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Introduction: City-scale rainfallprediction iscrucial forvariousessential services,
such as transportation, supply chain logistics, and leisure activities, as well as for
preventing risks associated with high volumes of rain. Belém is a city located in
northern Brazil with distinct periods of precipitation, including a rainy season that
directly impacts the city’s dynamics and the quality of life of its citizens, often
resulting in flooding and infrastructure accidents in several city zones.

Methods:Meteorological studies generally use large volumes of data; however,
our study is characterized by using a data source with fewer years to predict
rainfall precipitation. Additionally, we use meteorological data from a set
of sensors installed at a meteorological station located in Belém to train
multivariate statistical andmachine learning (ML)models to predict precipitation.
Besides the use of algorithms, another evaluation was conducted on Feature
Composition based on statistical methods to investigate the impact of variables
on the prediction.

Results: The results obtained in our investigation indicate that the vector
autoregressive moving average with exogenous regressors (VARMAX) model
achieved the best performance in rainfall forecasting, with an average rootmean
square error (RMSE) of 9.1833 in time series cross-validation, outperforming the
other models.

Discussion: The climate-driven patterns directly influenced the performance
of the rainfall forecasting models evaluated in this study. As cited above, the
VARMAX had the lowest avRMSE, which was obtained using a lag-1 value of
exogenous variables. This is particularly noteworthy, as this same configuration
not only produced the lowest RMSE for forecasts in 2022 but also highlighted
the importance of relative humidity and solar radiation in enhancing predictive
accuracy, even in the presence of data anomalies related to solar radiation
measurements.
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1 Introduction

Rainfall in the Amazon has been extensively studied for several
years because of its significant impact on the local population,
commerce, and industry (Alves et al., 2021; Luiz-Silva et al.,
2021; Monteiro et al., 2024). In addition, sensing technologies
are frequently employed to monitor rainfall conditions. Weather
stations, which are equipped with multiple sensors, play crucial
roles in collecting and storing data on climate and temporal
variables (Ioannou et al., 2021).These stations enable the continuous
measurement of data, providing up-to-date information on weather
conditions at the time of each measurement.

Meteorological stations are designed to record meteorological
variables such as air temperature, relative humidity, wind direction
and speed, solar radiation, and rainfall. These stations are
responsible for recording data at predetermined time intervals
(e.g., hourly, daily, or monthly) and transmitting them remotely.
This periodic monitoring of atmospheric conditions provides
essential information for disaster prevention, agriculture, and
climate research. These stations continuously collect climate data
to support accurate weather prediction and spatial planning
(Novák et al., 2020; Reigosa et al., 2024).

Daily precipitation predictions are typically made using
atmospheric global circulation models (AGCMs), which are based
on the physics of the atmosphere. These models are generally
reliable for short-term forecasting, especially up to 1 or 3 days in
advance. However, owing to the chaotic nature of the atmosphere,
monthly predictions are much more challenging to accurately
obtain (Lorenz, 2005; Hawthorne et al., 2013). Currently, only a few
meteorological centers provide monthly forecasts using AGCMs
or regional models. Nevertheless, such forecasts are crucial for the
public, particularly for farmers and others who require long-term
information to plan their activities. One way to obtain monthly
predictions is to use monthly historical data together with statistical
learning (SL) or artificial intelligence methods, such as machine
learning (ML) models.

Generally, meteorological studies use a large volume of data;
however, some works use between 10 and 20 years of collected
data, a shorter period than is usually seen in the literature. Thus,
the study by Ma et al. (2021) uses data spanning a period of
20 years (2000–2019), while the second study Pirone et al. (2023)
used data from 10 years (2009–2019). In the first study, two
databases were used, the Integrated Multi-satellite Retrievals for
Global Precipitation Measurement (IMERG) and Tropical Rainfall
Measuring Mission Multisatellite Precipitation Analysis (TMPA),
and the results over the 20 years data indicated that IMERG
performed better than TMPA across all temporal scales and regions
analyzed, with increased accuracy over longer periods. For example,
IMERG showed greater accuracy in the mid-temperate semi-humid
zone and lower accuracy in the mid-temperate arid zone. In the
second study, the machine learning model proved effective in
short-term rainfall prediction, with decreasing accuracy as the lead
time increased. This model could predict rainfall intervals with an
accuracy of up to 91.64% for 30-min forecasts.

