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Landslide deformation prediction is a crucial task in geotechnical engineering
and disaster prevention. Developing an accurate and reliable landslide
displacement prediction model is vital for effective landslide warning systems.
This paper proposes a TCN-Multihead-Attention prediction model for landslide
deformation based on temporal convolutional networks (TCNs). We collected
8 years of monitoring data from the Huangniba Dengkan landslide in the Three
Gorges Reservoir area, including surface deformation (horizontal displacement
and elevation), rainfall, and reservoir levels. A comprehensive analysis was
conducted to assess the effects of rainfall, reservoir levels, and elevation
on landslide horizontal displacement. Utilizing the multi-input and single-
output characteristics of the long-period time series dataset, we developed
the TCN-Multihead-Attention predictionmodel of landslide deformation. Model
evaluation demonstrated that the coefficient of determination (R2) for the test
set reached 0.995, with MAPE and RMSE at only 0.482 and 7.180, respectively,
indicating high accuracy. Additionally, we developed other prediction models
based on single TCN, Attention-based Transformer, RNN-based LSTM, and
the hybrid CNN-BiLSTM for comparison. Compared with existing models, the
TCN-Multihead-Attention model integrates dilated causal convolutions from
TCN with multi-head attention to effectively fuse nonlinear interactions of
multi-source environmental factors, capture long-term evolutionary trends, and
accurately identify local mutation patterns, demonstrating superior reliability for
landslide deformation forecasting in reservoir regions.

KEYWORDS

landslide deformation prediction, TCN-Multihead-Attention model, deep learning, the
three gorges reservoir area, environmental factors

1 Introduction

Landslides, collapses and debris flows are the main exogenous geological phenomena
in the Three Gorges Reservoir area and the main types of geological disasters. In the Three
Gorges Reservoir, under the combined effects of rainfall and reservoir level, the cumulative
displacement of landslides usually shows a “step-like” feature, accelerating in the rainy
season and remaining almost stable in the dry season (Zhou et al., 2016). Therefore, how
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to predict the changing trend of landslide displacement has become
a focus of scholars at this stage. For landslide monitoring and early
warning work, studying a stable and reliable early identification risk
warning system is a reasonable way to reduce landslide risks.

For landslide monitoring and early warning, studying a stable
and reliable early risk identification and warning system is a
reasonableway to reduce landslide risks. Since Saito (1965) proposed
the empirical formula for landslide prediction, many landslide
predictionmodels have been developed. Classic landslide prediction
models can be divided into two categories: physical models and
data-driven models (Huang et al., 2017). Physical models mainly
use physical parameters from general creep theory, large-scale
indoor simulation experiments, and field monitoring to predict
landslide events (Xu et al., 2009; Mufundirwa et al., 2010). These
models can provide clear physical explanations of landslides, but
implementation of sufficiently accurate models can be complex,
time-consuming, and expensive (Thiebers, 2014). Compared with
physical models, data-driven models are usually more popular
because of their advantages of simple process, accurate prediction,
and lower cost (Corominas et al., 2005).

In recent years, among data-driven models, machine learning
and artificial intelligence algorithms have been widely used
in landslide displacement prediction and have achieved good
performance (Kayacan et al., 2010; Reichenbach et al., 2018;
Du et al., 2013) decomposed cumulative displacement into trend
components and periodic components, who used a backpropagation
neural network (BPNN) to predict periodic displacement and
conducted case studies on two typical colluvial landslides: the
Baishui River landslide and the Bazimen landslide in the Three
Gorges Reservoir area. Lian et al. (2015) proposed a multiple
ANN switching prediction method for landslide displacement
prediction to reduce the risk associated with the types of
influencing factors and the selection of artificial neural networks
(ANNs). This method was applied to three typical landslides in
the Three Gorges Reservoir area, demonstrating better model
generalization capability compared to individual ANN predictors.
Zhou et al. (2016) and Miao et al. (2018) developed landslide
displacement prediction models based on time series analysis
and support vector machine (SVM) models, achieving high-
accuracy results. To overcome some limitations of classical machine
learning methods, Li et al. (2018) proposed a novel data-
driven framework incorporating an ensemble-based ELM and
Copula model. The effectiveness and practicality of this model
were validated through back-analysis of landslide displacement
predictions in the Three Gorges Reservoir area. Recent studies
have highlighted the importance of multi-physics coupling in
geohazard prediction. Ye et al. (2024) investigates the spatiotemporal
evolution of the Outang landslide in China’sThree Gorges Reservoir
area through a multidisciplinary approach, introducing weighted
displacement parameters to delineate subzone-specific kinematics,
and reveals a critical shift from reservoir water-level dominance
to rainfall-triggered deformation under climate extremes, while
proposing a transition toward compound failure modes, offering
insights for dynamic risk management of reservoir landslides
through integrated multi-source monitoring data analysis. Xie
and Huang (2024) proposes a hybrid SSA-VMD-LSTM model
for landslide displacement prediction, which optimizes variational
mode decomposition via sparrow search algorithm to disentangle

trend-periodic-random components, integrates rainfall-reservoir
hydrological drivers through LSTM-based subitem fitting, and
demonstrates superior accuracy over conventional methods in
Shuping landslide case analysis, offering an interpretable machine
learning framework for dynamic early warning of reservoir bank
landslides.

