangzhou in 2008
(Gong and Zhang, 2012), the failure of foundation pit support in Nanchang in 2015
(Feng and Lu, 2016), and the pit collapse accident in Nanning in 2019 (Chin et al.,
2019), many of which were exacerbated by karst-induced instability (Lv et al., 2020).
Causing substantial property losses and casualties. It should be pointed out that these
incidents are attributed to unqualified field monitoring or untimely responses to alert
monitoring data. Studies emphasize that accurate field monitoring, effective data analysis,
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and timely risk management are crucial in preventing foundation
pit accidents. For example, numerical analyses have highlighted the
importance of understanding the seismic responses of underground
structures in complex soil conditions such as liquefiable soils and
marine soft soils (Bao et al., 2025), and karst regions (Li et al.,
2023). Therefore, performing accurate field monitoring and further
effective monitoring data analysis and timely risk management
are effective ways to prevent foundation pit accidents. With
the advancement of technology, modern deep foundation pit
engineering has introduced advanced monitoring techniques and
computational models to ensure safety during construction and
structural stability. For instance, seismic responses of underground
structures in liquefiable soils necessitate precise monitoring and
design optimizations to enhance safety during seismic events
(Shen et al., 2025; Bao et al., 2024). Similarly, Xu et al. explored the
monitoring and assessmentmethods for ultra-deep diaphragmwalls
during excavation, providing critical insights into structural stability
under high-stress conditions (Xu et al., 2024). In karst regions,
unique challenges arise due to hidden cavities, water-filled voids,
and unpredictable soil mechanics, which amplify risks of sudden
collapses and water inrush during excavation (Xu andWang, 2022).
Recent advancements in machine learning have shown promise in
detecting hidden defects in complex geological environments. For
example, Bao et al. developed an improved YOLOv8 model with
attention mechanisms to detect voids in rebar-affected areas using
ground-penetrating radar (GPR) data, demonstrating enhanced
accuracy in noisy and cluttered datasets (Bao et al., 2025).

With advancements inmonitoring technologies and equipment,
effectively utilizing data for risk assessment and prediction has
become essential for ensuring safety during deep foundation pit
construction. To address this need, several scholars have proposed
various methods to predict and assess safety risks throughout
the construction process. For instance, Wei et al. introduced a
fuzzy analytic hierarchy process (FAHP) combined with evidence
reasoning algorithms to evaluate the overall risk level of deep
foundation pits, enabling reasonable risk assessments even with
insufficient monitoring data (Wei et al., 2020). Similarly, Zhou
et al. developed risk prediction models based on support vector
machines (SVM) (Zhou et al., 2017) and random forest algorithms
(Zhou et al., 2019), both of which have demonstrated reliable
validation. Moreover, Wu et al. presented a rapid convergence
and high-reliability multi-source data fusion method for assessing
subway foundation pit collapse risk, utilizing cloud models (CM)
and improved Dempster-Shafer evidence theory to integrate and
quickly converge multi-source data under various factors (Wu et al.,
2024). Furthermore, Sun applied digital twin technology for real-
time risk prediction and control during deep foundation excavation,
improving the precision and timeliness of risk management;
however, the complexity of the technology and high equipment costs
currently hinder large-scale implementation (Sun et al., 2023). Shen
established the cloud model theory by using the parameters such
as expectation, entropy and super-entropy to represent uncertainty,
which provided a new perspective for multi-index comprehensive
evaluation (Shen et al., 2025).

With the emergence of an increasing number of safety
assessment methods for deep foundation pit construction, the
selection of assessment indicators has become more diverse.
As a structured framework for assessment methods, assessment

indicators directly impact the accuracy and reliability of assessment
results. Previous studies have made significant strides in developing
safety assessment frameworks for deep foundation pits. However,
these methods face notable limitations. FAHP introduces
subjectivity due to reliance on expert judgment, whereas SVM
struggles with incomplete or uncertain data. Additionally, existing
approaches often focus narrowly on structural deformation
indicators while neglecting critical factors such as structural internal
forces and environmental impacts. This oversight can lead to
incomplete risk assessments, particularly in complex geological
conditions where multi-factor interactions dominate.

To address the aforementioned issues and provide solutions, this
study innovatively proposes a dynamic safety assessment method
for deep foundation pit construction based on gray clustering theory
and moment estimation composite weights. The innovations of this
assessment method include: (1) the introduction of gray clustering
theory effectively addresses the uncertainty and incompleteness of
monitoring data in practical engineering, enhancing computational
efficiency and ensuring the accuracy and timeliness of assessment
results; (2) the incorporates monitoring projects from current
standards as assessment indicators, eliminating the need for
additional resource investment and ensuring the economic viability
and applicability of the assessment approach; (3) a multi-layer
composite weights approach based on moment estimation is
proposed for assigning weights to each assessment indicator,
ensuring objectivity and scientific rigor in the distribution
of weights.

The rest of this paper is divided into five main sections:
Section 2 will elaborate on the theoretical foundations of this
research, including the principles of gray clustering theory and
moment estimation methods, as well as their application context
in safety assessments; Section 3 details the construction process
of the assessment model, covering the selection of assessment
indicators, the methodology for weight allocation, and the
mathematical representation of the model; Section 4 presents the
application process and practical effects of the assessment model
through specific engineering cases, validating its effectiveness and
applicability; Section 5 summarizes the main contributions and
practical value of the assessment method, while also discussing the
limitations of the study and potential future research directions.

2 Methodology

As amulti-attribute decision-making (MADM)problem (Li et al.,
2015), the dynamic safety assessment of deep foundation pit
construction needs to consider the interaction between multiple
factors, and finally obtain a safety index comprehensively. The
assessment of safety indicators requires scientific weight coefficients
allocation and reasonable assessment methods to obtain accurately
fit actual results.

A scientific and reasonable weight determination method
should consider subjective and objective factors. Common
subjective weight determination methods include expert evaluation
method, analytic hierarchy process (AHP) and order relationship
analysis method. The expert evaluation method directly assigns
weights to each evaluation indicator through the experience
and knowledge of professionals; the AHP quantifies the relative
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importance of different factors by constructing a hierarchical
model, and determines the weights through a series of comparative
judgments; and the order relationship analysis method determines
the weights for each indicator by judging the relationship between
sequences, which is suitable for situationswhere clear data is lacking.
The calculation of objective weights is usually based on some
theoretical methods based on data, amongwhich the entropy weight
method is the most universal method. The entropy weight method
is based on the objectivity of data and determines the objective
weights of each indicator by analyzing the uncertainty of the data.
This process is completely based on the inherent characteristics of
the data, reducing the possibility of human intervention and errors.