ML methods have a wide range of applications, from analyzing
meteorological data to identifying animal and plant species
(Han et al., 2023), whereas autoregressive statistical models are
extensively employed to solve time series forecasting problems

(Damor et al., 2024; Luo, 2024). Studies using data from
weather stations can reveal patterns over time, and statistical
and ML models can leverage these patterns to make future
predictions. Consequently, the use of meteorological data to
forecast precipitation is vital for various sectors. For example, in
industry, accurate precipitation forecasts can be used to optimize
the scheduling of loading and unloading operations to minimize
weather-related disruptions. In travel planning, precise precipitation
forecasts can help reduce the risk of accidents; notably, Guideli et al.
(2021) indicated thatmore accidents occur on roads in Brazil during
rainy conditions than in periods with dry conditions.

Studies of climatic variables are important for ML and SL
models, as in the study of Hussain et al. (2024)that uses machine
learning techniques and ensemble-based models to predict rainfall
occurrence, rainfall amount, and daily average temperature, using
meteorological data from Bangladesh. The ensemble-based models
demonstrated better performance compared to traditional machine
learning models, achieving higher accuracy (83.41%) and recall
(78.17%) in predicting rainfall occurrence, although precision was
the lowest (51.16%). In predicting rainfall amount, the ensemble
regression model obtained the lowest mean absolute error (MAE)
of 0.363691 and root mean square error (RMSE) of 0.904688.
For predicting daily average temperature, the ensemble regression
model also presented the lowest values of MAE (0.425209) and
RMSE (0.545714), highlighting its ability to improve prediction
accuracy in regions with dynamic and complex climatic patterns.

Belém will host the 30th UN (United Nations) Conference
of Parts on Climate Change (COP 30) in 2025. This upcoming
event prompted a search for detailed information about the city,
including its climate. Belém is characterized by a tropical rainforest
climate (Af) according to the Köppen climate classification scheme.
Climatological data from 1991 to 2020, provided by INMET
(the Brazilian Meteorological Institute), indicate that average
precipitation in the city totals 3,308.3 mm annually.

The period of less rain ( < 300 mm) in Belém extends fromMay
to November (Mendoza, 2018). March is themonth with the highest
amount of precipitation, averaging 506.3 mm, whereas September
has the lowest, with 120.1 mm. A study conducted by Costa et al.
(2024) revealed that rainfall in Belém is one of the most important
factors that directly impacts flooding at various points in the city,
where a minimum value of rainfall plus tide height of 640.4 mm
is enough to flood Belém if the rainfall intensity reaches at
least 30 mm/h.

Over the years, few studies have focused on applying statistical or
MLmodels to forecast rainfall in the city of Belém or in cities within
the metropolitan region. Santos et al. (2021) investigated the use of
the seasonal autoregressive integrated moving average (SARIMA)
andHolt-Wintersmodels to predict certainmeteorological variables
in Belém, including monthly precipitation, using data from INMET
between 1990 and 2020. The results obtained indicated that the
Holt-Winters model with additive seasonality yielded a root mean
square error (RMSE) of 137.2. Similarly, Ferreira and Medeiros
(2022) employed 10 statistical and ML algorithms to predict hourly
precipitation in 5 capitals in Brazil, including Belém, using 13 years
of meteorological data. The results showed that the random forest
model obtained an average RMSE of approximately 1.45. The
study conducted by Pinheiro Gomes et al. (2024) examined the
use of a temporal deep degradation network to estimate daily
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precipitation in the Brazilian Legal Amazon, including a city near
the metropolitan region of Belém (e.g., Terra Alta). In this study,
meteorological data from the National Water Agency (ANA) from
1998 to 2016 were used, and the trained model achieved an RMSE
of 0.0017–0.0214.