Most of the aforementioned prediction models are static
models, treating landslide deformation prediction as a static
regression problem. However, landslide evolution is a complex
nonlinear dynamic process where the influencing factors and
deformation conditions at one moment affect the deformation
and stability conditions at the next moment (Qin et al., 2002;
Reichenbach et al., 2018). Therefore, establishing dynamic models
is more suitable for landslide deformation prediction. Currently,
dynamic modeling research primarily focuses on recurrent neural
networks (RNNs), which can remember historical information
and apply it to the current output, thereby achieving state
feedback within the network (Medsker and Jain, 2001). Since
traditional RNNs cannot capture long-term dependencies in
input sequences, an improved version, the long short-term
memory (LSTM) neural network, was developed (Hochreite and
Schmidhuber, 1997). LSTM is better suited for handling and
predicting important events with long intervals in time series.
The LSTM model was earlier applied to predict displacement in
the Baijiabao landslide in the Three Gorges Reservoir area and
achieved better performance than BPNN and SVMmodels (Xu and
Niu, 2018). Yang et al. (2019) employed an LSTMdynamicmodel for
time series analysis to predict landslide displacement, decomposing
cumulative displacement into trend and periodic components
and analyzing the interplay between landslide deformation,
rainfall, and water level, achieving more reliable predictions
than SVM.

In summary, the data-driven landslide prediction model has
evolved from static to dynamic modeling, through RNN, LSTM,
and various combinedmodels, with a focus onmodel establishment,
optimization, and analysis. While traditional methods such as
physical models, ARIMA, and SVM have been widely used, they
face significant limitations in capturing complex spatiotemporal
couplings and nonlinear interactions. For instance, physical models
often rely on simplified assumptions and struggle with multi-scale
dependencies, while statistical models like ARIMA and SVM are
constrained by their inability to handle long-term dependencies
and dynamic feature weighting. In contrast, AI algorithms,
particularly those combining Temporal Convolutional Networks
(TCNs) with Multihead-Attention, excel in addressing these
challenges. TCNs leverage dilated convolutions to effectively model
long-term dependencies, while attention mechanisms dynamically
adjust feature importance, enabling the model to focus on
critical spatiotemporal interactions such as rainfall infiltration
softening sliding zones and reservoir drawdown-induced stress
redistribution. This paper focuses on long time series data to
thoroughly analyze the impact of factors like rainfall and reservoir
water levels on landslide deformation. By selecting an appropriate
deep learning model tailored to the dataset’s characteristics,
this study aims to enhance the predictive accuracy of landslide
deformation models, providing effective means and methods for
predicting reservoir landslide deformation in the Three Gorges
Reservoir area.

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2025.1587623
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Chen et al. 10.3389/feart.2025.1587623

2 Characteristics of the Huangniba
Dengkan landslide

2.1 Landslide overview

The Huangniba Dengkan landslide is situated on the left bank
of the Zhu River, a tributary of the Yangtze River, in the Lianhua
community, Group 8, Renhe Street, Yunyang County. Its geographic
coordinates are approximately longitude 108°37′52″ and latitude
30°57′55″, with a straight-line distance of about 7 km fromYunyang
County. The landslide area belongs to the erosion and denudation
low hills and hilly terrain, with an overall east-high and west-low
topography. The front edge is bordered by the Zhuxi River, while
the rear portion consists of steep slopes, resulting in significant
terrain undulation. The landslide is situated on a slope, exhibiting
a longitudinal platform-slope terrain. The terrain slope angle in the
rear platform gentle slope area ranges from 2° to 10°, while in the
front slope area, it averages 16–23°, with an average of 18°.The slope
mainly consists of cultivated land, forest land, and wasteland. The
lowest point in the area is approximately 155 m at the bottom of the
western slope, while the highest point is around 290 m at the top of
the eastern slope, with an elevation difference of 135 m.