Given the diversity of assessment indicators of deep foundation
pit construction and the implicit relationships among them, it is
more practical to calculate composite weights by integrating both
subjective and objective aspects.

2.1 Weight coefficients

2.1.1 Order relationship analysis method
The Order Relationship Analysis Method (ORAM) is a

subjective weight assignment method proposed based on the
AHP. This method first qualitatively sorts the indicators and
then quantitatively assigns values with comparing adjacent
indicators (Ye et al., 2023). After arranging the importance of the
assessment indicators in order, the relative importance of other
assessment indicators is also uniquely determined, and so are the
weights. Compared to the AHP method, when there are many
assessment indicators, ORAM does not require a one-time check,
solving the problem of inconsistent judgment matrices and greatly
improving the computational efficiency of the model. The detailed
process of this method include.

Step 1: Determine the order relationship

Establish the set of indicators based on the dynamic safety
assessment index system, perform aDelphimethod ranking (usually
by experts in this area), and ultimately establish a unique order based
on importance from the highest to the lowest, as in Equation 1:

X1 > X2 >… > Xi−1 > Xi > Xi+1 >…> Xp (1)

Step 2: Calculate the relative importance coefficient

Set Equation 2 as rI, the ratio of the relative importance of
indicator Xi−1 to XI and refer to Table 1 for the meaning of ri:

ri =
xi−1
xi
(i = 2,3,…,p) (2)

In the formula, i represents the relative importance.

Step 3: Weight coefficient calculation

Within the context of sequential relational indicators, designate
the weight of the j indicator as w′j as presented in Equation 3.

w′j =

αi
p

∏
i=j+1

ri

p

∑
k=1

αk
p

∏
i=k+1

ri

(3)

TABLE 1 Relative importance of indicators.

ri Meanings

1.0 The indicator Xi−1 is just as important as the indicator Xi

1.2 The indicator Xi−1 is slightly more important than the indicator Xi

1.4 The indicator Xi−1 is significantly more important than the indicator Xi

1.6 The indicator Xi−1 is more important than the indicator Xi

1.8 The indicator Xi−1 is extremely important than the indicator Xi

Note: 1.1, 1.3, 1.5, and 1.7 respectively indicate importance between neighboring two.

In the formula, αI is an adjustment factor, which is set in reverse
order based on the importance of the indicator.

2.1.2 Entropy weight method
The entropy weight method (EWM) is an important objective

weighting method that develops from the concept of entropy, a
term mostly used to describe a state of disorder, randomness,
or uncertainty. The term is first recognized and used in classical
thermodynamics (Akih-Kumgeh, 2016). Generally, the lower the
information entropy Hj of an indicator, the greater the variability
of its values and the more information it provides. When using the
characteristic of entropy to express information quantity, the greater
the difference of an indicator among various assessment objects, the
greater its role in the comprehensive assessment, and consequently,
its weight should also be greater (Wu et al., 2022). As an objective
weighting method, EWM calculates weights from the judgment
matrix, and it is considered more precise compared to other
objective weighting assessment methods (Ahn, 2011). The general
process of entropy weight method includes the below key steps:

Step 1: Data standardization.

Formulate the data of each indicator into an i× j judgment
matrix, defined as the raw matrix A, and then obtain matrix B
through standardization processing Equation 4.

bij =
aij −min(aij)

max(aij) −min(aij)
(4)

Here, aij refers to the data in the j row of the i indicator in the
judgment matrix, max (aij) is the maximum value of all elements
in matrix A, and min (aij) is the minimum value of all elements
in matrix A.

Step 2: Proportion of the indicator.

The purpose of proportion is to measure the
importance of each assessment objects in that indicator. For
standardized data, Equation 5 is used to calculate the proportion
of each assessment objects under each index.

pil =
bij
∑m

i=1
bij

(5)

Here, m is the number of assessment objects, pil represents the
proportion of the i object in the j index.
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Step 3: Calculate the information entropy.

The information entropy for each indicator is calculated
utilizing Equation 6.

Hj = −k
m

∑
i=1

pij ln(pij),k =
1

ln (m)
(6)

Here, k is the normalization coefficient, ensuring that the value
of information entropy is between [0,1]. The information entropy
reflects the uncertainty of the data. The greater the entropy, the
smaller the variability of the data and the lower the differentiation
of the index.

Step 5: Calculate objective weights.

Information entropy is introduced into Equation 7 to obtain the
objective weight of the index.

w″j =
1−Hj

m−
m

∑
j=1

Hj

(7)

2.1.3 Entropy weight method
To balance subjective judgment with objective data in the

MADM process, this study employs the moment estimation
composite weights method (MECWM) for composite weights,
aiming to minimize the influence of subjectivity on the
assessment of indicator importance. MECWM is a widely
used parameter estimation technique in statistics. This method
quantifies the importance of indicators by calculating sample
moments and matching them with theoretical population
moments (Wooldridge, 2001). This method was first proposed
by British statistician Karl Pearson in the late 19th century,
estimating the parameters of a probability distribution
by matching sample moments with population moments
(Pearson, 1936).

In the process of composite weights, MECWM allows us
to combine the analysis results of objective data with the
subjective judgment of decision-makers. By adjusting parameter
estimates to reflect the importance of different indicators, this
approach not only enhances the transparency of the decision-
making process but also strengthens the reliability of the decision
outcomes.

Therefore, this paper will apply MECWM to optimize
the combination of weights for the indicators, based
on the optimal subjective and objective weight values
determined by the ORAM and the EWM, respectively.
Employing Equation 8, the composite weights coefficient βj
is ascertained. Thereafter, by integrating the subjective and
objective weights into Equation 9, the composite weights wj for
each indicator is ultimately derived. The weight coefficient βj,
determined according to the moment method, primarily reflects
the relative importance of subjective and objective factors in
decision-making.

βj =
w′j

w′j +w
″
j

(8)

wj =
βjw
′
j + (1− βj)w

″
j

p

∑
j=1
[(1− βj)w

′
j + βjw

″
j ]

(9)

FIGURE 1
Whitening functions of S assessment gray classes.