Themain objectives of this study are (i) to statistically investigate
the correlation between climatic covariates and the dynamics of
monthly rainfall in Belém, identifying the individual impact of
each variable on rainfall formation in the region, and (ii) to use
this information for monthly precipitation forecasting through the
application of statistical and machine learning models.

2 Materials and methods

This study was specifically conducted to process data collected
from a weather station located in the city of Belém, in the state
of Pará. The meteorological data processing pipeline comprises
steps ranging from preprocessing to training and validation of
statistical and ML models for monthly rainfall forecasting in the
city. All the stages involved in the proposed methodology are
detailed below.

2.1 Meteorological data and preprocessing

The data used in this work are from the Vale Technological
Institutemeteorological station, which is located in the city of Belém
in the state of Pará, northern Brazil (1°28′26″ S and 48°27′30″

W). For this work, hourly meteorological data were collected at
the station from 2016 to 2022. Seven meteorological variables were
considered: relative air humidity (%), wind direction (°), wind speed
(m/s), atmospheric pressure (mb), solar radiation (W/m2), instant
temperature (°C), and precipitation (mm).

Meteorological data, especially monthly precipitation data,
are essential for many socioeconomic activities; notably, weather
patterns can directly affect farmers, the electrical sector, and
all industries that rely on open-air planning (for example, the
mining sector).

The proposed pipeline for processing collected meteorological
data and developing a predictive model for monthly rainfall
forecasting is illustrated in Figure 1. Figure 1A depicts the
preprocessing stage, which comprises five steps: (1) missing data
verification, (2) grouping data by month, (3) data imputation, (4)
statistical analyses, and (5) creation of datasets based on feature
composition (FC).

The first stage of the preprocessing pipeline consists of verifying
whether there are missing data in the hourly data collected from
the meteorological station. It is common for observed datasets
to have gaps due to station defects or deterioration over time.
Our investigation revealed that all the variables had missing
values to some degree. Relative air humidity, wind direction,
wind speed, atmospheric pressure, solar radiation (W/m2), and
instant temperature (°C) presented 3.57% of missing data, whereas
precipitationwas collectedwith 4.76%ofmissingmeasures. Another
important verification performed for the meteorological data was
the assessment ofmissing data intermittency, that is, whether, within
the same month, there were hours with both recorded and missing

data. The analysis revealed no intermittency between available and
missing data within the same month.

To address the issue of missing data, particularly in the
context of sparse matrix processing, we first grouped the data
by month for each meteorological variable, calculating cumulative
monthly values for precipitation and average monthly values for
the remaining variables. We subsequently applied data imputation
by linear interpolation of values for each variable, where the
missing values are estimated based on the preceding and succeeding
observed values (Noor et al., 2014). Figure 2 shows the bar chart
with the monthly precipitation level in Belém between 2016 and
2022 before the proposed data imputation strategy was applied
(Figure 2A) and after the insertion of data (Figure 2B). The raw
and imputed data for all the variables are provided in the
Supplementary Material.

The imputed covariates analyzed in this study, including
relative humidity, wind direction, wind speed, atmospheric pressure,
solar radiation, and instantaneous temperature between 2016
and 2022 are displayed in Figure 3. The solar radiation values
between September 2019 and October 2021 are not zero but
low, which can be associated with measurement problems in the
meteorological station.

Autocorrelation, partial autocorrelation, and Spearman
correlation analyses were conducted on themeteorological variables
to assess the relation between the precipitation and its lagged
values, and the relation between the meteorological covariates
and monthly rainfall in Belém. These statistical tests are crucial
for the last stage of the preprocessing pipeline, where training
and test datasets are created according to FCs, which consist of
groups of variables with varying levels of information. The training
dataset consisted of meteorological data collected between 2016
and 2021, whereas the test dataset comprised meteorological data
obtained for 2022.

2.2 Statistical and machine learning models

The statistical and ML models used in this work to perform
monthly rainfall forecasting in Belém were autoregressive
integrated moving average (ARIMA), seasonal autoregressive
integrated moving average (SARIMA), seasonal autoregressive
integrated moving average with exogenous inputs (SARIMAX),
vector autoregressive moving average with exogenous regressors
(VARMAX), long short-term memory (LSTM), and recurrent
neural network (RNN) methods.