As shown in Figure 1, the landslide area is located on the
northern wing of the Huangboxi syncline, and no fault or shear zone
pass through the area. According to field investigations, the dip of the
rock strata in the area is gentle, ranging from 170° to 190° with a dip
angle of 8–18°. Two sets of fractures are mainly developed:

(1) LX1, trending at 236° with a dip angle of 76°, has a fracture
opening of 0.5∼2 mm, unfilled, with a smooth and straight
fracture surface, extending for 1∼3 m with a spacing of
0.3∼1.0 m.

(2) LX2, trending at 321° with a dip angle of 71°, has a fracture
opening of 0.3–0.5 mm, a smooth and straight fracture surface,
extending for 1∼4 m with a spacing of 0.3∼0.8 m.

The landslide has a length of 270 m, a width of 345 m, and a slide
thickness of 12 m. It covers an area of approximately 9.32 × 104 m2

with a volume of about 1.118 × 106 m3. The main sliding direction
is 250°, and the landslide has a “fan-shaped” plan, classifying it as a
large mid-layer soil landslide. Its orthophoto is shown in Figure 2.

2.2 Sliding mode and its characteristics

As shown in Figure 3, the drilling revealed that the sliding zone
is 0.2–0.4 m thick and developed near the rock-soil interface. The
material composition is mostly silty clay intercalated with sandstone
breccia and rock debris. The Huangniba Dengkan landslide has the
characteristics of graded sliding. It is mainly Q4

col+dl containing
crushed stone silty clay and broken stone soil.The soil body is hollow,
with a large porosity and good permeability, which is conducive to
rainfall infiltration and generates seepage pressure. The slope area
on the east side of the landslide is large, the catchment area is large,
and there are many and wide weirs and ponds in the landslide area,
which become a good water storage space. The area near the rock-
soil interface in the landslide area contains crushed stone silty clay
and crushed stone soil, and the shear strength index is low.Therefore,
the short-term rise of the groundwater level in the landslide area

may generate seepage pressure, and the low shear strength of the
sliding zone soil causes creep-crack sliding deformation of the soil
body along the slope.

3 Monitoring plan design

Based on the analysis of the deformation characteristics and
formation mechanisms of the Huangniba Dengkan landslide,
combined with field surveys, the primary components of
professional monitoring and early warning systems include surface
deformation monitoring, rainfall monitoring, and reservoir level
monitoring, as outlined in Table 1.

The specific layout plan for monitoring is shown in Figure 4.

(1) GPS monitoring points arrangement plan: two monitoring
profiles, 1–1′ and 2–2′, are established on the landslide. On
profile 1–1′, two GPS are set up at elevations of 237 m and
200 m, denoted as GPS1 and GPS2, respectively. On profile
2–2′, twoGPS are established at elevations of 241 m and 200 m,
denoted as GPS3 and GPS4, respectively. One GPS benchmark
point is placed at the stable bedrock outside the landslide,
denoted as GJ01 in the lower left corner of the Figure 4.
Therefore, five GPS monitoring points are arranged (including
1 benchmark point).

(2) Rainfall monitoring point arrangement plan: a rainfall
monitoring point, denoted as JY01, is established near the
middle of the landslide.

(3) Reservoir level acquisition: reservoir level data is obtained
from the official website of the Yangtze River Maritime Safety
Administration, with a frequency of once per day.

4 Monitoring data analysis

4.1 Data display

This paper collectedmonitoring data of theHuangnibaDengkan
Landslide in the Three Gorges Reservoir area over the past 8 years
(June 2016 to June 2024), mainly including various parameters
such as rainfall, reservoir level, and surface deformation (horizontal
displacement and elevation). The monitoring dataset is constructed
by selecting the horizontal displacement and elevation of GPS1
and GPS4 with significant deformation, daily cumulative rainfall,
and daily reservoir level. The monitoring curves are shown in
Figures 5, 6, where GPS_Displacement XY represents horizontal
displacement, GPS_Displacement Z represents elevation.

4.2 Data analysis

Figure 7 shows the steps involved in data processing and
analysis. Firstly, a multi-parameter time series dataset is constructed
by acquiring multi-source data. Then, exploratory data analysis
(EDA) is performed to understand the data characteristics, and
feature engineering is guided by correlation calculation to obtain the
effects of rainfall and reservoir level on the horizontal displacement
of the landslide.
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FIGURE 1
Geological location and structural outline of the Huangniba Dengkan landslide.

FIGURE 2
Orthophoto of the Huangniba Dengkan landslide.

Scatter plots is a data visualization tool used to show the
relationship between different variables in a data set. Figure 8
provides a more comprehensive understanding of the structure and
characteristics of the data, thereby providing support for subsequent
correlation analysis and model building.