2.2 Grey clustering theory

The dynamic safety assessment of deep foundation pit
construction is a MADM problem. In such scenarios, decision-
makers often aim to develop the most reasonable assessment
plan in an objective and impartial manner. In deep foundation
pit construction, monitoring data often exhibits characteristics
such as incompleteness, uncertainty, and variability due to
complex geological conditions and construction activities. These
uncertainties pose significant challenges in accurately assessing
safety risks. Gray clustering theory, based on the whitening weight
function of gray numbers, effectively addresses these challenges by
integrating the analysis of various indicators to categorize observed
objects into predefined classes. It demonstrates good adaptability
in addressing multi-attribute decision-making challenges (Li et al.,
2015), especially when dealing with uncertain and incomplete data
that are common in foundation pit monitoring processes. As an
unsupervised learning method, the core idea of gray clustering
theory is to effectively manage the grayness of both known and
unknown information within a system, thereby revealing the
behavioral patterns and intrinsic connections of the system. This
method is particularly suitable for situations involving incomplete
or highly uncertain information (Li et al., 2015; Liu and Yang, 2017).

Grey clustering theory, rooted in grey system theory, is a
powerful tool for addressing uncertainty and incompleteness in data.
It operates on the concept of grey numbers’ that values with partially
known and partially unknown information and employs whitening
weight functions to transform ambiguous data into interpretable
metrics. The core principle involves dividing data into predefined
grey classes’ using triangular or trapezoidal membership functions,
which inherently accommodate data vagueness. This approach
surpasses traditional methods by allowing partial membership in
multiple classes, reflecting real-world ambiguities in monitoring
data. For example, a displacement value near a safety threshold can
be assigned fractional membership to both ‘Alert’ and ‘Warning’
classes, capturing transitional states not accounted for in binary
systems. This contrasts sharply with binary classification methods,
which force data into discrete categories, potentiallymasking critical
transitional risks.

While grey clustering excels in dynamic, uncertain
environments, it also outperforms other advanced clustering
techniques in critical aspects. k-means clustering, for instance,
relies on Euclidean distance and assumes spherical cluster
shapes, making it ineffective for non-linear relationships often
observed in foundation pit data. Fuzzy C-means introduces
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FIGURE 2
The diagram of the dynamic safety assessment index system for deep foundation pit construction.

probabilistic memberships but requires predefined cluster numbers
and Gaussian assumptions, which are rarely valid in complex
geological settings. Hierarchical clustering lacks scalability for
large datasets and is prone to error propagation from early merge
decisions, limiting its use in real-time monitoring. In contrast,
grey clustering dynamically adapts to data patterns without
rigid distribution assumptions, making it uniquely suited for
incomplete or evolving datasets typical of deep foundation pit
construction.

As a specific application of gray clustering theory, gray
clustering analysis primarily includes two types: gray relational
clustering and gray whitening weight function clustering (Liu et al.,
2017). Gray relational clustering is based on the gray relational
matrix, which classifies the observed indicators or objects into
predefined categories by calculating the gray relational degree
among the assessment objects. In contrast, gray whitening weight
function clustering is used to determine whether the observed
objects belong to a specific category. This involves establishing a
whitening weight function to convert gray data into meaningful
whitening values, allowing for appropriate differentiation and
processing (Chen et al., 2019). Both the two clustering analysis types
offer unique advantages in addressing multi-attribute decision-
making problems, particularly in situations with incomplete or
highly uncertain information. For the analysis of monitoring data
in deep foundation pit construction, the gray whitening weight
function clustering method can effectively identify the risks and
trends of various factors, particularly in key monitoring indicators
such as settlement, displacement, and stress. In contrast, gray
correlation clustering focuses more on recognizing the similarities
between different data points. Therefore, this study employs
the gray whitening weight function clustering method for gray
clustering analysis.

Notably, the gray whitening weight function is a piecewise
function. Depending on the nature of the observed indicators,
different ranges of indicator values correspond to different
expressions of the weight function. Let xij be the observation
value of the i assessment object regarding the j indicator (where

i = 1,2,3,…,n and j = 1,2,3,…,p). fki (xij) denotes the whitening
weight function value for the k subclass of the j indicator
(where k = 1,2,3). According to gray clustering theory, the
design of the whitening weight function must meet the following
requirements as in Equation 10:

s

∑
k=1

fki (xij) = 1 ∀xij ∈ ⊗ (10)

Here, ⊗ denotes the value range of xij. The value range of
the indicator xj is divided into S subintervals [d1,ds+1]. The
geometric midpoint λ of each subinterval is calculated using the
following Equation 11:

λk =
dk−1 + dk

2
 (k ∈ 1,2,3,…, s) (11)

Next, the whitening weight function is constructed as illustrated
in Figure 1. Let λk represent the whitening weight function value
for the k gray class (k = 2,3, ..., s− 1). By connecting point (λk,1)
with the geometric midpoints λk−1 and λk+1 of the k− 1 and k+ 1
gray classes, respectively, the triangular whitening weight function
fki (x) for indicator Xj concerning the k gray class is obtained, and its
expression is given by the following Equation 12:

fkj (x) =

{{{{{{{
{{{{{{{
{

0 x ∉ [λk−1,λk+1]
x− λk−1
(λk − λk−1)

 x ∈ [λk−1,λk]

λk+1 − x
(λk+1 − λk)

 x ∈ [λk,λk+1]

(12)

The triangular whitening weight function for the first gray
class is expressed as following Equation 13, the triangular
whitening weight function for the s Gy class is expressed as
following Equation 14:

fkj (x) =

{{{{{
{{{{{
{

1 x ∈ [d1,d2]
λ2 − x
λ2 − λ1
 x ∈ [d2,λ2]

 0 x ∉ [d1,λ2]

(13)
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TABLE 2 Construction safety dynamic assessment index system of deep foundation pit.