TheARIMAmodel is a statistical technique widely used for time
series analysis, including applications in meteorology and financial
market analysis (Falatouri et al., 2022). The ARIMA model can be
expressed by ARIMA (p,d,q), where p, d, and q represent the order
of the autoregressivemodel, the order of differences, and the order of
the moving average, respectively. The mathematical formula of the
ARIMA model is a combination of autoregressive, integrative, and
moving average components (Alsharef et al., 2022; Shumway and
Stoffer, 2017), as shown in Equation 1, where y(t) ∈ ℝ and ϵ ∈ ℝ are
the observed value and the corresponding random disturbance of
the series at time t ∈ ℤ+, respectively.The parameters ϕ ∈ ℝp and θ ∈
ℝq are vectors of the model coefficients related to the autoregressive
and moving average terms, respectively. The term Δd represents the
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FIGURE 1
Proposed pipeline to process meteorological data and develop rainfall forecaster. (A) Preprocessing stage evolving missing data verification, data
imputation, monthly data aggregation, and statistical analysis; (B) Stage of training and testing the model for monthly rainfall forecasting.

FIGURE 2
Monthly precipitation in Belém between 2016 and 2022 according to collected data. (A) Monthly precipitation before data imputation; (B) Monthly
precipitation after data imputation.

d-th derivative of an integrated component.

Δdy (t) =
p

∑
j=1

ϕjy (t− j) +
q

∑
k=1

θkϵ (t− k) + ϵ (t) (1)

The SARIMA model is an extension of the ARIMA model
that incorporates seasonal patterns in time series data (Korstanje,
2021). This technique can be represented by SARIMA (p,d,q)

(P,D,Q)S, where P, D, Q, and S are the orders of the seasonal
autoregressive component, seasonal difference component, seasonal
moving average, and seasonality period, respectively. The general
SARIMAmodel can be expressed as shown in Equation 2. Similarly,
the SARIMAX model aggregates the same properties as those
from the previous models but incorporates exogenous input
information (Alharbi and Csala, 2022; Arunraj et al., 2016),
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FIGURE 3
Imputed monthly meteorological variables between 2016 and 2022. (A) instant temperature (red bars); (B) relative humidity (blue bars); (C) solar
radiation (yellow bars); (D) atmospheric pressure (gray bars); (E) wind speed (green bars); (F) wind direction (purple bars).

as shown in Equation 3.

ΦP (BS)(1−BS)Dϕp (B) (1−B)
dy (t) = ΘQ (BS)θq (B) ϵ (t) (2)

ΦP (BS)(1−BS)Dϕp (B) (1−B)
dy (t) = ΘQ (BS)θq (B) ϵ (t) + βX (t)

(3)

The terms ΦP(BS) ∈ ℝP, ϕp(B) ∈ ℝ
p, ΘQ(BS) ∈ ℝQ, and θq(B) ∈

ℝq are the vectors associated with the regular autoregressive
component, seasonal autoregressive component, regular moving
average component, and seasonal moving average component,
respectively. The elements (1−B)d and (1−BS)D are operators
of nonseasonal differentiation and seasonal differentiation,
respectively, where B represents the lag operator (By(t) = y(t− 1)).
The variable X(t) ∈ ℝg represents the vector of exogenous inputs.

The VARMAX model is a multivariate statistical technique that
enhances the vector autoregressive (VAR) technique and is designed

to capture the dynamic relationships between multiple time
series while considering the effects of integrating moving average
components and exogenous variables (Gómez, 2019). Equation 4
presents the mathematical structure of the VARMAX model, where
Y(t) ∈ ℝg is the vector containing all the observable variables, X(t) ∈
ℝg is the vector of exogenous variables, and ξ(t) ∈ ℝg represents the
vector of the corresponding random disturbances.The elements Φ ∈
ℝ(gxg), Θ ∈ ℝ(gxg), and Ω ∈ ℝ(gxg) are the matrices of autoregressive
coefficients, moving average coefficients, and mapping coefficients
of the exogenous regressors, respectively.