According to the scatter plots in Figure 8, the Correlation
Heatmap is obtained in Figure 9. This Figure 9 illustrates

the relationships between various factors and the horizontal
displacements of GPS1 and GPS4. GPS1_XY and GPS4_XY
represent the horizontal displacements of GPS1 and GPS4,
respectively. GPS1_Z and GPS4_Z denote the elevations of GPS1
and GPS4. Coupling_2_Lag is the coupling effect of rainfall and
reservoir level on horizontal displacement (the displacement
variation after 2 days), and correspondingly, Coupling_5_Lag
is the coupling effect after 5 days. The heatmap shows strong
correlation between horizontal displacement and elevation, and
weaker correlation with rainfall and reservoir level. Coupling_
2_Lag and Coupling_5_Lag have a certain correlation with
horizontal displacement, which may be due to the lag effect
of the coupling effect of rainfall and water level on horizontal
displacement changes.

From the correlation data of variables in Figure 9, it is
evident that the deformation of the landslide is closely related
to changes in rainfall and reservoir levels. These fluctuations
are the primary factors contributing to reservoir landslide
deformation.Therefore, in designing a predictionmodel of landslide
deformation, it is crucial to focus on analyzing and predicting
the impact of rainfall and reservoir level changes on landslide
deformation.

5 Prediction model of landslides
deformation

5.1 Structure of the prediction model

Temporal convolutional networks (TCNs) are a deep learning
model specifically designed for processing time series data. Unlike
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FIGURE 3
Boreholes reveal the weak interlayers and the soil-rock boundary.

TABLE 1 Landslide monitoring plan.

No. Monitoring methods Effect

1 Surface deformation Obtain the three-dimensional surface displacement changes on the landslide surface to receive the deformation dynamics of the
landslide

2 Rainfall Obtain rainfall data for landslide deformation analysis and early warning

3 Reservoir level Obtain reservoir level changes at the landslide front

FIGURE 4
Schematic diagram of monitoring points layout for Huangniba Dengkan landslide.
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FIGURE 5
Monitoring curve diagram of horizontal displacement and elevation of GPS1 and GPS4.

FIGURE 6
Monitoring curve diagram of reservoir level and rainfall of GPS1 and GPS4.

FIGURE 7
The flow chart of monitoring data processing and analysis.

traditional recurrent neural networks (RNNs), TCNs capture long-
term and short-term dependencies in time series through one-
dimensional convolution operations, which has the advantages of
strong parallel computing capabilities and high training efficiency
(Razavian and Sontag, 2015). At the same time, since the self-
attention mechanism (Attention) is different from RNN and
CNN in the way of processing sequence data, the self-attention
mechanism captures global context information by calculating
the correlation between different positions. Therefore, the
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FIGURE 8
Scatter plots of the relationship between horizontal displacement and multiple parameters (rainfall and reservoir level).

self-attention mechanism has the advantages of capturing long-
distance dependencies, parallel computing, flexible adaptation, and
interpretability (Povey et al., 2018).

The monitoring data of landslide deformation constitutes a
typical time series dataset, characterized by continuous changes
throughout the long-termmonitoring process.This section employs
a temporal convolutional network (TCN) as the primary framework,
enhanced with a multi-head self-attention mechanism layer, to
construct the TCN-Multihead-Attention model for predicting
synthetic horizontal displacement. The model inputs consist of a
multi-parameter time series dataset. Based on the monitoring data
analysis in Figure 4, the horizontal displacement values of GPS1 and
GPS4 points are designated as input 1, while elevation, reservoir
level, and rainfall are designated as inputs 2, 3, and 4, respectively.
The output is the predicted horizontal displacement. The structural
diagram of the model is depicted in Figure 10.

The TCN-Multihead-Attention model fully combines the
advantages of TCN and self-attention mechanisms through a
multi-level structure. The TCN layer is responsible for extracting
short-term and long-term dependency features in the time series,
the ReLU layer introduces nonlinearity, the Dropout layer prevents
overfitting, the self-attention layer dynamically allocates feature
weights, and the fully connected layer integrates the features of
multi-head attention and finally outputs the prediction results. This
design not only improves themodel’s ability to process complex time
series data, but also enhances its ability to capture long-distance
dependencies. As shown in Figure 10, The structure of this model
can be divided into the following main parts: inputs layer, temporal

convolutional networks (TCNs), attention mechanism layer, dense
layer and output layer.

(1) Inputs Layer: it consists of four input nodes, which represent
the inputs of different characteristic variables (horizontal
displacement, elevation, rainfall and reservoir level) of
landslide time series data. The inputs are four different time
series signals (Equation 1):

X = {x1,x2,x3,x4} (1)

where each x1 ∈ ℝT×D, T is the input length, and D is the number of
features per time step.

