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Petrogenesis of dark enclaves
and magmatic processes in the
early Paleozoic Fushui mafic
complex from the Qinling
Orogenic Belt, central China

Bokang Zhu, Xiaoying Liao*, Yongsheng Gai, Liang Liu,
Ge Wang, Sang Wan Pak and Wenqiang Yang

State Key Laboratory of Continental Evolution and Early Life, Department of Geology, Northwest
University, Xi’an, China

The dark mafic enclaves in igneous rocks provide valuable insights into the
petrogenetic processes and help us understand the origin and evolution of
magmas. The Early Paleozoic Fushui Complex (gabbro, hornblende gabbro and
diorite) in the Qinling Orogenic Belt contains many dark enclaves, including
hornblendite and dark gabbro. In this study, we systematically investigates
these enclaves and the host rocks, aiming to explore their petrogenesis and
relationship between the enclaves and the host rocks. On this basis, we
further restored the continuous magmatic evolution of the Fushui Complex.
Zircon U-Pb dating show the host rocks are crystallized at 484–492 Ma, and
the hornblendite enclaves share relatively consistent crystallized ages around
500 Ma. However, some of the zircons in the hornblendite enclaves record
a younger crystallized age of 475 Ma, suggesting a continuous magmatic
process. The host rocks and dark gabbro enclaves exhibit arc-like trace-
element signatures. In contrast, the hornblendite enclaves exhibit more variable,
likely reflecting different degrees of magma mixing. While some hornblendite
enclaves share similar geochemical characteristics with the host rocks, most
are enriched in Th and U, depleted in high-field-strength elements and Sr,
and show slightly enriched in light rare earth elements or flat REE distribution
patterns. Compared to the host rocks, the hornblendites exhibit more depleted
Sr-Nd isotope compositions. Trace element modeling indicates that both
the enclaves and host rocks were originated from a metasomatized mantle,
influenced by subducted oceanic and continental crust-derived melts. The
hornblendite enclaves, characterized by orthocumulate texture, the earlier
crystallization age (500 Ma), and the analysis of geochemistry and mineral
chemistry, are interpreted as the early cumulates formed in a deep magma
chamber, and the maximum crystallization temperature and pressure were
871°C and 13.7 kbar. The dark gabbro enclaves are characterized by fine-
grained textures, field occurrence indicative of late-stage crystallization, and
geochemical similarities with the host rock. These features suggest that
they are the product of the rapid crystallization of the host magma at the
edge of the magma chamber, then entrained by the rising magma. Their
crystallization temperature and pressure are 852°C and 11.9 kbar. Integrating
geochronological, geochemical, mineralogical data with previous studies, we
identify three magmatic intrusion events and a subsequent greenschist-to

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2025.1588092
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2025.1588092&domain=pdf&date_stamp=2025-04-16
mailto:xyliao@nwu.edu.cn
mailto:xyliao@nwu.edu.cn
https://doi.org/10.3389/feart.2025.1588092
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2025.1588092/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1588092/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1588092/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1588092/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1588092/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhu et al. 10.3389/feart.2025.1588092

amphibolite-facies metamorphic overprint event within the Fushui Complex.
This study represents the first detailed investigation of dark enclaves in the Fushui
Complex and provide new insight into their petrogenesis and the magmatic
evolution.

KEYWORDS

dark enclaves, Fushui mafic complex, hornblende composition, hornblenderich
cumulates, multi-stage magmatic intrusion

1 Introduction

Dark mafic enclaves are primarily distributed within host
magmatic rocks associated with subduction zone setting, and they
can form through various petrogenetic processes, including (1)
magmamixing betweenmafic and felsicmagmas, (2) the interaction
of quenched basic magma or broken basic dykes with colder
host magmas (e.g., Didier, 1973; Eichelberger, 1980; Reid et al.,
1983; Vernon, 1984), (3) incorporation of fragmented country
rocks and mantle-derived minerals (Huang and Xue, 1990; Xu
and Lin, 1991; 2003a; 2004; Chen and Zhou, 2003; Farner et al.,
2018), (4) residual mineral after partial melting of the mantle
source (White andChappell, 1977), (5) early-stage cumulates (Pabst,
1928; Dodge and Kistler, 1990; Xu et al., 2003b; Donaire et al.,
2005; Zhang et al., 2005), and (6) gas-driven filter pressing
during rapid cooling (Xu et al., 2020). Notably, dark enclaves are
mostcommonly found in intermediate to felsic host rocks, with
relatively few occurrences in mafic rocks. Although the study of
dark enclaves and their host rocks can provide crucial insight into
the origin and evolution of magmatic systems, the diversity in their
petrogenetic processes introduces ambiguity into the understanding
of host rock petrogenesis.

Dark mafic enclave typical contain a variety of mafic minerals,
including olivine, clinopyroxene and hornblende. Numerous studies
have shown that hornblende can record significant information
about magmatic evolution and is frequently used to infer magmatic
processes (Bachmann and Dungan, 2002; Browne and Gardner,
2006; Ridolfi et al., 2008; 2010; Turner et al., 2013). Both primary
hornblende and secondary hornblende, which forms through
the transformation of early-crystallized olivine and clinopyroxene
(Chang et al., 2021). Recent studies have demonstrated that
the compositional variations of hornblende, particularly those
displaying core-rim zoning, can reflect changes inmelt composition,
temperature, and pressure during crystallization in the magma
chamber, or the subsequent melt/fluid alteration processes (e.g.,
Yu et al., 2015; Gong et al., 2018; Fang et al., 2019; Shan et al.,
2021). From a mineralogical perspective, comparative analysis
of hornblende composition provides valuable insights into the
physicochemical conditions of magmatic evolution, thereby helping
to trace the crystallization history of both the enclave and
its host rock.

The Fushui Complex is the largest Early Paleozoic mafic
intrusion exposed in the Qinling orogenic belt of central China
(Dong et al., 1997). Its geochemical features display arc-like
trace element compositions, enriched Sr-Nd-Hf isotopes signatures,
and high zircon δ18O values, indicating contributions from
recycled subducted crust (Wang et al., 2014a; Zhang et al., 2015;
Zheng et al., 2020). Previous studies have primarily focused on

timing of magmatism, the nature of the mantle source, and
petrogenetic processes of mafic host rocks (Wang et al., 2014a;
Zhang et al., 2015; Zheng et al., 2020). However, dark mafic
enclaves within the complex have received relatively little attention
and remain poorly constrained. Notably, both the Fushui mafic
intrusions and their associated dark enclaves contain substantial
amounts of hornblende, offering a unique opportunity to investigate
the petrogenesis of enclaves and the magmatic evolution of the
complex. In this study, we integrate geochronology, whole-rock
geochemistry, and mineral chemistry to unravel the petrogenesis
of the dark enclaves, their relationship with the host rocks,
and the magmatic and metasomatic processes within the Fushui
Complex. Alternatively, based on model calculations, we propose
a new interpretation of the crustal signatures observed in the
mantle source of the Fushui Complex. Our findings provide new
insights into the petrogenesis of dark enclave in mafic rocks and
enhance our understanding of the origin and evolution of the
magmatic source of hydrous mafic intrusions in the North Qinling
orogenic belt.