Primary index Secondary index Three-level index unit

Structural deformation (X1)

Horizontal displacement at the top of bracing and retaining structure (X11)
Accumulation (X111) mm

Rate of change (X112) mm/d

Vertical displacement at the top of the bracing and retaining structure (X12)
Accumulation (X121) mm

Rate of change (X122) mm/d

Lateral wall deflection (X13)
Accumulation (X131) mm

Rate of change (X132) mm/d

Vertical displacement of column (X14)
Accumulation (X141) mm

Rate of change (X142) mm/d

Vertical surface displacement (X15)
Accumulation (X151) mm

Rate of change (X152) mm/d

Basement uplift (X16)
Accumulation (X161) mm

Rate of change (X162) mm/d

Structural internal forces (X2)

Supporting axial force (X21) Control value (X211) kPa

Axial force of bolt (X22) Control value (X221) kPa

Earth pressure (X23) Control value (X231) kN

Pore water pressure (X24) Control value (X241) kN

Internal Force of Retaining wall (X25) Control value (X251) kPa

Column internal force (X26) Control value (X261) kPa

Environmental safety (X3)

Water table change (X31)
Accumulation (X311) mm

Rate of change (X312) mm/d

Pipeline displacement (X32)
Accumulation (X321) mm

Rate of change (X322) mm/d

Adjacent building displacement (X33)
Accumulation (X331) mm

Rate of change (X332) mm/d

Adjacent road settlement (X34)
Accumulation (X341) mm

Rate of change (X342) mm/d

Adjacent building surface cracks (X35)
Accumulation (X351) mm

Rate of change (X352) mm/d
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TABLE 3 Construction safety dynamic assessment index system of deep foundation pit.

Index Safety level

U1 U2 U3 U4

X111 (−∞,10] (10.20] (20.30] (30, +∞)

X112 (−∞,1] (1,2] (2,3] (3, +∞)

X121 (−∞,5] (5.10] (10.20] (20, +∞)

X122 (−∞,1] (1,2] (2,3] (3, +∞)

X131 (−∞,15] (15.30] (30.50] (50, +∞)

X132 (−∞,1] (1,2] (2,3] (3, +∞)

X141 (−∞,10] (10.20] (20.30] (30, +∞)

X142 (−∞,1] (1,2] (2,3] (3, +∞)

X151 (−∞,15] (15.25] (25.35] (35, +∞)

X152 (−∞,1] (1,2] (2,3] (3, +∞)

X161 (−∞,30] (30.45] (45.60] (60, +∞)

X162 (−∞,4] (4,7] (7.10] (10, +∞)

X211 (fy,60%f2] (90%fy,fy]∪(60%f2,70%f2] (80%fy,90fy]∪(70%f2,80%f2] <80%fy∪>0%f2

X221 (fy,60%f2] (90%fy,fy]∪(60%f2,70%f2] (80%fy,90fy]∪(70%f2,80%f2] <80%fy∪>0%f2

X231 (0.60%f1] (60%f1,70%f1] (70%f1,80%f1] (80%f1, +∞)

X241 (0.60%f1] (60%f1,70%f1] (70%f1,80%f1] (80%f1, +∞)

X251 (0.60%f2] (60%f2,70%f2] (70%f2,80%f2] (80%f2, +∞)

X261 (0.60%f2] (60%f2,70%f2] (70%f2,80%f2] (80%f2, +∞)

X311 (01,000] (1000,1500] (1,500,2000] (2000, +∞)

X312 (−∞,400] (400,450] (450,500] (500, +∞)

X321 (−∞,10] (10.15] (15.20] (20, +∞)

X322 (−∞,1] (1,5] (1.5,2] (2, +∞)

X331 (−∞,10] (10.20] (20.30] (30, +∞)

X332 (−∞,1] (1,2] (2,3] (3, +∞)

X341 (−∞,10] (10.20] (20.30] (30, +∞)

X342 (−∞,1] (1,2] (2,3] (3, +∞)

X351 (−∞,10] (10.13] (13.15] (15, +∞)

X352 (−∞,1] (1,2] (2,3] (3, +∞)
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FIGURE 3
Image of whitening weight function of three-level indicators.

fkj (x) =

{{{{{
{{{{{
{

1 x ∈ [λs,ds+1]
x− λs−1
λs − λs−1

 x ∈ [λs−1,λs]

0 x ∉ [λs−1,ds+1]

(14)

If the weight wk
j of the k subclass of the j indicator is independent

of k (where w1
j = w

2
j = ... = w

s
j ), let σ

k
i denote the gray fixed weight

clustering coefficient for the i assessment object in the k subclass.
Then as following Equation 15:

σki =
p

∑
j=1

fki (xij)wj (i = 1,2,…,m;k = 1,2,3) (15)

If σk
⋆

i = max(σki ) = max[∑pj=1f
k
i (xij)wj ] is satisfied, then

the i assessment object belongs to the k⋆ subclass. Based on
Equations 13–15, we can derive the following Equation 16:

s

∑
k=1

σki = 1 (16)

This means that the sum of the gray fixed weight clustering
coefficients for all subclasses of the i assessment object is equal to 1.

3 Dynamic safety assessment
methods for deep foundation pits

3.1 Dynamic safety assessment index
system

The selection of proper assessment indicators is a critical
aspect determining the effectiveness of the dynamic assessment
method of deep foundation pit construction. In this study, the
proposed assessment index system is based on the relevant
standards (MOHURD, 2019), in order to closely align with
actual engineering practices. The selection of assessment indicators
must, on one hand consider the complexity of the foundation
pit’s environment, such as geological conditions, groundwater
levels, and the status of surrounding buildings and infrastructure,
and on the other hand, carefully weigh the difficulty of data
acquisition to ensure the feasibility of equipment deployment and
the continuity of data collection. Moreover, the chosen indicators

should have a strong ability to reflect the safety status of the
foundation pit, capturing changes with adequate sensitivity and
accuracy, particularly key indicators like vertical retaining structure
deformation and stress or strain responses of the horizontal support
structures, which are critical early warning signals of foundation
pit instability. Additionally, environmental safety indicators, such
as the ground settlement and tilting of nearby structures, should
not be overlooked, as they provide insights into the construction’s
impact on the surrounding environment, allowing decision-makers
to intervene in a timely manner (Tan et al., 2023; Zhao et al., 2022).
In conclusion, by selecting anddesigning a rational assessment index
systemhas to incorporate both the bracing structures of pits and also
the surrounding influential environment, while balancing the ease of
on-site data acquisition (Ye et al., 2021; Qiao et al., 2024).

Based on the classification of deep foundation pit monitoring
items, a dynamic safety assessment index system is established to
include three primary level indicators and seventeen secondary level
process indicators. The three primary level indicators are: structural
deformation indicators (X1), structural internal forces indicators
(X2), and environmental safety indicators (X3), each incorporates
several secondary level indicators, and each secondary level
indicator further considers several three-level control indicators.
The assessment objectives, assessment criteria, and assessment
indicators are at different levels, forming a progressive hierarchical
structure. The diagram of the dynamic assessment index system
is partially demonstrated here in Figure 2, while the detailed
descriptions of indicators are included in Table 2.