Y (t) =
p

∑
i=1

ΦY (t− i) +
q

∑
j=1

Θξ (t− j) +ΩX (t) + ξ (t) (4)

The best statistical model for rainfall forecasting in Belém was
tuned for reproducibility using a grid search strategy associated with
time series cross-validation (TSCV). The objective of this strategy
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TABLE 1 Hyperparameters range used for Statistical Learning models.

p d q P D Q s

SARIMAX [1, 2] [1, 4] [1, 2] [1, 2] [1, 4] [1, 2] 12

VARMAX [1, 2] - [1, 2] - - - -

SARIMA [1, 2] [1, 4] [1, 2] [1, 2] [1, 4] [1, 2] 12

was to select the model with the lowest value of the average root
mean square error (avRMSE). The ranges of hyperparameters used
to tune the statistical algorithms are detailed in Table 1.

RNN is a type of neural network in which connections between
neurons allow signals to travel in loops, enabling the network
to retain information across time steps. RNNs are connectionist
models that represent sequential dynamics through cyclic patterns
within a network structure, where the nodes are referred to as
recurrent neurons (Lipton et al., 2015). Recurrent neurons rely on
the current input and the output from the previous neuron in the
network (Salem, 2022).This characteristic makes RNNs particularly
well suited for time series prediction (Abbasimehr et al., 2020).

LSTM is an extension of RNNs. Its key feature is the inclusion of
memory neurons in the hidden layers of the network architecture,
which allows the LSTM to retain and utilize information from
previous time steps, thereby improving its performance in time
series analysis (Abbasimehr et al., 2020). The controlled flow of
information among the memory neurons enables the LSTM model
to capture and store various temporal dependencies with distinct
characteristics (Lindemann et al., 2021).

Figure 4 illustrates the architectures of an RNN and an LSTM
model with all relevant layers. The main difference between these
models is the complexity of the mathematical operations for LSTM
neurons. The RNN neurons only process the input and hidden
state vectors using an activation function, as shown in Equation 5,
where Wh, Uh, and bh are the weight matrix associated to input
X(t), the weight matrix associated with the hidden state h(t− 1),
and the bias vector associated with the neuron, respectively. The
LSTM neurons perform many operations to calculate the processed
output via a forget gate, an input gate, candidate memory, and an
output gate (Arras et al., 2019).

ft = σ(Whx (t) +Uhh (t− 1) + bh) (5)

For algorithms based on neural networks, the ranges of
hyperparameters used for model tuning using the same grid search
with TSCV as discussed above are shown in Table 2. To execute the
algorithms, we used a machine with the following specifications:
NVIDIA DGX H100 with 8 NVIDIA H100 Tensor Core GPUs,
640 GB of GPURAM, 2 Intel Xeon Platinum 8480CCPUs, and 2 TB
of system RAM.

2.3 Model optimization and evaluation

The performance evaluation of the forecasting models proposed
in this work is divided into two stages, as shown in Figure 1B. The
first one consists of applying a grid search with TSCV to adjust
the hyperparameters and select the model that achieves the lowest

avRMSE value using the training data. TSCV is a cross-validation
technique specifically designed for time series problems, which uses
the training data to evaluate the model’s predictive performance.
Initially, a training set (green bar) and a validation set (red bar)
are defined based on their respective temporal window sizes, as
illustrated in Figure 5. For each k-th fold of the TSCV, the training
window is incrementally expanded, and the RMSE is computed on
the corresponding validation data. The TSCV process concludes at
the N-th fold, where the sum of the training and validation window
sizes equals the total length of the training dataset. After all the
RMSE values are calculated for all folds, the TSCV calculates the
avRMSE. This approach allows the model to be trained on past
data and tested on future data, thus accurately reflecting real-world
scenarios (Bergmeir and Benítez, 2012). The second stage consists
of evaluating the forecasting performance of the best-trained model
using the RMSE for the test dataset.

Equation 6 expresses the RMSE metric, where y(t) and ŷ(t)
are the real and the predicted result for the t-th measure,
{t ∈ ℤ+|1 ≤ t ≤M}, respectively. Equation 7 presents the avRMSE
formula, where k is the k-th fold and N is the total number of folds
in TSCV, {k ∈ ℤ+|1 ≤ k ≤ N}.