2 Geological setting

The Qinling-Dabie orogenic in central China, located between
the SouthChinaCraton and theNorthChinaCraton, has undergone
multistage tectonic evolution along two major tectonic zone
(Zhang et al., 1995a; 1995b; 1996; Dong et al., 2011; Dong et al.,
2021a; Liu et al., 2016). Bounded by the Shangdan Suture Zone and
the Mianlue Suture Zone, the Qinling orogenic belt can be divided
into the southern margin of North China Craton, the North Qinling
Belt (NQB, mainly composed of the Kunming Group, Erlangping
Group, Qinling Complex, and Danfeng Group) (Figure 1a), the
South Qinling Belt (SQB), and the northern margin of the Yangtze
Plate (Zhang et al., 1995a; 2001; Meng and Zhang, 2000; Dong
and Santosh, 2016). The Shangdan suture zone separates the NQB
from SQB (Figure 1a), and formed through the subduction and
closure of the Shangdan Ocean. The suture zone exposes ophiolitic
assemblages as well as subduction-related volcanic and sedimentary
rocks (Zhang, et al., 1995b; Dong, et al., 2011). Dong et al. (2011)
and Li et al. (2015) reviewed published geochronological data
and proposed that the subduction-related volcanic rocks with N-
MORB characteristics were formed at ca. 534–518 Ma within the
Shangdan suture zone. The formation age of the island-arc rocks
has been constrained as 507 ± 3 to 499.8 ± 4.0 Ma (Pei et al.,
2005; Lu et al., 2009), indicating continued subduction of the
Shangdan oceanic lithosphere at ca. 500 Ma. The Qinling Complex,
a major component of the NQB, consists of gneisses, schists,
amphibolites, and marble-calc-silicate rocks (You et al., 1991). The
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FIGURE 1
(a) Geological map of the major tectonic units within the North Qinling Belt (modified after Dong et al., 2011). (b) Simplified geological map of the
Fushui intrusive complex and its surrounding area in the Qinling orogen (modified after Liu and Zhou, 1994).

high pressure-ultra high-pressure (HP-UHP) metamorphic rocks
crop out in the northern, central, and southern Qinling Complex.
The discovery of microdiamond and coesite inclusions from gneiss,
eclogites and amphibolites (Yang et al., 2003; Wang et al., 2014b;
Gong et al., 2016) confirm UHP metamorphism in the NQB.
These HP-UHP rocks were interpreted as the products of deep
continental subduction with metamorphic ages ranging from ca.
500–490 Ma (Yang et al., 2003; Wang et al., 2011; Liu et al., 2013;
2016; Chen et al., 2015; Liao et al., 2016). Two separate uplift events
are thought to have caused the two-stage retrograde metamorphism
at ca.470-450 Ma and ca.420 Ma (Liu et al., 2013; Chen et al., 2015;
Liao et al., 2016; Hu et al., 2020).

The Fushui Complex is located to the north of the Shangdan
suture zone and to the south of the Songshugou peridotites. It
is the largest mafic pluton which intrudes into the gneiss of the
Qinling Complex. The Fushui complex have a rod-like shape,
oriented in a NWW direction, with its long axis aligned with
the regional tectonic trend (Figure 1b). Early studies suggest that
the Fushui Complex mainly consists of light-colored metagabbro
composed of plagioclase, clinopyroxene and biotite, along with
brecciated and agglomerated peridotite, dark colored metagabbro
and pyroxenite in varying sizes. Additionally, the complex
also includes later-formed monzonite, syenite and granite, and
numerous light-colored veins (Dong et al., 1997; Chen et al., 2004;
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Zhang et al., 2015). Previous studies have extensively investigated
the formation age of Fushui Complex. Su et al. (2004) reported
a SHRIMP zircon U-Pb age at ca. 490 Ma, while Li et al. (2006)
obtained SHRIMP/TIMS zircon/baddeleyite U-Pb ages at ca. 501
and 480 Ma. Zhang et al. (2015) reported SIMS zircon U-Pb
ages at ca. 497, 480–490 and 475 Ma, suggesting Fushui Complex
may have experienced multi-stage, pulsed magma intrusions. The
earliest stage of magmatic activity occurred ca. 500 Ma, with the
main magmatic events concentrated between 480 and 490 Ma,
and the latest magmatic activity around 475 Ma (Zhang et al.,
2015). In addition, Wang et al. (2014a) and Zheng et al. (2020)
reported SIMS/LA-ICPMS zirconU-Pb ages of 484–490 Ma, further
constraining the formation age of the complex. Geochemical studies
suggest that Fushui Complex exhibits arc-like characteristics,
with its source derived from an enriched lithospheric mantle
metasomatized by melts from ancient continental sediments
and AOC (Zhang et al., 2015; Wang et al., 2014a; Zheng et al.,
2020). While most studies agree on the nature of the source
of the Fushui Complex, there are still different interpretations
regarding its formation process. Wang et al. (2014a) proposed that
the Fushui Complex formed during the northward subduction
of the Paleo-Tethys Ocean beneath the North Qinling micro-
continent, with partial melting of metasomatized mantle peridotite.
Zhang et al. (2015) argued that Fushui Complex represents a suit of
co-subducted mantle-derived magmatic activities that occurred
simultaneously with UHP metamorphism. Zheng et al. (2020)
suggested that the Fushui Complex formed from partial melting of
the lithospheric mantle during the continental crust exhumation
stage, noting that its intrusion age slightly postdates the UHP
metamorphism of the NQB. Recently, Hao et al. (2022) based
on the Mg-Ba-Sr-Nd isotopic data, proposed a mélange origin of
Fushui Complex.

3 Field occurrences and sample
descriptions

Field observations revealed that the Fushui mafic intrusive
complex is primarily composed of hornblende gabbro, gabbro and
diorite, with minor amounts of syenite, monzonite, and granitic
dikes. Affected by the later fault zone, the internal structural
deformation of the complex is very complex, and the edge has a
gneissic structure and mylonitization (Figures 2i, j). Dark enclaves
are common and widespread throughout the intrusion, from its
core to margins. These dark enclaves include hornblendite and dark
gabbro. The hornblendite enclaves exhibit a fine to medium-grained
microgranular texture and display diverse shapes, ranging from
ellipsoidal or lenticular to elongated forms, with long axes ranging
from several centimeters to meters (Figures 2a–g). Most of dark
gabbro enclaves are elongated strips, while a few are irregular ovals.
The dark gabbro enclaves show magmatic flow structures, with the
long axis aligned with the mineral orientation of the host rocks
(Figure 2g). Additionally, country rock xenoliths are also developed
in some dark gabbro enclaves (Figure 2h). None of the enclaves
exhibit fine-grained condensed edges, and the contact boundaries
with host rocks are generally smooth and irregular.