3.2 Classification of safety levels

The determination of threshold ranges for the dynamic
assessment of deep foundation pit construction safety is based on
an analysis of monitoring data from actual projects, combined
with references to domestic and international research findings
and industry standards (MOHURD, 2019; MOHURD, 2012). The
threshold setting also takes into account the specific characteristics
of foundation pit projects, including geological conditions, pit
excavation depth, retaining structure types, and the complexity of
the surrounding environment.

In establishing the threshold ranges for each level, initial
reference values were derived from empirical monitoring data
on foundation pit deformation, mechanical response of bracing
structures, and environmental disturbance monitoring. Significant
correlations between foundation pit deformation and instability
informed the setting of critical limits for horizontal displacement
and vertical settlement of retaining structures such as the diaphragm
walls and the sheet pile walls. The mechanical response of support
structures during construction also served as a basis for adjusting
the alert and warning thresholds for stress-strain indicators of
support systems. Additionally, precision of monitoring equipment,
dynamic changes during construction, and the influence of the
surrounding environment on monitoring data were considered in
the threshold determination. For indicators of environment impacts,
such as settlement and tilting of adjacent buildings, data fromproject
cases were analyzed to help define appropriate alert and warning
thresholds.
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FIGURE 4
Construction dynamic safety assessment model of deep foundation pit.

FIGURE 5
Project routing diagram.

Based on this multi-dimensional analysis, the safety assessment
index system U of the deep foundation pit construction is
divided into four levels: Safe (U1), Alert (U2), Warning (U3),
and Dangerous (U4). Due to space limitations, the final value
ranges for each assessment level are detailed in Table 3. According
to the divisions of the safety levels, each indicator has three
boundary conditions. From these, the four category boundary
values (a,b,c,d) can be calculated using Equation 3. Subsequently,

combining Equations 4–6, the whitening power functions for each
third-level indicator are constructed, resulting in the corresponding
weight coefficient matrix. The whitening power functions between
different indicators differ only in the category boundary values, with
the overall function plots being similar, as shown in Figure 3.

As shown in the figure, the whitening weight function graph
of grey clustering theory visually represents how indicator values
are mapped to assessment levels, with the horizontal axis denoting
indicator values and the vertical axis f(xij) indicating membership
weights (0–1). Unlike traditional binary classification methods that
impose strict thresholds, this graph inherently reflects the theory’s
strength in handling uncertainty: adjacent intervals allow partial
membership overlaps rather than absolute exclusivity. For instance,
an indicator value near threshold b would simultaneously hold
fractional membership in both U2 level and U3 level, capturing
transitional states typical of incomplete or ambiguous monitoring
data. The key points serve as flexible classification boundaries,
enabling adaptive quantification of risk levels while accommodating
data vagueness. This design ensures the graph provides a robust
foundation for the comprehensive evaluation model by translating
complex uncertainty into interpretable membership degrees.

3.3 Establishing the dynamic safety
assessment model

Based on the determination of the assessment index system and
the weight coefficient calculation method, this paper integrates grey
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FIGURE 6
Bird-view of the excavated deep shaftLife Science Identifiers.

TABLE 4 Physical and mechanical parameters of soil layer.

Soil layer ρ/(g · cm−3) c/kPa φ/(°) Ee/MPa v Thickness/m

Gravel clay 2.66 20 20 12.6 0.35 12

Heavily weathered granite 2.53 350 25 6,200 0.32 21

Rock mass fracture zone 2.58 40 25 2,400 0.32 34

Aeolian granite 2.62 720 25 22,300 0.26 33

FIGURE 7
Stratum conditions and diaphragm wall layout.

clustering theory to establish a dynamic safety assessment model
for deep foundation pit construction as shown in Figure 4. The
model combines quantitative and qualitative analyses and relies on
real-time monitoring data to dynamically assess the safety status of
deep foundation pit construction through grey clustering analysis.

It aims to effectively integrate data from multiple sources and
expert knowledge, providing a comprehensive dynamic assessment
of foundation pit safety through scientific weight allocation and
clustering analysis.

The innovative aspect of this model lies in its integration of
both quantitative and qualitative analyses, subjective and objective
weight allocation, and the application of grey clustering theory
to address the complex and variable environment of foundation
pit construction and the uncertainty of monitoring data. By
leveraging this model, accurate, real-time dynamic assessments of
deep foundation pit construction safety can be achieved, providing
robust support for risk management and decision-making in the
construction process.

Compared to existing methods, our framework offers distinct
advantages. Unlike FAHP, which relies on subjective expert
judgment, our composite weighting method dynamically balances
subjective and objective inputs, enhancing objectivity. In contrast
to SVM, which requires large, clean datasets, grey clustering
handles incomplete or uncertain data inherent in foundation pit
monitoring. Furthermore, our comprehensive three-level index
system integrates deformation, internal forces, and environmental
factors, addressing the narrow indicator focus of prior studies.
These advancements position our framework as a robust tool for
real-time, data-driven safety assessment in deep foundation pit
construction.
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FIGURE 8
Profile of the shaft foundation pit.

To prevent the distortion that a single indicator might cause in
the dynamic safety assessment results of the foundation pit, it is
necessary to combine the assessment with the prominent primary
factor method. Specifically, if any single dynamic monitoring data
of the foundation pit exceeds the extreme value of the dangerous
situation, the weight of that assessment factor is stipulated to be 1,
and the weights of other factors are set to 0. The risk value is then
calculated to determine the current danger level of the pit. If none of
the deep foundation pit assessment indicators exceed the extreme
values of the dangerous situation, proceed to the dynamic safety
assessment calculation process. This involves using the assessment
index system and the composite weighting values to conduct a
dynamic safety assessment calculation for the deep foundation pit
construction.