(2) TCNs Layer: the TCN model mainly consists of dilated
convolution layers and residual blocks. The convolutional
layers are used to extract local features in the sequence, while
the residual blocks help capture long-term dependencies in the
sequence. The dilated convolution expands the receptive field
by inserting zero elements between the kernel elements, its
mathematical expression is Equation 2:

y[t] =
K−1

∑
k=0

w[k] · x[t− d · k] (2)

where y[t] is the output of the convolution operation, w[k] is the
weight of the convolution kernel, x[t−d⋅k] is the element of the input
sequence, and d is the dilation rate. A residual block consists of
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FIGURE 9
Correlation Heatmap of Variables with horizontal displacement of GPS1 and GPS4.

two convolutional layers and a residual connection. The calculation
process of the residual block is as follows: the input x passes through
a dilated convolutional layer and the output y is obtained. Add y
to the input x to get the output of the residual block. By stacking
multiple residual blocks, the Rbolckoutput is passed to the next layer
(Equation 3):

Rblockoutput = x+Conv1D(x) (3)

The structure of the TCNs layer comprises several parallel
inception modules, each consisting of the following sub-layers, is
shown in Table 2.

(3) Multi-head self-attention layer: it includes a Multi-head
Attention Layer, which captures dependencies between
different time steps in the sequence through a self-attention
mechanism, which can capture different levels of abstraction of
the input and improve the expressiveness of the model. Here’s
a concise breakdown (Equations 4, 5):

HAttention =MultiHeadAttention(HTCN) (4)

headi(HTCN) = so ftmax(
QiK

T
i

√dk
)Vi (5)

where Qi, K i, V i are the query, key, and value matrices for the
i-th head.

(4) Dense Layer: the features processed by the attention
mechanism are further transformed and extracted by a dense
layer.The attention output is then passed through a dense layer
to produce the final output (Equation 6):

Dense_Layer = Dense(Attention(HTCN)) (6)

(5) Output layer: it from these parallel inception modules is
merged through a 1x1 convolutional layer to form the
final feature representation, the final output is a time series
prediction, to give the prediction result of the horizontal
displacement.

5.2 Model parameter settings

The core and training parameters of the TCN-Multihead-
Attention model are configured before introducing the training set
for model training. The core parameters include input dimension
(input_dim), output dimension (output_dim), input sequence
length (input_length), and dropout rate (dropout). The training
parameters encompass the number of iterations (epochs), learning
rate (learning_rate), batch size (batch_size), and test set ratio
(test_split). The values for these core parameters are presented
in Table 3.

In the core parameter settings, given the four input
parameters—horizontal displacement, elevation, rainfall, and
water level—the input dimension (input_dim) is set to 4.
The output dimension (output_dim) is set to 1, representing
the predicted value of the horizontal displacement. The input
sequence length (input_length) is set to 8, based on the dataset
size (approximately 3,000 groups) and the need to balance
computational efficiency with capturing temporal dependencies.
This choice was validated through systematic experimentation
with varying window sizes, ensuring optimal prediction accuracy
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FIGURE 10
Structural diagram of the TCN-Multihead-Attention model.

TABLE 2 Sub-layers of the TCNs.

No. Sub-layers Function

1 Inception layer Captures features at different scales through parallel convolution operations

2 Weight normalization Normalizes the weights of the convolution layers to speed up model convergence

3 ReLU Activation function introduces non-linearity into the model

4 Dropout Obtain reservoir level changes at the landslide front

5 Causal convolutional layer Uses dilated convolutions to capture long-term dependencies while preserving the temporal order

while avoiding overfitting or excessive computational complexity.
The dropout rate, which employs regularization to discard
neural network units based on a set probability, is set to
0.1 to ensure model generalization and prevent overfitting.
Early stopping is utilized during training to further mitigate
overfitting.

For the training parameters, the optimal configuration is
determined through multiple experiments and fine-tuning,

considering themodel structure and training set characteristics.The
number of iterations (epochs) is set to 35–50 to provide sufficient
training time for themodel.TheAdamoptimizer (AdaptiveMoment
Estimation) is used, with a learning rate set to 0.001. The batch size
(batch_size) is set to 32, balancingmemory usage and computational
efficiency while enhancing the model’s generalization ability. The
test set ratio (test_split) is set to 0.2, providing a sufficiently large
independent sample for evaluation, avoiding overfitting, and aligns

Frontiers in Earth Science 09 frontiersin.org

https://doi.org/10.3389/feart.2025.1587623
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Chen et al. 10.3389/feart.2025.1587623

TABLE 3 Model parameter setting.