Samples from both the dark enclaves and host rocks were
collected from the interior and margins of Fushui mafic intrusive

complex (Figure 1b). These samples were analyzed in detail for
detailed geochemical and mineralogical studies. A summary of the
mineral composition of the samples is provided in Table 1.

The host rocks of the Fushui Complex mainly consist of
hornblende gabbro, gabbro and diorite. The hornblende gabbro
develops medium-grained and inequigranular structure, which is
composed approximately 20% Hbl, 50% Pl, 15% Bi, 10% Cpx, 5%
Qtz, Ep, Zr, Ap, andMag (Figures 3a, b). Pl andHbl are the dominant
minerals, occur as euhedral to subhedral grains. Relict cpx crystals
enclosed within Hbl are typically embayed (Figure 3a), indicating
the protolith of hornblende gabbro has undergone modification.
Most Hbl grains exhibits a core-rim structure (Figures 3b, 8a, b),
while Pl commonly displays polysynthetic twinning (Figures 8g, h).
Euhedral to subhedral Ep crystals are present within Pl. The gabbro
has a fine-grained, gabbroic texture, composed of approximately
25%–30%Cpx, 55% Pl, 8%Hbl, 8% Bi with accessory Zr (Figure 3c).
Cpx and Pl are the dominate phase, both occurring as euhedral to
subhedral grains. Cpx crystals commonly develop Hbl rims, though
they are narrower than those in hornblende gabbro. The diorite
develops medium-grained and inequigranular structure, which
consists of around 25% Hbl, 55% Pl, 10% Bi, 10% Qtz, Zr, Ap, Ep, Ti,
and Mag (Figure 3d). Pl and Hbl dominate and both minerals occur
as subhedral to anhedral grains. Pl commonly develop polysynthetic
twinning. The diorite appears to have undergone more extensive
modification compared to the hornblende gabbro. Some feldspars
develop sieve structure (Figure 3d), which have been transformed
into Ep and Ser.

The hornblendite enclave develops fine-to medium-grained
and orthocumulate texture, which is domaine by Hbl (∼80–100%),
with ∼10–15% Pl, ∼1–3% Qtz, ∼3% Ap + Zr + Ti + Mag. The
hornblendite enclave displays an orthocumulate texture, with
idiomorphic Hbl crystals filled with anhedral Pl (Figure 4a). The
Hbl crystals are arranged a straight line and often form is 120°
triple junction (Figure 4a). Some cumulate Hbl crystals retain
clear cleavage (56°–124°). Pl and other minerals are primarily
anhedral. In addition, a large number of Hbl develop core-
rim (Figure 4b, 8d, e) and granoblastic structures (Figure 4c).
Pl and intergranular Qtz tend to occur at the edges of
the enclave.

The dark gabbro enclave develops fine-grained texture, which
is composed of approximately 28% Hbl, 50% Pl, 12% Bi, 5%
Qtz, 5% Cpx, along with Zr, Ap, Ti, and Mag (Figures 4d, e).
The mineral assemblage and structure of the dark gabbro enclave
are consistent with those of the host rocks, although the grain
size is noticeably finer (Figure 4f). The linear alignment of
the matrix Pl and Hbl is similar to the contact boundary
between the enclave and the host rock (Figure 4f), further
supporting the development of magmatic flow structures in the dark
gabbro enclave.

4 Results

An integrated study of whole-rock compositions, Sr-Nd
isotopes, mineral composition, and IA-MC-ICP-MS zircon U-Pb-
Hf isotopes was conducted on these samples. Detailed analytical
methods are presented in Supplementary Material 1.
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FIGURE 2
Field photographs of the dark enclaves in Fushui Complex. (a–f) Dark enclaves exhibiting various sizes and morphologies; (g) Directionally aligned dark
gabbro enclaves; (h) Partial mixing between dark gabbro enclave and host diorite (i, j) Gneissic structure in the margin of the complex.

TABLE 1 Mineral modes of host rocks and enclaves in the Fushui Complex.

Lithology Modes

Host rocks

Gabbro 30% Cpx, 50% Pl, 10% Hbl and trace Bi and Zr

Hornblende gabbro 20% Hbl, 50% Pl, 15% Bi, 10% Cpx, and trace Qtz, Ep, Zr, Ap and Mag

Diorite 25% Hbl, 55 %Pl, 10% Bi and trace Qtz, Zr, Ap, Ep, Ti, Mag and Ser

Enclaves
Hornblendite 80% Hbl, 10% Pl and trace Qtz, Ap, Zr, Ti and Mag

Dark gabbro 28% Hbl, 50% Pl, 12% Bi, 5% Qtz, 5% Cpx and trace Zr, Ap, Ti and Mag

Cpx, clinopyroxene; Hbl, hornblende; Pl, plagioclase; Mag, magnetite; Qtz, quartz; Bi, biotite; Zr, zircon; Ap, apatite; Ti, titanite; Ep, epidote; Ser, sericite.

4.1 Major and trace elements

The whole-rock major and trace element compositions
are listed in Supplementary Table S1.

4.1.1 The host rocks
The host rocks show variable contents of SiO2

(43.32–56.01 wt%), Al2O3 (10.75–18.88 wt%), MgO
(2.69–10.18 wt%), K2O (0.7–4.73 wt%) and Na2O (1.31–3.52 wt%).
On the total alkalis vs SiO2 (TAS) diagram, the samples plot within

the gabbro, monzogabbro and monzodiorite fields (Figure 5a). The
analyzed samples exhibit high K2O contents, predominantly falling
in the shoshonitic field on the K2O vs SiO2 diagram (Figure 5b).
In the primitive-mantle-normalized spidergrams and chondrite-
normalized REE patterns (Figures 5c, d), the samples show no
significant Eu anomalies, enrichment in light rare earth elements
(LREE) and large-ion lithophile elements (LILE), and depletion in
high-field-strength elements (HFSE) (Zr, Hf, Nb and Ta) and heavy
rare earth elements (HREE). These features are characteristic of
arc-type trace-element patterns.
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FIGURE 3
Photomicrographs of representative host rocks. (a) Hbl rims surround the residual Cpx in the hornblende gabbro; (b) Most Hbl are subhedral, with
some displaying core-rim structures in the hornblende gabbro; (c) The fine-grained gabbro mainly consists of approximately Cpx, Pl, Hbl, and Bi; (d)
The diorite appears to have undergone more extensive modification compared to hornblende gabbros. Numerous of Ep are present within Pl.