4 Case study

4.1 Project overview

The Luotian-Tiegang Reservoir water diversion tunnel
is an important large-scale water conservancy project
in Shenzhen (Figure 5), with a designed capacity of 2.6 million
cubic meters per day. The main task of the project is to reasonably
distribute and use the water from the West River in Shenzhen,
optimize the allocation of new foreign water, ensure water supply to
the western area of Shenzhen, and meet the long-term urban living
and production water needs of Bao’an District and part of Nanshan
District. The whole line of the project is located in Bao’an District
and Guangming District in the west of Shenzhen, with a total length
of 21.68 km and a cross-section diameter of 5.2 m. The main line
includes three working diversion shafts, each with an outer diameter
exceeding 30 m and a depth of over 60 m.

A dynamic assessment will be conducted on the Wuzhiba
diversion shaft, which features the most complex geological
conditions. The Wuzhiba diversion shaft is classified as a first-class
ultra-deep circular foundation pit, with a final excavation depth of
72.5 m and an internal diameter of 42.4 m (Figure 6).

4.1.1 Geological conditions
The site is located in the western part of Shenzhen, consisting

primarily of plain fill, gravelly clay, and granite. The soil profile
consists of several distinct layers. Gravel clay at the surface extends
to a depth of 12 m, characterized by low density and cohesion
which could influence surface stability and water infiltration
rates. Heavily weathered granite starts from 12 m down to 33 m,
where the rock has degraded substantially, impacting its structural
integrity and load-bearing capacity. Between 35.5 and 69.5 m, the
fractured rock mass zone contains fragmented rock that could
pose challenges for excavation construction. Aeolian granite below
69.5 m is less weathered, offering better stability. Based on the
results of exploration and testing, combined with the experience
of related local projects, the different mechanical and physical
parameters of each soil layer are depicted in Table 4. The geological
conditions within the pit area are average, with issues such as low
strength, significant variations in weathering, and multiple layers of
fractured rock.

4.1.2 Foundation pit excavation and support
In this shaft construction, a 1.2-m-thick diaphragm wall is

utilized for retaining structure, but along circumferential direction
the wall depths changes with detailed geological conditions, as
shown in the layout diagram of the diaphragm wall in Figure 7.
The entire diaphragm wall is divided into 30 sections along the
circumference. High-pressure jet grouting piles are constructed at
the joints of each segment for seepage prevention and reinforcement,
with each pile extending 15 m in depth. The shaft will be excavated
layer-wises from top to down, and the reinforced concrete shaftwalls
will be constructed for each newly excavated layer using the bottom-
up method. The thickness of the upper part of the lining wall is
1.2 m, which increases to 3 m after reaching the fractured rock layer
at a depth of 37.5 m. To ensure the stability and safety of the deep
excavation, rock bolts are installed within the fractured rock zones.
These bolts, made of HRB400 steel rebar with a diameter of 28mm,
are installed at a 15-degree angle to penetrate 6 m depth into the
rock, with 2 m spacing in vertical direction. The dimensions of the
shaft pit are detailed in Figure 8.

After constructing the diaphragm wall and high-pressure jet
grouting piles, excavation of the shaft foundation pit began on 1May
2023, and the base slab was completed on 24 September 2023, with
a total duration of about 147 days. The pit excavation of 75 m deep
was divided into 21 layers, with each layer around 3.0 m. Following
the excavation of each pit layer, the reinforcement concrete lining
was constructed. And the next pit layer excavation was proceeded
once the concrete strength (of the previous layer) had reached 80%
of the design value, continuing this cycle until reaching the base
slab. Specific pit excavation and lining construction parameters are
detailed in Table 5.
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TABLE 5 Construction parameters at different stages of deep foundation pit.

Stage Lining
Height/m

Lining
Thickness/m

Excavation
Depth/m

First Layer (Top ring Beam) 3 2.5 3.4

Second Layer 3 1.2 3.9

Third to 13th Layer 3 1.2 3

Fourteenth Layer 3 3 3.3

Fifteenth Layer 2.5 3 2.5

Sixteenth to 20th Layer 3 3 3

Twenty-first Layer 3 3
6.4

Twenty-second Layer (Base Slab) 5 5

FIGURE 9
Axonometric view of monitoring facilities.

4.1.3 Monitoring plan and data acquisition
To ensure the safety of the deep shaft foundation pit

construction, deformationmonitoring is conducted simultaneously.
Monitoring lines (L1-L3) are laid out at three different depths of the
diaphragm wall, as shown in Figures 9, 10. The full monitoring plan
is demonstrated in Figure 11 with details described as below.

4.1.3.1 Bracing structural deformation indicators
Three observation piers (TP1∼TP3) are set at the top of

diaphragm wall to measure the horizontal displacement (X11) and
the vertical displacement (X12) at the top of the retaining diaphragm
wall. Adjacent to each observation pier, a total of three inclinometer
casing (IN1∼IN3) is embedded vertically within the diaphragmwall

to monitor the lateral wall deflection (X13) during the excavation
process. IN1 to IN3 are installed at three different sections of the
diaphragm wall, ranging from shortest to longest. For measuring
surrounding ground deformation, three monitoring sections are
set around the perimeter of the foundation pit, with each section
comprising a radial measurement line. Each line has six settlement
observation points arranged concentrically from the center of the
pit outwards, monitoring the vertical ground displacement (X15).
The first observation point is located next to the P1 observation pier,
2 m away from the second point, with subsequent points spaced 8 m
apart, totaling 24 observation points (BM1∼BM18). Twomonitoring
holes, each 65 m deep (H1, H2), are set up to monitor the uplift
of the shaft pit base (X16). H1 is located near the shaft lining,
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FIGURE 10
Plan view of monitoring facilities.

while H2 is at the center of the shaft. Each hole is equipped with
ten magnetic ring-type stratification settlement markers at depths
of 10, 18, 26, 34, 40, 46, 52, 56, 60, and 64 m. These rings are
removed along with ongoing excavation progresses. Measurements
are taken twice at each excavation depth, with one just at completion
of layer excavation and the other later just before the subsequent
excavation begins.

4.1.3.2 Structural internal forces indicators
Five monitoring sections are set up on the horizontal plane

of the foundation pit, with each section having four embedment
depths and the base slab. Strain gauges, stress meters, and stress-
freemeters are installed on the reinforcement bars inside and outside
the diaphragm wall, and at the base slab to monitor the supporting
axial force (X21), column internal force (X26), anchor axial force
(X22), and the internal force of the retaining structure at different
depths (X25). Besides, soil and water pressures are measured at
designated locations. Four sets of gauges, with each set combining
one piezometer and one soil pressure gauge, are installed at four
different depths on the outer surface of the diaphragm wall. Two
piezometers are placed at the bottom and top of shaft base slab, and
two earth pressure gauges are placed at the interface of the shaft
base slab and the underlying rock soil to monitor the soil pressure
(X23) and pore water pressure (X24) borne by different embedment
sections of the diaphragm wall and the base slab.