Model parameter setting Name Value

Core parameters

Input_dim 4

Output_dim 1

Input_length 8

Dropout 0.1

Training parameters

Epochs 35–50

Learning rate 0.001

Batch_size 32

Dataset format (2,948, 8, 4)

Test_split 0.2

with time series data characteristics by evaluating on future data for
temporal generalization, ensuring a reasonable division of training
and test data for effective model performance evaluation. The full-
link structural diagram of the TCN-Multihead-Attention model is
depicted in Figure 11.

5.3 Model performance

Based on the established model and its parameter settings,
the segmented training set is used for model training to
learn the patterns and features in the data, enabling more
accurate predictions. Figure 12 illustrates the predicted versus
actual landslide horizontal composite displacement at GPS1
and GPS4, where the red curve represents the monitoring
data (actual horizontal displacement) and the blue curve
represents the model’s predictions (predicted horizontal
displacement).

The loss function curve is a crucial tool in deep learning,
primarily used to illustrate how the model’s loss changes over time,
typically with the number of training iterations or epochs (Neil
et al., 2016). Figure 13 displays the loss function curves for the
GPS1 and GPS4 points during model training, where the loss value
curves for both the training set and validation set continuously
decrease and tend to stabilize. This trend indicates that the model
gradually approaches the optimal solution during training and
incrementally identifies the optimal parameters. Additionally, the
concurrent decrease and stabilization of the training and validation
loss values suggest that the model is performing well, without signs
of underfitting or overfitting, thereby demonstrating convergence
during the training process.

Then, the model is evaluated, and the error is calculated
on the validation set. Common metrics include mean absolute
percentage error (MAPE), mean absolute error (MAE), root mean
square error (RMSE), and the coefficient of determination (R2)
to measure goodness of fit. The R2value closer to 1 indicates
a more accurate model. MAPE, RMSE, and MAE are typical

indicators of regression models, used to show the extent of errors
in model predictions; thus, smaller values indicate better model
performance.

Table 4 shows that the R2 coefficient of determination for
this predictive model is 0.995, which is close to the ideal value.
The MAPE, RMSE, and MAE values are 0.4819, 7.1801, and
7.0779, respectively, indicating that the predictive model has a high
goodness of fit and small errors. This demonstrates that the model
accurately explains the dynamic changes in long-term time series
data. The predicted values from this model closely approximate the
actual observations, exhibiting good accuracy.

6 Discussion

6.1 Model performance comparison

Deep learning has significantly advanced time series forecasting
by capturing complex temporal dependencies and patterns.
Prominent models in this domain include Recurrent Neural
Networks (RNNs) such as LSTM and GRU, Convolutional Neural
Networks (CNNs), autoregressive models like the Transformer,
hybrid models combining CNN-LSTM and attention mechanisms,
and Temporal Convolutional Networks (TCNs).

In this section, several deep learning models were developed
and trained using the same dataset, including RNN-based
LSTM, Temporal Convolutional Network (TCN), Attention-based
Transformer, and a hybridmodel CNN-BiLSTM.Thesemodels were
compared with the TCN-Multihead-Attention model described in
Chapter 4. Figure 14 shows the prediction curves of the test sets for
GPS1 and GPS4 obtained from these models.

Evaluate the performance of the aforementioned models
by calculating indicators such as Goodness of Fit(R2), mean
absolute percentage error (MAPE), root mean square error
(RMSE), mean absolute error (MAE), mean squared log error
(MSLE), symmetric mean absolute percentage error (SMAPE), and
maximum error (Max Error). Table 5 presents these evaluation
indicators, while Figure 15 uses a radar chart to visually display their
predictive performance (all indicators are normalized for intuitive
representation).

The evaluation indicators displayed in the radar chart in
Figure 15 are all reverse indicators reflecting the errors of the
prediction models, while the right-hand figure shows the R2

indicators for each prediction model. Figure 15 demonstrates that
the TCN-Multihead-Attention model established in this paper has
the smallest prediction error and the closest fit to 1, indicating
that the correlation between the model’s predicted values and the
actual values is the strongest. This proves that the model based
on TCN and Multihead-Attention effectively captures the long-
range dependencies and critical time points of multiple inputs and
single outputs, making it highly suitable for predicting landslide
displacement influenced by rainfall and reservoir level. The main
reasons for this are as follows:

(1) Complementary Strengths: TCNs provide a strong foundation
for capturing temporal patterns and long-range dependencies,
while attention mechanisms enhance the model’s ability to
focus on the most important inputs dynamically.
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FIGURE 11
Full-link structure diagram of the TCN-Multihead-Attention model.