FIGURE 4
Photomicrographs of representative enclaves. (a) The hornblendites enclave develops the granular cumulus texture; (b) The Hbl develops the core-rim
structure; (c) The granoblastic Hbl in hornblendite enclave; (d) The dark gabbro enclave is composed of Hbl, Pl, Bi, Qtz, Cpx, along with Zr, Ap, Ti, and
Mag; (e) A very small amount of residual Cpx in the dark gabbro enclave. (f) The microstructures of the contact boundary between the dark gabbro
enclave and host rock.
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FIGURE 5
Diagrams of SiO2 contents versus total alkali (TAS) (a), K2O contents (b), primitive mantle-normalized trace element spidergrams (c) and
chondrite-normalized REE patterns (d) for the samples in the Fushui complex. Published data sources: Dong et al., 1997; Wang et al., 2014a;
Zheng et al., 2020; Hao et al., 2022.

4.1.2 Hornblendite enclaves
In contrast to the host rocks, the hornblendite enclaves

exhibit relatively low contents of SiO2 (46.4–56.84 wt%), TiO2
(0.02–0.73 wt%) and total alkali (K2O+ Na2O) (0.36–3.91 wt%),
while displaying variable high contents of MgO (6.69–17.66 wt%)
and TFe2O3 (8.36–12.75 wt%). On the TAS diagram, the samples
predominantly fall in the gabbro and gabbroic diorite fields
(Figure 5a). In the K2O vs SiO2 diagram (Figure 5b), they mainly
fall within the medium and low K2O contents field, indicating a
medium-low potassium calc-alkaline affinity.The primitive-mantle-
normalized spidergrams (Figure 5c) and the chondrite-normalized
REE diagram (Figure 5d) show that two samples (2306NQ-3 and
2403NQ-6) share similar trace element characteristics with the host
rocks. Typical hornblendite enclaves, however, are marked by a
lower trace elements content, enrichment in Th and U, depletion
in HFSE and Sr, and either slight enrichment in LREE or flat
REE patterns. In contrast, sample 2303NQ-3 exhibits distinct trace
element characteristics, including depletions in Th, U and HFSE,
along with a pronounced positive Sr and Eu anomaly.

4.1.3 Dark gabbro enclaves
Similar to the host rocks, the dark gabbro enclaves have low

contents of SiO2 (42.49–51.13 wt%) and MgO (3.91–5.61 wt%),
but show variable high contents of TiO2 (0.79–1.40 wt%), TFe2O3
(9.37–14.07 wt%) and total alkali (K2O+ Na2O) (4.75–5.72 wt%).
On the TAS diagram, the samples predominantly fall within the
monzodiorite fields (Figure 5a). In the K2O vs SiO2 diagram,

they are mainly plotted in the shoshonitic field (Figure 5b).
The primitive mantle-normalized trace element characteristics
and chondrite-normalized REE patterns (Figures 5c, d) further
indicating that dark gabbro enclaves share similar features with the
host rocks.

4.2 Mineral compositions

The major and trace elements of minerals are listed in
Supplementary Table S2.

4.2.1 Clinopyroxene
Clinopyroxene appears as the main mineral phase in the gabbro,

while it exists in the residual form in the hornblende gabbro and
dark gabbro enclave. Grains are mainly diopside in composition
(Figure 6a). Compared with the clinopyroxene in gabbro, the
clinopyroxene in hornblende gabbro and dark gabbro enclave has a
larger variation of SiO2 (49.17–53.70 wt%), Al2O3 (0.80–4.05 wt%),
higher MgO (11.95–14.96 wt%) and lower FeOT (4.76–11.92 wt%).
Because the residual clinopyroxene in the dark gabbro enclave
(Figure 4e) is rare and the particle size is small, the mineral
trace element analysis was not obtained. The chondrite-normalized
REE distribution patterns of clinopyroxene show depletion of
LREE and HREE, and obvious negative Eu anomalies (Figure 7a).
However, the ΣREE of primary clinopyroxene is significantly higher
than that of relict clinopyroxene (Ave. REEs is 936 and 84 ppm,
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FIGURE 6
Mineral compositions of representative Cpx and Hbl from the complex. (a) Data for Cpx plotted on the enstatite-ferrosilite-diopside-hedenbergite
quadrilateral of Morimoto (1989). (b, c) Classification of Hbl according to the nomenclature of Leake et al. (1997).

respectively), and LREE and HREE are also relatively enriched
(Ave (La/Sm)N is 0.64 and 0.47, Ave (Gd/Yb)N is 2.66 and 4.52,
respectively).

4.2.2 Hornblende
Hornblende is the predominant mafic mineral in the Fushui

complex, exhibiting notable variations in the types across different
samples. The hornblende occurring on the edge of clinopyroxene
in the host gabbro is identified as actinolite (Figure 6b). These
hornblendes display high SiO2 contents (49.92–54.5 wt%), Mg#
(55.14–71.62) values and low Al2O3 contents (0.55–4.22 wt%).
Their REE patterns are similar to those of clinopyroxene
(Figure 7b), suggesting that they are products of the clinopyroxene
transformation. In the host hornblende gabbro, hornblende
generally develops core-rim structure. The core predominantly
consists of magnesio-hornblende and actinolite (Figure 6b), while
the rim is primarily composed of magnesio-hornblende and
edenite (Figures 6b, c). SiO2 and MgO contents decrease from
core to rim, corresponding with increase in Al2O3 and TiO2
(Figure 8c). Regarding the REE patterns, the Hbl core displays a
similar pattern to that of clinopyroxene (Figure 7c). In contrast,
the REE distribution patterns of the Hbl rim can be further
divided into two distinct types: one with a right-leaning, LREE-
enriched or flat REE distribution curve, consistent with the
magmatic hornblende (Stuart et al., 2018) and another with

LREE-depleted patterns (Figure 7c). Hornblende in the host diorite
is primarily magnesio-hornblende and edenite, with significant
variations in SiO2 (41.31–53.04 wt%), Al2O3 (3.78–12.19 wt%) and
Mg# (46.96–80.45).

The hornblende in the hornblendite enclave generally
develops the cumulate, core-rim, and granoblastic structure.
The cumulate Hbl is mainly Tschermakite and magnesio-
hornblende, the core consists mainly of pargasite, the rim is
mainly magnesio-hornblende, and the granoblastic Hbl is mainly
actinolite (figures 6b, c). the cumulate Hbl has low SiO2 content
(42.94–46.41 wt%), high Al2O3 content (9.76–14.46 wt%) and
variable Mg# (57.92–74.11), characterized by obviously enriched
in LREE (Figure 7e). From the Hbl core to the rim, the contents
of SiO2 and MgO increase, while the contents of Al2O3 and TiO2
decrease (Figure 8f). The Hbl core and rim also show distinct REE
distribution pattern. The Hbl core has flat REE distribution curve
similar to that of magmatic hornblende (Stuart et al., 2018), while
the Hbl rim is characterized by LREE depletion. The granoblastic
Hbl characterized by high SiO2 (51.26–55.45 wt%) and Mg#
(72.35–83.13), along with low Al2O3 contents (1.24–5.31 wt%),
are likely of could be of late hydrothermal origins. The hornblende
in the dark gabbro enclave is mainly magnesio-hornblende and
pargasite (Figures 6b, c). Consistent with the hornblende in the host
diorite, the hornblende in the dark gabbro enclave also has a large
change in SiO2, Al2O3 contents (40.03–55.72 and 2.47–13.18 wt%,
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FIGURE 7
Chondrite-normalized REE patterns diagram of Cpx and Hbl from the Fushui Complex. (a–d) REE patterns of Cpx and Hbl in the host rocks, and (e, f)
REE patterns of Hbl in the enclaves. REE patterns of magmatic and metasomatic Hbl are from Stuart et al. (2018).

respectively) and Mg# (44.10–87.20), along with a right-leaning
which is rich in LREE or flat REE distribution curve (Figure 7f).