4.1.3.3 Environmental safety indicators
Groundwater monitoring holes (BV1∼BV4) are arranged

outside the foundation pit at every 90° to monitor the changes
in groundwater level (X31) around the shaft. These holes are drilled
and installed outside the settlement observation points, 2.5 m away
from them. Additionally, within a 100-m range beyond the edge of
the foundation pit, monitoring is conducted for the surrounding
environment, including residential houses, roadbeds, pipelines,
and other protected facilities along the line. Deformation data
is collected for pipeline displacement (X32), adjacent roadbed
settlement (X34), adjacent building displacement (X33), and ground
surface cracks (X35).

The lateral wall displacements from different excavation stages
were collected and demonstrated in Figure 11. In Figure 11A, the
shortest segment of the diaphragm wall (IN1) exhibits a gradual
increase in lateral wall displacement during various excavation
stages. This increase predominantly occurs as the wall traverses
vertically through gravel clay and heavily weathered granite layers,
which, despite their differing mechanical properties, both possess
some degree of flexibility and compressibility, effectively dispersing
lateral pressure. However, during the baseplate phase, as the wall
transitions fromheavily weathered granite to aeolian granite, there is
a sudden significant increase in displacement.This surge is due to the
high elastic modulus and stiffness of aeolian granite, which causes
a drastic change in the properties of the soil layers, concentrating
stress in this region, coupled with the maximum vertical pressure
induced by increased excavation depth, collectively exacerbating the
lateral displacement of the wall at this stage.

In Figure 11B, the medium-length diaphragm wall (IN2) shows
a lateral wall deflection curve that transitions gradually from being
relatively flat to significantly increasing from the early excavation
stage to the baseplate phase. Initially, the displacement is minimal,
indicating that the wall is well-supported by the upper soil layers.
However, as the excavation depth increases, particularly at the onset
of the baseplate phase, there is a noticeable surge in the curve,
likely due to construction disturbances such as soil excavation and
heavy equipment operation, which dynamically impact the wall in
the absence of sufficient lower soil support. This change illustrates
that the lateral pressure on the wall increases with excavation
depth, directly affecting the stability of the wall due to construction
activities.

In Figure 11C, the lateral wall deflection of the longest segment
of the diaphragmwall demonstrates a trend of gradual increase with
excavation depth, with the most significant displacement occurring
during the baseplate phase. Notably, significant displacement
anomalies at a depth of 2–5 m are especially prominent, primarily
due to the installation of a construction pathway on the liningwall in
this region of the diaphragm wall. The establishment and use of the
construction pathway led to significant construction disturbances,
generating intense vibrations and dynamic loads directly near the
retaining structure.

This comprehensive analysis reveals that as excavation depth
increases, the displacement of the diaphragm walls gradually
increases, especially in areas where soil conditions change or
construction activities are concentrated.

4.2 Safety assessment results

4.2.1 Weights of indicators
Ten experts evaluated the primary indices of the deep

foundation pit construction safety dynamic assessment systemusing
the Delphi method. The indices were ranked in descending order of
importance as structural deformation indicators, structural internal
forces indicators, and environmental safety indicators. The relative
importance levels between adjacent indicators were set as r2 = 1.2
and r3 = 1.3. Subjective weights for the primary, secondary, and
tertiary indices were calculated accordingly, with tertiary indices
within the same category assigned equal weight proportions of 0.5.
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FIGURE 11
Lateral wall deflection at different excavation stages.

Onsite monitoring provided data for the assessment system,
which was standardized and used to calculate information
entropy and objective weights. Finally, combined weights were
determined by integrating subjective and objective weights, and
the comprehensive weights of tertiary indicators were calculated.
The results are summarized in Table 6.

4.2.2 Dynamic safety assessment
Grey clustering analysis is employed to evaluate the current

safety level of the foundation pit construction using real-time
monitoring data. An assessment matrix is established based on
the on-site monitoring data. By substituting the data of the third-
level indicators of the foundation pit into the whitening power
functions, the weight coefficient matrix is obtained. Ultimately, the
level to which the indicator belongs is determined based on the
principle of maximum membership degree, as shown in Appendix.
By determining the level through the membership degree, we can
clearly observe the varying safety conditions of each monitoring
indicator.

Three groups of representative monitoring data were selected
respectively, analyzed through the dynamic evaluation of deep
foundation pit construction safety, and finally selected the safety
data collected during the excavation of the eighth layer, the 15th
layer and the Twenty-second Layer. These layers correspond to
distinct geological formations and have unique characteristics and
risks associated with their excavation. The eighth layer is within the
heavily weathered granite, the 15th layer is within the rock mass
fracture zone, and the base layer reaches down to the aeolian granite.

The excavation of the eighth layer occurs early in the project
timeline, a period when the overall pit stability is comparatively
high. This layer consists of heavily weathered granite, which is
relatively unstable and prone to crumbling. The weathered nature
of the granite increases the risk of sudden soil shifts and collapses.
The safety level of foundation pit excavated on the eighth layer is
obtained by summarizing the data, as shown in Figure 12. During
the excavation of this layer, monitoring focused on structural
deformation indicators due to the unstable nature of the soil.

The safety indices during this phase showed elevated levels of
deformation, indicating stress within the excavation walls.

The eighth layer’s elevated deformation risks are directly linked
to the geological properties of heavily weathered granite.This layer’s
low stiffness and high compressibility, combined with the transition
from initial diaphragm wall support to permanent concrete lining,
created stress concentrations. Monitoring data showed cumulative
horizontal displacement of 18 mm and lateral wall deflection of
22 mm. These trends align with the layer’s interspersed weathered
rock fragments and clay matrix, which reduced load-bearing
capacity and amplified deformation under excavation unloading.