RMSE = √ 1
M
∑M

t=1
(y (t) − ŷ (t))2 (6)

avRMSE =
RMSEk=1 +RMSEk=2 +⋯+RMSEk=N

N
(7)

The second stage of the performance evaluation involves
assessing themodels according to theRMSEand absolute percentage
error (APE)metrics for themonths of the last year. Equation 8 shows
the APE metric.

APE = |
y (t) − ŷ (t)

y (t)
| .100% (8)

3 Results

This section outlines the results obtained from the Spearman
correlation and Granger causality test analyses conducted on the
meteorological data during the preprocessing stage. Additionally,
the data division process for feature composition analysis and the
results of the performance analysis of the statistical and ML models
for rainfall prediction in Belém are presented.

3.1 Statistical analysis of rainfall in Belém

Descriptive statistical analyses of the correlations between
exogenous meteorological variables (inputs) and monthly
precipitation (target) and analyses of autocorrelation functions are
essential for extracting key insights into the climatic dynamics
of Belém between 2016 and 2022, in addition to refining the
dataset used for the development of predictive models. Figures 6A,B
present the results obtained from applying autocorrelation and
partial autocorrelation analysis between precipitation and lagged
precipitation values.

The autocorrelation analysis of monthly precipitation data in
Belém reveals important insights into how the current accumulated
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FIGURE 4
Artificial neural networks architectures. (A) Structure of recurrent neural network (RNN). (B) Structure of long short-term memory (LSTM).

TABLE 2 Hyperparameters used for Machine Learning - Recurrent Neural Networks.

N° of layers N° of neurons N° of epochs Activation func

LSTM [1, 2] [100, 200, 300, 400] 200 ReLu

RNN [1, 2] [100, 200, 300, 400] 200 ReLu

FIGURE 5
Schematic of time series cross-validation (TSCV) using expanding time
window. Green bar represents the training set with expanding window
and red bar represents the validation set in the k-th fold.

precipitation is influenced by the values trends in previous months.
The autocorrelation function shown in Figure 6A indicates that the
current monthly precipitation value is strongly related to the value
in the previous month (lag 1), reaching a correlation magnitude of
0.6245, whereas the values from subsequent months (lags 2, 3, 4, …)
have little influence on the current rainfall value, with correlation
magnitude of less than 0.4230. The p-value obtained for each
autocorrelation by lag is less than 0.05, indicating that the correlation
between the regressive values and the precipitation, mainly the lag 1,
is statistically significant. The autocorrelation coefficients and their
corresponding p-values are provided in Supplementary Table S1.

The contribution of lag 1 with precipitation prediction is also
supported by the partial autocorrelation function analysis, which
indicates that only precipitation data at lag 1, without the influence
of other lags, exhibit a significant correlation with the current value,
reaching a correlation of 0.632, exceeding the confidence interval
region, as shown in Figure 6B.

The Spearman correlation results between exogenous
meteorological variables at lags 1 and 2 and monthly precipitation
indicate that relative air humidity, solar radiation, and instantaneous
temperature at lag 1 are the environmental variables most strongly
correlated with monthly rainfall in Belém, with absolute correlation

values above 0.5, as shown in the heatmap in Figure 6C. However,
this analysis also highlights that monthly precipitation at lag 1
itself has the strongest correlation with rainfall formation, which
is corroborated by the p-value less than 0.05 for each correlation,
indicating each correlation is statistically significative. On the other
hand, none of the variables display a substantial correlation with
monthly precipitation For lag 2, obtaining values less than 0.5 and
p-value of 0.196 and 0.496 forwind speed and direction, respectively.
The Spearman correlation coefficients and their corresponding
p-values are available in Supplementary Table S2.