4.2.3 Plagioclase
This study analyzes plagioclase from dark gabbro enclave and

the host hornblende gabbro and gabbro. Only the plagioclase
in the gabbro develops zonal structure. The plagioclase in
both the dark gabbro enclave and hornblende gabbro shares
the similar characteristics, exhibiting highly variable An values
(0.27–0.59 and 0.3–0.56, respectively). Some plagioclases in the

host gabbro show normal zonation, with decreasing An values from
core to rim (Figure 8i). The An values of the core and rim range
from 0.65 to 0.82 and 0.38–0.59,with average values of 0.73 and
0.47, respectively.

4.3 Pressure and temperature estimates

The chemical composition of hornblende provides valuable
insights into the crystallization temperature and pressure of
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FIGURE 8
The microscopic images (a, d, g), backscattered electron images (b, e, h), and compositional profiles (c, f, i) of the representative Hbl and Pl grains from
the Fushui Complex.

magma, as well as the estimated depth of the magma chamber.
In calc-alkaline magmatic systems, the Al content in hornblende
is well-correlated with both the pressure and temperature during
crystallization, as demonstrated in experiments studies (Blundy
and Holland, 1990). As a result, several Al-in-hornblende
barometry have been proposed (e.g., Hammarstrom and Zen,
1986; Hollister et al., 1987; Johnson and Rutherford, 1989;
Schmidt, 1992). However, due to the lack of appropriate mineral
assemblages (i.e., hornblende + biotite + plagioclase + quartz
+ orthoclase + titanite + ilmenite/magnetite) required for the
traditional Al-in-hornblende barometry, we have chosen to
apply an empirical geobarometer based on the correlation
between pressure and the AlVI content of igneous hornblendes
(Krawczynski et al., 2012). As mentioned above, the characteristics
of major and trace elements of some hornblendes in the Fushui
Complex indicate their late hydrothermal origins. Therefore, the

crystallization temperature and equilibrium temperature estimates
of hornblende were calculated using the thermometer models
of Putirka (2016) and Liao et al. (2021), respectively. We also
try to calculate the pressure and temperature of hornblende,
and the water content of the melt that crystallize hornblende by
using the calculation program of Ridolfi (2021). The results are
presented in Table 2.

Some studies have summarized the specific cations variation
of experimental hornblende from different magma compositions at
different P-T conditions (e.g., Scaillet and Evans, 1999; Prouteau and
Scaillet, 2003; Kiss et al., 2014; Alonso-Perez et al., 2009; Ulmer et al.,
2018 and references therein). As shown in Supplementary Figure S1,
most low-Al hornblendes fall into the field that were crystallized
at low temperatures (700°C–820°C) and pressures (2–3 kbar)
or even lower temperature and pressure, whereas the high-Al
hornblendes plot in the field that crystallized at high temperatures
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(>800°C) and variable pressures (2–8 kbar), which provide first
order constraints on the hornblende crystallization conditions.
Collectively, the calculated results show the systematic changes
in P-T conditions (Supplementary Figure S2). The hornblendite
enclaves formed under the highest pressures and temperatures
(up to 13.3 kbar and 871°C), followed by the dark gabbro
enclaves (up to 11.9 kbar and 852°C), with the host rocks
forming at lowest pressures and temperatures (up to 11.3 kbar
and 838°C) (Supplementary Figure S2). Zhang et al. (2015)
suggested that the initial intrusion area may correspond to
the granulite facies of the lower crust, which is consistent
with the maximum pressure value (13.3 kbar) calculated in
this study.

4.4 Zircon U-Pb ages

LA-MC-ICP-MS U-Pb isotope data for the zircons are present
in Supplementary Table S3. Zircons are euhedral to subhedral,
with sizes ranging from 80 to 220 μm and length-to-width
ratios between 1:1 to 2:1. In cathodoluminescence (CL) images,
the zircons exhibit broad oscillatory zoning, or weak zoning
(Figure 9). Notably, several zircon grains fromhornblendite enclaves
2306NQ-4 show a core-rim structure, which the cores display light
oscillatory zoning, while the rims are dark and unzoned, suggesting
recrystallization or overgrowth during late-stage magmatic
processes. All analyses reveal distinct Ce and Eu anomalies, as
well as elevated high HREE concentrations (Figures 10b, d, f),
indicating that these zircons are magmatic in origin, derived from
mafic rock.

A total of 29 U-Pb isotopic analyses were performed on
zircons from hornblendite enclaves 2306NQ-4. Twenty-five of these
analyses, which exhibit significant variations in Th (226–945 ppm)
and U (210–2,300 ppm) contents, along with high Th/U ratios
(0.80–1.32), yielded a weighted mean 206Pb/238U age of 500 ± 2 Ma
(MSWD = 1.2) (Figure 10a). Notably, four analyses which exhibit
significant variations in Th (388–750 ppm) and U (577–2,300 ppm)
contents, along with highly variable Th/U ratios (0.17–1.03),
provided a weighted mean 206Pb/238U age of 475 ± 6 Ma (MSWD
= 0.3) (Figure 10a). A total of 36 U-Pb isotopic analyses were
performed on zircons from diorite sample 2306NQ-2, which
display highly variable Th (73–6,164 ppm) and U (111–3,630 ppm)
contents, with Th/U ratios ranging from 0.17 to 1.70.36 analyses
yielded a weighted mean 206Pb/238U age of 484 ± 2 Ma (MSWD
= 0.83) (Figure 10c). Additionally, 30 U-Pb isotopic analyses were
performed on zircons from gabbro sample 2306NQ-9, showing
wide variability in Th (82–2,618 ppm) and U (471–8,393 ppm)
contents, with Th/U ratios ranging from 0.04 to 0.76. The 30
analyses yielded a weighted mean 206Pb/238U age of 492 ± 3 Ma
(MSWD = 0.58) (Figure 10e).

4.5 Bulk-rock Sr-Nd and zircon Hf isotopic
composition

Bulk-rock Sr-Nd isotope data of representative samples are listed
in Supplementary Table S4, and zircon Hf isotope for hornblendite
enclave sample 2306NQ-4 are present in Supplementary Table S4.
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FIGURE 9
Representative zircon CL images. Circles denote the analytical spots, together with zircon U-Pb ages.