The high membership degree value of the top horizontal
displacement of the retaining structure (X11) in the safety level
U1 indicates that the stability of this indicator is currently good.
The membership degree of the deep horizontal displacement (X13)
shows that it ismostly in a safe state but with a certainwarning trend,
suggesting that we need to pay close attention and adjust the support
structure in a timelymanner.Themembership degree analysis of the
internal force of the retainingwall (X25) shows that it remainswithin
the safe range in the vast majority of cases, but the membership
degree of the warning level should not be ignored, implying that
additional monitoring and preventive measures may be needed
during the construction process.The highmembership degree value
of the neighboring building displacement (X33) in U1 provides
us with confidence, indicating that the impact of foundation pit
construction on the surrounding environment has been effectively
controlled.

The 15th layer’s fractured rock zone posed significant challenges
due to uneven stress distribution and groundwater infiltration.
Monitoring data showed a sudden increase in lateral wall deflection,
coinciding with the transition to 3 m-thick lining walls. This
structural modification altered load transfer mechanisms, reflected
in internal force indicators: supporting axial force increased by 25%
compared to the previous layer, while earth pressure reached 72%
of design capacity. The fractured zone’s fragmented rock matrix
amplified stress concentrations.
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TABLE 6 Comprehensive weight calculation results of indicators at all levels primary index.

Primary index (local weights) Secondary index (local weights) Three-level index (comprehensive weight)

Structural deformation (0.438)

X11 (0.201)
X111 (0.054)

X112 (0.044)

X12 (0.209)
X121 (0.028)

X122 (0.020)

X13 (0.256)
X131 (0.032)

X132 (0.028)

X14 (0.108)
X141 (0.026)

X142 (0.025)

X15 (0.125)
X151 (0.026)

X152 (0.024)

X16 (0.131)
X161 (0.023)

X162 (0.021)

Structural internal forces (0.342)

X21 (0.160) X211 (0.032)

X22 (0.147) X221 (0.029)

X23 (0.226) X231 (0.044)

X24 (0.164) X241 (0.026)

X25 (0.165) X251 (0.021)

X26 (0.109) X261 (0.019)

Environmental safety (0.22)

X31 (0.262)
X311 (0.023)

X312 (0.021)

X32 (0.226)
X321 (0.011)

X322 (0.010)

X33 (0.229)
X331 (0.016)

X332 (0.013)

X34 (0.163)
X341 (0.008)

X342 (0.006)

X35 (0.140)
X351 (0.009)

X352 (0.007)

The 15th Layer Excavation represents a pivotal stage in the
construction process, not only because it lies within a fracture zone
but also due to changes in the lining wall thickness and construction
methodologies. The rock mass fracture zone is characterized by
fragmented rock layers with potential voids and uneven stress
distribution. This can lead to unpredictable movements and a

higher risk of localized failures. The safety level of foundation pit
excavated on the 15th layer is obtained by summarizing the data,
as shown in Figure 13.

The 20-s layer is also the excavation of the base slab signifies
the conclusion of the pit’s excavation stages.This final layer provides
a comprehensive view of the impacts of construction disturbances
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FIGURE 12
Safety dynamic assessment of the eighth layer excavation.

FIGURE 13
Safety dynamic assessment of the 15th layer excavation.

FIGURE 14
Safety dynamic assessment of the base slab excavation.

on the pit’s stability throughout the project. By this stage, the data
collected offers a complete picture of how well the excavation and
support strategies have performed against initial projections and
across varying geological conditions. Monitoring at this depth is
crucial for ensuring that the base of the pit remains stable and that
any signs of undue stress or deformation can be promptly addressed.
Finally, the safety level when the excavation of the foundation pit is
completed is shown in Figure 14.

4.3 Limitations of this study

In-depth exploration of the effectiveness and application
value of the proposed dynamic assessment method for deep

foundation pit construction safety, based on gray clustering
and moment estimation, leads us to discuss some limitations
encountered during the research process. These limitations
may include data availability, potential biases in subjective
assessments, and the need for further validation in diverse
scenarios. Addressing these challenges will be essential for
enhancing the robustness and applicability of the proposed
methodology.

(1) The safety risk levels established by this research model
are based on current regulations used for evaluating deep
foundation pit construction safety risks. These regulations
often incorporate significant safety margins to ensure
absolute project safety, indicating that the assessment
method still has room for refinement and enhancement.
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Further calibration of the model could provide more precise
risk assessments tailored to specific project conditions.

(2) In this study, the construction of the whitening weight
function in the application of gray clustering analysis primarily
relies on data generated from numerical simulations rather
than directly sourced from actual engineering monitoring
databases. While numerical simulations provide a relatively
controlled and systematic environment for testing and
validating the assessment method, they may not fully capture
the complexities and uncertainties inherent in real-world
construction processes. This limitation suggests the need
for further integration of field data to enhance the model’s
applicability and accuracy.

(3) A notable limitation of this study is the absence of dynamic
threshold optimization for monitoring indicators, which
could be addressed by integrating data-driven frameworks
such as the multi-objective expected value optimization
(MEVO) method (Wang et al., 2024). This approach
standardizes monitoring data and refines early-warning
thresholds through grey relational analysis and Monte
Carlo simulations, reducing false alarms and improving risk
classification accuracy. For instance, the vertical displacement
rate of the retaining structure (X112) could benefit from
threshold optimization to better reflect its safety boundaries.
Future research should explore this integration to enhance the
adaptability of the assessmentmodel under complex geological
conditions.

5 Conclusion

This study develops a dynamic safety assessment model for
deep foundation pit construction, utilizing a combination of gray
clustering and moment estimation weighting. Validation through
engineering case studies indicates the model’s strong applicability
and accuracy. Key findings include.

(1) A comprehensive three-level safety assessment index system
comprising 21 indicators is established, incorporating
both subjective and objective weight calculations. The
gray clustering algorithm categorizes these indicators into
structural, mechanical, and environmental safety aspects;

(2) Themodel’s reliability is corroborated by comparisons between
numerical simulations and on-site monitoring data from
a water diversion well project in Shenzhen, demonstrating
consistent trends;

(3) The resilience assessment reveals that the foundation pit is
currently at level U1, indicating a safe condition that aligns
with actual project observations.

This model provides a scientific basis for optimizing
construction strategies and formulating effective risk control
measures, highlighting its significant contribution to engineering
practices.

The study has confirmed the dynamic assessment method’s
efficacy for deep foundation pit construction safety and pinpointed
areas for future enhancement. Future work should refine

safety risk assessment criteria to account for diverse geological
and construction factors, promoting more efficient resource
use. Additionally, it is essential to gather more real-world
engineering data to enhance the accuracy and applicability of the
assessment models.
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