FIGURE 12
Horizontal displacement prediction curves of GPS1 and GPS4.

FIGURE 13
Loss function curve of GPS1 and GPS4.
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TABLE 4 Performance indicators of the
TCN-Multihead-Attention model.

Indicators GPS1 GPS4

Residual sum of squares (R2) 0.9950 0.9956

Mean absolute percentage error (MAPE) 0.4819 0.4091

Root mean square error (RMSE) 7.1801 6.1219

Mean absolute error (MAE) 7.0779 5.8246

(2) Handling Non-Stationarity: Landslide displacement data
influenced by rainfall and reservoir levels can be non-
stationary. The TCN can model the underlying temporal
dependencies, and the attention mechanism can adaptively
weigh the influence of different inputs, making the combined
approach robust to such non-stationarities.

(3) Efficiency andPerformance: TCNs’ ability to process sequences
in parallel and the attention mechanism’s selective focus result
in a model that is both efficient to train and highly performant
in making accurate predictions.

6.2 The coupling effect of rainfall and
reservoir water

Rainfall and reservoir level fluctuations are two primary factors
contributing to reservoir landslides. In the Three Gorges Reservoir
area, significant reservoir water level fluctuations often coincidewith
periods of abundant rainfall, making it challenging to distinguish
which factor predominantly influences landslide deformation. The
interaction between rainfall and reservoir level fluctuations creates
complex triggering mechanisms for landslide deformation in the
Three Gorges Reservoir area. Our multi-parameter correlation
analysis (Section 4.2; Figure 9) aligns with previous studies (Ling
andRui-Qing, 2011; Zhao et al., 2017) while providing some insights
into factor coupling and hysteresis effects:

(1) Factor Decoupling Challenge: The low individual correlations
(0.01–0.1) confirm that neither rainfall nor reservoir
level alone sufficiently explains deformation mechanisms.
This echoes Ling andRui-Qing, 2011 finding that displacement
velocity depends on the synchronized intensity of rainfall
and drawdown rates. Our TCN-Multihead-Attention model
addresses this through dynamic weight allocation–its attention
layers automatically amplify critical factor combinations (e.g.,
high rainfall + rapid drawdown) while suppressing noise from
isolated events.

(2) Coupled Hydro-Mechanical Effects: The moderate coupled
correlation (0.1–0.2) reflects the synergistic process
described by Zhao et al. (2017): rainfall-induced pore pressure
reduces shear strength, while reservoir fluctuations generate
hydraulic gradients. The model’s dilated TCN convolutions
capture these interactions across temporal scales – shallow
layers detect immediate infiltration responses, while deeper
layers model slow pore pressure propagation through
slip zones.

(3) Hysteresis Dynamics: The 2–5 days lagged correlations
(0.4–0.44) reveal two-phase deformation controls: Short-
term (2-day): Matches surface runoff saturation and initial
groundwater recharge processes in silty clay layers; Mid-term
(5-day): Corresponds to stress redistribution from reservoir
drawdown and sliding zone softening (Figure 9). The model’s
hierarchical architecture mimics this physical progression:
lower TCN layers process immediate rainfall signals, while
upper layers with expanded receptive fields track reservoir
level impacts over 30+ days. The correlation heatmaps further
show increasing weight on reservoir features beyond 15-day
lags, consistent with consolidation theory.

The discussion results indicate that changes in rainfall and
reservoir water levels significantly influence reservoir landslide
deformation. When atmospheric rainfall occurs, part of the
rainwater flows into the Zhuxi River as surface runoff, while another
part infiltrates into depressions. This increases the gravitational
force on the landslide, enhancing downslope forces. During the
flood season, the rising water level combined with rainfall recharges
groundwater, soaking and softening the silty clay in the sliding
zone. This process decreases the anti-slip force, leading to landslide
instability.

6.3 Deformation and failure mechanism of
the Huangniba Dengkan landslide

The stability of the landslide is primarily influenced by
both intrinsic and extrinsic factors. Intrinsic factors include
topographical conditions, the properties of the rock and soil mass,
and geological structures. Extrinsic factors encompass rainfall,
reservoir level changes, earthquakes, and human engineering
activities. Among these, intrinsic factors control the overall stability
of the landslide, while extrinsic factors often increase the driving
force of the slide, reduce the strength of the rock and soil mass, and
weaken the resisting force, thereby promoting the occurrence and
development of landslide deformation and failure.