For the host gabbro, dark gabbro and hornblendite enclave, the
initial 87Sr/86Sr ratios and εNd(t) values for whole-rock were
calculated at t = 492 Ma, 497 Ma (Zhang et al., 2015) and 500 Ma
for magma crystallization, respectively. The host gabbro and dark
gabbro enclave exhibit similar Sr-Nd isotopic signatures, with high
87Sr/86Sr(i) ratios from 0.7123 to 0.7126 and 0.7135 to 0.7137, and
negative εNd(t) values of −5.0 to −4.6 and −5.1 to −4.5, respectively.
In contrast, the hornblendite enclave shows a boarder range of Sr-
Nd isotopic values, with 87Sr/86Sr(i) ratios from 0.7068 to 0.7136
and negative εNd(t) values of −5.1 to −1.1 (Figure 11a). Notably,
some hornblendite enclaves also exhibit similar Sr-Nd isotopic
signatures with the host rocks. Additionally, twenty-six zircons
from the hornblendite enclave yielded negative εHf(t) values of
−4.0 to −1.8 (Figure 11b), with two-stage Hf model (TDM2) ages of
1,579–1717 Ma.

5 Discussion

5.1 Age of the Fushui Complex

LA-MC-ICP-MS zircon U-Pb dating of the host rocks yields
weighted mean ages of 484 ± 2 Ma for the diorite (2306NQ-
2), and 492 ± 3 Ma for the gabbro (2306NQ-9) (Figure 10),
which consistent with previous reported ages of 484–490 Ma
(Wang et al., 2014a; Zhang et al., 2015; Zheng et al., 2020).
Zircon U-Pb dating of hornblendite enclave reveals two age
populations: 500 ± 2 and 475 ± 6 Ma (Figure 10). The dark
gabbro enclave analyzed for SIMS zircon U-Pb yield weighted
mean ages of 497.0 ± 18.9 and 473.0 ± 18.0 (Zhang et al.,
2015). We therefore suggest that the hornblendite and dark
gabbro enclaves have relatively consistent zircon U-Pb ages.
However, the presence of two distinct zircon age populations
within the dark enclaves, along with their age differences relative
to the host rocks, indicates a multi-stage crystallization history,
reflecting episodic magma injection and accumulation within the
magma chamber.

5.2 The nature of mantle source

5.2.1 Effects of assimilation and fractional
crystallization

Crustal contamination and fractional crystallization during
the emplacement can significantly modify the composition of the
primary magma, but previous studies have indicated that such
contamination in the Fushui Complex is minimal and can be
disregarded (e.g., Wang et al., 2014a; Zheng et al., 2020; Hao et al.,
2022). Accordingly, it is reasonable to conclude that the enclaves
also unaffected by crustal contamination. The Fushui host mafic
rocks display a wide range in SiO2, MgO, and Mg# values, with
low Cr and Ni contents, suggesting that crystal fractionation
occurred during magma ascent. Dark gabbro enclaves show similar
trends, but the hornblendite enclaves exhibit higher MgO, Mg#,
Cr and Ni contents. As shown in Figures 12a–d, MgO display a
positive correlation with Ni, Cr, Sc/Y, and Ca across all samples,
indicating the olivine and clinopyroxene fractional crystallization,
but no significant plagioclase fractionation. Hornblende’s MREE
enrichment suggests differentiation between MREE and HREE, but
no significant correlation betweenDy/Dy∗ andMgO (Figures 12e, f)
indicates hornblende is not a primary fractionating phase in the
host rocks.

The geochemical data suggest that its formation involved
olivine and clinopyroxene crystallization. However, the fractional
crystallization of these two minerals alone cannot fully explain
the observed enrichment of LILE and LREE, as well as the
depletion of HFSE. Furthermore, partial melting and fractional
crystallization do not significantly alter isotopic compositions of
mantle-derived magmas. Therefore, the geochemical composition
reflects the inherited characteristics of the mantle source, providing
insight into the nature of the mantle from which the magmas
originated.

5.2.2 The origin of host mafic rocks
The geochemical features of the Fushui host mafic rocks

exhibit high K2O content (up to 4.73 wt%), enrichment of LILEs
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FIGURE 10
Concordia diagrams of LA-MC-ICP-MS zircon U-Pb isotope data (a, c, e) and chondrite-normalized REE patterns (b, d, f).

and LREEs, and depletion of HFSEs (Figures 5b–d). Additionally,
the negative εNd(t) values (−5.0∼-4.6) and high 87Sr/86Sr ratios
(0.7123–0.7126) (Figure 11a) indicate that their mantle source has
been modified and enriched by components with high potassium
content. In contrast to the depleted mantle (K2O = ∼60 ppm;

Workman and Hart, 2005) and basaltic oceanic crust (K2O =
∼0.14 wt%; Gale et al., 2013), potassium is highly enriched in the
upper crust (K2O = 2.80 wt%; Rudnick and Gao, 2014). In fact,
numerous studies have confirmed that recycled continental crust
material plays a significant role in modifying the mantle source
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FIGURE 11
(a) Initial Sr-Nd isotope ratios for the Fushui complex (modified after Wilson, 1989; Zheng et al., 2020) and (b) zircon εHf(t) values for the hornblendite
enclave. Published data sources: Dong et al. (1997); Wang et al. (2014a); Zheng et al. (2020); Hao et al. (2022).

of potassium-rich to ultrapotassic mafic rocks in orogenic belts
(Nelson, 1992; Zhao et al., 2009; Guo et al., 2013; Tian et al.,
2020). Moreover, the material sources of these recycled continental
materials into the mantle are diverse. Continental materials may
enter the mantle as subducted oceanic crust is accompanied by
continental sediments (Nelson, 1992; Wang et al., 2016), or may
be contributed by subducted continental crust (Menold et al., 2016;
Hu et al., 2021).

Previous geochemical study suggests that the source of the
Fushui Complex derived from an enriched lithospheric mantle
(Dong et al., 1997; Wang et al., 2014a; Zhang et al., 2015),
metasomatized by melts and fluids from 0.5% to 2.5% ancient
continental sediments and 5%–10% AOC (Zheng et al., 2020)
during the subduction of Shangdan Ocean. In the present study,
the spatial proximity of the Fushui Complex outcrops to the ultra-
deep subducted continental material in the Songshugou area (Liu
et al., 2019; Dong et al., 2021b) of the North Qinling belt, we
have re-quantitatively simulated the formation of the mantle source
region of hydrous metasomatic rock and the partial melting process
that generates mafic magma, based on partial melting experiments
of subducted continental crust. Zhang et al. (2016) found that at
mantle depths within the coesite and stishovite stable fields, partial
melting of subducted continental crust can generate approximately
20–30 wt% potassium-rich granitic melts and 10 wt% potassium-
rich andesitic to basic (or even ultrabasic) melts, respectively. In
this study, we selected pure peridotite from Songshugou in the
North Qinling Belt (Su et al., 2005; Liu et al., 2007; Lee et al., 2010;
Nie et al., 2017) as themantle endmember, themixture of subducted
oceanic and continental derived melts (Zhang et al., 2016; Zang
and Wang, 2022) as the crustal endmember for trace element
simulation of (oceanic crust + continental crust) subduction
metasomatism.