A comparison of the results obtained from both correlation
analyses clearly reveals that the meteorological data at lag 1 exhibit
stronger correlations with monthly precipitation, with a particular
emphasis on previous precipitation trends and relative humidity. On
the basis of these findings, we created datasets using the feature
composition (FC) approach, in which the variables identified as
most influential in the previous analyses for lag 1 (precipitation,
relative air humidity, solar radiation, and instant temperature) were
selected to establish a dedicated dataset for training and testing
monthly precipitation prediction models. Table 3 summarizes how
meteorological variables at lag 1 were grouped into FC classes,
where FC-1 includes all variables, FC-2 consists only of the four
selected variables, and FC-3 comprises only precipitation and
relative humidity, as these two variables exhibited the highest
correlations with current precipitation.

3.2 Rainfall forecasting in Belém

Evaluating the impact of meteorological variables on the
predictive modeling of monthly precipitation in Belém is essential
for validating the statistical findings obtained from correlation
analyses. Figure 7A presents a bar chart depicting the performance
scores achieved by each statistical and ML model through TSCV. In
contrast, Figure 7B illustrates the performance of these models in
forecasting the total monthly precipitation for all months of 2022.
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FIGURE 6
Statistical analysis for monthly precipitation in Belém. (A) Autocorrelation function for monthly precipitation in Belém by lag; (B) Partial autocorrelation
functions for monthly precipitation in Belém by lag; (C) Spearman correlation of lagged meteorological variables with the monthly
precipitation in Belém.
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TABLE 3 Grouping of meteorological variables with lag 1 in feature
composition.

Feature composition Variables

FC-1 All variables

FC-2 Precipitation
Air relative humidity
Solar radiation
Instant temperature

FC-3 Precipitation
Air relative humidity

Figure 7A presents the performance evaluation of the predictive
models based on the TSCV from 2016 to 2021. The results
indicate that when all meteorological variables (FC-1) were utilized,
the VARMAX model exhibited the worst performance, with an
avRMSE of 1,354.89, whereas the other models achieved values
below 276.86. However, by refining the models through the
selection of meteorological variables with the highest correlations
with monthly precipitation in Belém, the VARMAX model
demonstrated a substantial performance improvement, with the
avRMSE reduced to 74.75 and 93.90 for the variables included
in FC-2 and FC-3, respectively. In contrast, neural network-
based models (RNN and LSTM) did not display performance
variations when the number of variables was reduced, which can
be attributed to the training mechanism of these architectures,
where the influence of less informative variables is naturally
assigned a lower weight than those of more informative variables.
Table 4 presents the optimized hyperparameters for the best
prediction models based on their performance in TSCV. The
performance of each model by hyperparameter in this analysis is
displayed in Supplementary Tables S3–S7.

The performance analysis of the best models based on
FC analysis for monthly precipitation forecasting in Belém in
2022 is shown in Figure 7B. These results indicate a consistent
performance trend compared with the outcomes obtained in
the TSCV evaluation, particularly regarding the performance
improvement observed for the SARIMAX and VARMAX models
for FC-2 and FC-3. Among the analyzed models, the VARMAX
model based on FC-2 achieved the lowest RMSE in this test, reaching
a value of 156.70, whereas the other models yielded RMSE values
above 170 when the same input variables were used.

Some important findings were also revealed in our predictive
analyses. Figure 8 displays the observed precipitation values recorded
at the meteorological station for each month in Belém in 2022 (blue
bars). The other bars represent the monthly precipitation predicted
by the best model with each technique, and the dashed line indicates
the historical average for each month between 2016 and 2021. One
key observation is that, for certain months in 2022, the observed
precipitation values deviate significantly from the historical average,
particularly between February and June.This temporal discrepancy in
the temporal pattern between the training and test datasets is crucial
for explaining why somemodels exhibited larger prediction errors for
specific months, despite effectively capturing the overall trend of the
historical average. Table 5 shows the values for observed, average and
predicted monthly rainfall by model in 2022.