(1) Impact of rainfall: The intense short-term rainfall will
significantly affect the stability of the landslide. After
continuous rainfall, the groundwater level within the slope
rapidly rises, altering the original stress state. Under the
effect of rainwater immersion, the pore water stress of the
soil increases rapidly, while the effective stress decreases
rapidly, causing the shear strength of the slope to decrease,
thus rapidly deteriorating the stability of the landslide and
causing deformation. Additionally, concentrated rainfall will
penetrate into the slope and sliding surface. The surface soil
contains broken stones, gravel, etc., so it has good permeability.
However, the permeability of the top surface of the bedrock
is relatively weak. The groundwater mainly migrates along the
top surface of the bedrock and discharges into the Zhuxi River
at the foot of the slope, thereby softening the sliding surface
and causing local stress concentration.

(2) Impact of reservoir level changes: The long-term cyclical
changes in reservoir level cause continuous erosion of the front
slope of the landslide by the Zhu River, affecting the stability of
landslide bodies and reservoir banks within the Three Gorges
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FIGURE 14
The prediction curves of GPS1 and GPS4 test sets obtained from different models.
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TABLE 5 Performance indicators of the TCN-Multihead-Attention model.

Model R2 MAE RMSE MAPE MSLE SMAPE Max error

TCN-M-ATT 0.9950 0.708 0.718 0.482 0.075 0.651 0.180

TCN 0.9772 1.462 1.55 0.978 0.097 0.776 0.267

Transformer 0.8895 1.511 1.789 1.001 0.141 0.994 0.321

CNN-BiLSTM 0.8752 1.814 1.752 1.804 0.112 0.105 0.588

LSTM 0.7195 2.259 1.956 2.24 0.176 1.852 0.792

FIGURE 15
Comparison chart of performance parameters for multiple prediction models.

Reservoir. This exacerbates bank collapse and improves the
free face conditions of the landslide’s front edge, reducing its
stability. Additionally, the upward pressure within the more
permeable sections of the landslide during rising waterlevel,
and the dynamic water pressure within the less permeable
sections during falling waterlevel, provide intrinsic forces that
drive the segmented and layered movement of the landslide.

To enhance the model’s generalization performance and
enable cross-landslide transfer prediction, leveraging long-term
monitoring data to capture common hydro-mechanical coupling
patterns in reservoir landslides, particularly the synergistic
triggering mechanism of “reservoir drawdown rate - rainfall
intensity” revealed by correlation analysis. This universal pattern
provides a physical basis for model generalization. Building
upon this foundation, proposing a transfer learning framework
tailored for reservoir landslides in the Three Gorges Reservoir
area, advancing a regional landslide prediction paradigm
that integrates “physics-informed guidance with data-driven
enhancement.”

7 Conclusion

This paper focuses on the Huangniba Dengkan landslide
in the Three Gorges Reservoir area, using its monitoring data
to construct a prediction model for horizontal displacement
based on a Temporal Convolutional Network (TCN) and a
multi-head attention mechanism. Through the establishment of
a long-period time series dataset, correlation analysis, feature
engineering, model construction, parameter setting, training, and
performance evaluation, the study demonstrates the remarkable
effectiveness of the TCN-Multihead-Attention predicting model
in landslide deformation. TCN-Multihead-Attention model
integrates dilated causal convolutions from TCN with multi-head
attention to effectively fuse nonlinear interactions of multi-source
environmental factors, capture long-term evolutionary trends, and
accurately identify local mutation patterns, demonstrating superior
reliability for landslide deformation forecasting in reservoir regions.
The main conclusions are as follows:

(1) Analysis of landslide deformation and failure mode with the
monitoring data.
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The deformation and failure mechanism, sliding mode, and
long-period time series dataset of theHuangniba Dengkan landslide
were analyzed in detail. Using scatter plots and correlation heatmaps
of multiple influencing factors, the coupling and hysteresis effects
were examined. It was determined that rainfall and reservoir level
changes are the primary factors affecting landslide deformation.
Consequently, the model was designed to use rainfall, reservoir
level, elevation, and horizontal displacement as input values, with
horizontal displacement as the output.

(2) Establishment and evaluation of the TCN-Multihead-
Attention model.

By integrating TCN’s dilated causal convolution with multi-
head attention mechanisms, the TCN-Multihead-Attention model
achieves dynamic weight allocation for multiple factors, long-term
temporal dependency modeling, and sensitive detection of local
mutations, significantly enhancing the accuracy and reliability of
landslide deformation forecasting in reservoir regions. The model’s
evaluation indicators showed the R2 determination coefficient of
0.995, with MAPE and RMSE values of only 0.482 and 7.180,
respectively. Compared to other deep learning models discussed,
the TCN-Multihead-Attention model demonstrated significantly
improved prediction performance.
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