When the Songshugou peridotite (Liu et al., 2007; Lee et al.,
2010; Su et al., 2005; Nie et al., 2017) is metasomatized by 10% deep
subducted continental crust-derived melt (Zhang et al., 2016) or by
a combination of 15% basaltic oceanic crust-derivedmelt (Zang and
Wang, 2022) and 5% deep subducted continental crust-derived melt

(Zhang et al., 2016), the mantle metasomatites undergo low-degree
(20%) partial melting, and the resulting mafic melts exhibit arc-
like trace element characteristics similar to Fushui Mafic Complex
(Figure 13). The results suggest that, although the proportion of
ultra-deep subducted felsic continental crust-derived melt is less
than 3%, it still contributes to the enrichment of incompatible
elements. It is worth noting that crust-derived melts inherit the
chemical properties of the initial experimental materials. At the
same time, limitations in experimental petrology, such as duration
and system constraints, may affect the accuracy of the results
(Xu et al., 2022). Disregarding the influence of the aforementioned
factors, the simulation results are generally consistent with Fushui
host mafic rocks. This result indicate that the mantle source of the
Fushui Complex is heterogeneous, as evidenced by the variation
in bulk-rock εNd(t) (−5.2∼-1.2 for the hornblendite enclaves and
−5.0∼-4.6 for the host rocks) and zircon εHf(t) values (−4.0∼-1.8
for the hornblendite enclaves and −7.9–3.0 for the host rocks;
Wang et al., 2014a; Zhang et al., 2015; Zheng et al., 2020),
likely due to the interaction of the mantle with various melt/fluid
components during subduction of oceanic and continental crusts,
which further complicates the compositional evolution of the
mantle source.

5.3 Petrogenesis of the dark enclaves

Petrological and mineralogical observations show that the
dark gabbro enclaves remain plastic upon entering into the host
magma (Figure 2h), supporting the primary magma flow and
emplacement. At the same time, the dark gabbro enclaves do not
develop magmatic imbalance structure, which typically associated
with magma mixing, such as embedded crystal structure and
mineral core-rim structure. Given that both the dark gabbro
enclaves and the host rocks are derived from the same mantle
source, with nearly identical crystallization ages, the dark gabbro
enclaves cannot be considered as refractory residue from the
source area, products of magma mixing or a consolidated xenolith.
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FIGURE 12
Diagrams of MgO contents versus Cr (a), Ni (b), Sc/Y (c), CaO (d) and Dy/Dy* (e), and Dy/Tb versus Dy/Dy* for the samples in the Fushui complex (see
details in Figure 5).

Additionally, the acicular apatite crystals and fine-grained texture
within the dark gabbro enclave (Figure 4d) indicate that the
parent magma has experienced quenching (Wyllie et al., 1962).
Quenching is typically associated with the interaction between
hot basic magma and cold acidic magma (e.g., Eichelberger, 1980;
Barbarin, 2005; Vernon, 1984; Sisson et al., 1996). However, this
mechanism does not explain the lacks the fine-grained quenching
margins. Alternatively, some researchers have suggested that the
fine-grained structure may have formed due to the contact
between the parent magma and cooler surrounding rocks during
its ascent and emplacement (Donaire et al., 2005; Rodríguez
and Castro, 2017). As magma ascends from the deep source,
it interacts with the cooler surrounding rocks, leading to rapid
crystallization along the edges of the magma conduit and magma
chamber.The colder regions exhibit higher pressure and crystallinity

compared to the center of the chamber, causing the melt to flow
from the cooler edges toward the hotter center. This process
separates the more evolved melt from fine-grained crystals, a
phenomenon known as gas pressure filtration (Anderson et al.,
1984; Pistone et al., 2017). During ascent, this segregation results
in the formation of a more evolved melt, which develops a mineral
assemblage of clinopyroxene, plagioclase, hornblende, biotite, and
apatite with fine-grained structure (Figure 4d). These mineral
assemblages are subsequently entrained by rising gabbroic magma,
forming enclaves.

As shown in Supplementary Figure S3a, both the cumulate Hbl
and Hbl core in the hornblendite enclave exhibit the geochemical
characteristics of mantle-derived (Supplementary Figure S3a) and
magmatic hornblende (Figure 7e). Given the orthocumulate texture
(Figure 4a), it is reasonable to conclude that the hornblendite
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FIGURE 13
Trace element model calculation results for host rock in Fushui complex. Previous data are from Wang et al. (2014a) and Zheng et al. (2020).
Abbreviations: MP, mantle peridotites; MCC, continental crust-derived melt; MOC, oceanic crust-derived melt.

enclave formed from cumulate processes. Experimental studies
have shown that hornblende crystallization requires magma
with two to three wt% H2O (Foden and Green, 1992), and the
formation of extensive hornblende cumulates likely necessitates
even higher water content. The water content of the melt that
crystallize hornblende in the Fushui Complex ranges from 5.24 to
16.17 wt% (Table 2), indicating that the parent magma was water-
rich. High water content not reduce the melting point of mantle
source, promoting partial melting and facilitating the upward
migration of magma into the magma chamber (Lu et al., 2015;
Rasmussen et al., 2022). As mentioned above, the Fushui Complex
originated from an inhomogeneous enrichedmantlemetasomatized
by subducted oceanic and continental crust (Figure 13). No
contact metamorphism was observed between the hornblendite
enclaves and the host rocks (Figure 2), and the formation age
of the hornblendite is slightly older than that of the host rock
(Figure 10). These observations suggest that a small, water-rich
mantle domain underwent partial melting first, generating water-
richmelts that ascended into themagma chamber.After crystallizing
olivine and clinopyroxene, the water-rich melt accumulates
hornblende in the deep lower crust (Figure 15a). Subsequently,
the remaining metasomatized mantle underwent partial melting,
with the formed melt rising into the same magma chamber,
where it encased the earlier cumulate minerals, forming the
hornblendite enclaves.

In addition, the Hbl rim and granoblastic Hbl in the
hornblendite enclaves fall within the crust-mantle mixed and
the crust-derived fields (Supplementary Figure S3b), which are
typically attributed to magma mixing and crustal contamination
(e.g., Chen et al., 2017; Chen et al., 2024; Guo et al., 2024).
However, since the Fushui Complex did not undergomagmamixing
and crustal contamination, implying that the hornblende in the
crust-mantle mixed-derived field are mantle-derived hornblende
that has undergone subsequent modification (see detailed
in Section 5.4.2).

5.4 Hornblende behavior during
petrogenetic processes

Zhang et al. (2015) found that the Fushui Complex recorded
multi-stage magmatic intrusion events at ca. 500 Ma, 490 Ma,
480 Ma and 476 Ma, and was superimposed by metamorphism
at ca. 335 Ma. Numerous studies have shown that both primary
(magmatic) hornblende and secondary hornblende formed by
the transformation of early crystallized olivine and clinopyroxene
(Chang et al., 2021) can record important information about
magmatic evolution, such as changes in melt composition,
temperature and pressure during crystallization in the magma
chamber, or subsequentmelt/fluid alteration processes (e.g., Yu et al.,
2015; Gong et al., 2018; Fang et al., 2019; Shan et al., 2021), which can
be used to infer themagmatic process.Therefore, this study provides
further constraints for the above process from the perspective of
hornblende-related mineralogical research.

5.4.1 Multi-stage magmatic intrusion
The formation of the hornblendite enclaves represents the first

stage of magmatic intrusion event in the Fushui Complex, which
occurred at 500 Ma.

The second magmatic event, which occurred at 484–490 Ma, is
represent by the emplacement of the mafic host rocks. As shown in
Table 2, the water content of the melt that crystallize hornblende in
the host rock is greater than 5 wt%, indicating that the host magma
is water-rich. In the process of rising into the magma chamber
andwrapping the early-formed cumulate hornblende, thewater-rich
host magma inevitably interacts with it, which is proved by some
hornblendite enclaves exhibit similar geochemical characteristics
and Sr-Nd isotopic signatures with the host rocks (Figures 5c, d).
This reaction led to partial decomposition and recrystallization
of the cumulate hornblende, forming hornblende crystals with a
core-rim structure (Figure 4b), and the core-rim contact boundary
is straight (Figures 8c, d). In cases where cumulate hornblende
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FIGURE 14
Magma emplacement process of the Fushui Complex.

undergoes completely melting, the recrystallized hornblende will
be subhedral to anhedral. The narrow interstitial space in the
cumulate minerals can inhibit the migration of the melt from the
edge to center of enclaves. Therefore, a textural and mineralogical
transition is observed from the edge to center of hornblendite
enclaves, from the subhedral-anhedral crystal (Figure 4c) at the
margins, to hornblende with core-rim structure (Figure 4b) and
to the cumulus textures (Figure 4a) in the cores (Figure 15b). The
second phase magmatic intrusion event occurs within a pressure
range of 9.7–10.8 kbar and temperature of 833°C–875°C (Figure 14).

As mentioned above, the rim compositions of hornblende in
the host gabbro show mineral chemical characteristics indicative of
crust-mantle mixing (Supplementary Figure S3b). These chemical
variations are attributed to late-stage overprinting, suggesting
that unaltered hornblende rim retain a mantle-derived signature.
Furthermore, the REE distribution patterns of the hornblende
rim in the host hornblende gabbro is consistent with magmatic
hornblende (Stuart et al., 2018) (Figure 7c). The growth of the
hornblende rim represents the third stage of magmatic intrusion,
which occurred at about 475 Ma, supported by zircon U-Pb ages
from both hornblendite enclaves in this study (Figure 10a) and dark
gabbro enclaves in Zhang et al. (2015). The P-T condition for this
third intrusion stage is estimated at 7.9 kbar and 800°C (Figure 14).

5.4.2 Greenschist-to amphibolite-facies
metamorphism overprint

Previous studies have shown that the Fushui Complex has
undergone extensive metamorphism, which has overprinted the

original features (Dong et al., 1997; Wang et al., 2014a; Zhang et al.,
2015; Zheng et al., 2020). The REE distribution patterns of Hbl
rim in the host gabbro and Hbl core in the host hornblende
gabbro are consistent with those of clinopyroxene (Figures 7b, c),
indicating that hornblende is formed by clinopyroxene through
water-rock reaction. Asmentioned above, the hornblendes that have
the low content of TiO2 and Al2O3 fall in the crust-mantle mixed-
derived and the crust-derived field (Supplementary Figure S2) are
not caused by magma mixing or crustal contamination, but by later
transformation, which indicates that the hydrous fluid originates
from the crust. And the water-rock reaction can be limited to
the range of 2.0–3.5 kbar, 363°C–455°C (Figure 14), . During the
water-rock reaction, the crustal fluid enters through the voids
of Hbl rim in the host hornblende gabbro. Due to the different
degrees of reaction, some clinopyroxenes wrapped by Hbl rim
are preserved (Figure 3a). However, most clinopyroxene completely
reacted and formed hornblende (Hbl core) (Figure 3b) (Figure 15d).
At the same time, under this unbalanced ‘semi-open system’, the
hornblende formed by the reaction crystallizes a large number
of minerals such as feldspar and quartz due to composition
adjustment, and component diffusion occurs in the host hornblende
gabbro (Figure 8b). Different from the host rocks, the dark gabbro
enclaves are difficult to exist residual clinopyroxene during the
reaction process because of their fine mineral particles (Figure 15d).
Crust-derived fluids not only change the mineral structure and
composition of clinopyroxene, but also modify the hornblende in
the complex. As shown in Figure 7, it is not difficult to find that most
hornblendes, especially hornblende rim in both host hornblende
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FIGURE 15
Schematic illustration for petrogenesis of the Fushui Complex in the Qinling orogen.

gabbro and hornblendite enclaves, are obviously depleted in LREE,
which is likely to be the result of water-rock reaction, and also shows
that the aqueous fluid is relatively depleted in LREE. At the same
time, it is also due to the transformation of retrograde metamorphic
fluids that hornblende in the host diorite and dark gabbro enclave
exhibits a very wide T-P range (Supplementary Figures S1, S2).

6 Conclusion

(1) Zircon U-Pb dating shows the hornblendite enclaves
crystallized around 500 Ma, while the host rocks (diorite
and gabbro) crystallized at 484 Ma and 492 Ma, indicating a
multi-stage magmatic process. Some hornblendite enclaves
contain a younger age of 475 Ma, suggesting continued
magmatic activity.

(2) The dark gabbro enclaves are geochemically similar to
the host rocks, while the hornblendite enclaves are not.
The hornblendite enclaves and host rocks with different
geochemical characteristics originated from the mantle source
influenced by both subducted oceanic and continental crust,
representing different stages of the subduction process and
mantle metasomatism.

(3) The hornblendite formed from water-rich magma that
underwent partial melting in the lower crust, creating
cumulates. Later, the host magma rose into the chamber,
causing rapid cooling and the formation of fine-grained
mineral assemblages, which led to the formation of dark
gabbro and hornblendite enclaves.

(4) The magmatic emplacement was influenced by the multi-
stage magmatic intrusion and greenschist-to amphibolite-
facies metamorphism, which caused distinct textures and
geochemical variations in the hornblende, reflecting the
complex evolution of the magma.
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