Investigating the prediction error by month using APE metric,
the models were able to predict rainfall effectively and yielded
low APE values for the months between July and January of 2022
(dry season). For example, the VARMAX model based on FC-2,
which achieved the best performance in the two tests, yielded values
between 22.03% and 282.8% for these months, whereas the LSTM
displayed values between 0.57% and 163.41% for the same period,
as shown in Table 6. Evaluating the average APE for the 12 months,
the LSTM model achieved the lowest value of 228.47%, as it best
approximates the observed values, mainly for the dry season. On
the other hand, for the rainy season, the models achieved higher
error values, as can be seen for SARIMAX which obtained an APE
of 1,503.71% for themonth of June, while LSTM achieved the lowest
value with 1,033.6% for the same month.

4 Discussion

The rainfall dynamics in Belém are strongly modulated by
environmental variables such as air temperature, wind speed and
direction, solar radiation, and relative humidity, each contributing
to precipitation variability at distinct levels. This is supported by the
results of the Spearman correlation analysis conducted in this study,
which reflect patterns typical of regions within the Amazon biome.
Notably, as shown in Figure 6C, the most influential predictor for
monthly rainfall was the precipitation observed in the preceding
month, a finding further corroborated by autocorrelation plots.

In this timescale (seasonal scale), the phenomena that most affect
tropical South America (including Belém) are El Niño-Southern
Oscillation (ENSO) and Tropical Atlantic Gradient (Marengo et al.,
2012; Reboita et al., 2021). The ENSO phenomena usually start in
August of 1 year and ends in July of the following year (Tedeschi and
Sampaio, 2022), while themost active phase of TAG is betweenMarch
andMay (MAM). During the period of this study (2016–2022), there
were 2 EL Niños (2015/2016, 2018/2019) and 5 La Niñas (2016/2017,
2017/2018, 2020/2021, 2021/2022, and 2022/2023) (NOAA, 2025a).
Although there was no positive TAG (AMM (Atlantic Meridional
Mode) >1.0°C in MAM period), and the years 2018, 2019, 2021
and 2022 were negative TAG (AMM < −1.0°C) (NOAA, 2025b).
The frequency of both phenomena affected the precipitation and its
forecasting. It could also affect the future forecasting,mainly inneutral
years (years without these phenomena).

The statistical analysis performed over the temporal window of
data retrieved from the meteorological station reveals correlations
between the long-termpatternsof covariatesandrainfall behaviorover
the 7-year period. Given the tropical climate of the Amazon region,
which gives rise to two well-defined meteorological seasons (rainy
and dry), the covariates exhibit distinctive seasonal trends. Among
them, atmospheric pressure showed the least variability and thus the
second-lowest correlation with rainfall (Spearman = −0.299), while
wind direction displayed irregular patterns, resulting in the lowest
correlation observed (Spearman = 0.247). In contrast, other variables,
such as temperature and relative humidity, exhibited more consistent
seasonal trends and correspondingly higher correlation values.

Theseclimate-drivenpatternsdirectly influenced theperformance
of the rainfall forecasting models evaluated in this study. TSCV
results demonstrated that the VARMAX model achieved the lowest
avRMSE when using lag-1 values of monthly precipitation, relative
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FIGURE 7
Performance evaluation of the statistical and machine learning models. (A) avRMSE values obtained by the models in the TSCV analysis by FC; (B)
Performance of the models based on RMSE metric for monthly precipitation forecasting in 2022 by FC.

TABLE 4 Tuned hyperparameters from the best statistical and machine learning models.

Model FC-1 FC-2 FC-3

SARIMA Order = (1,1,2)
Seasonal order = (1,1,1,12)

Order = (1,1,2)
Seasonal order = (1,1,1,12)

Order = (1,1,2)
Seasonal order = (1,1,1,12)

SARIMAX Order = (1,1,1)
Seasonal order = (1,1,1,12)

Order = (1,1,2)
Seasonal order = (1,1,2,12)

Order = (1,1,2)
Seasonal order = (1,1,2,12)

VARMAX Order = (2,1) Order = (1,1) Order = (1,1)

RNN Nº of layers = 2
Nº of neurons = 400

Nº of layers = 2
Nº of neurons = 400

Nº of layers = 2
Nº of neurons = 400

LSTM Nº of layers = 1
Nº of neurons = 200

Nº of layers = 1
Nº of neurons = 200

Nº of layers = 1
Nº of neurons = 200

FIGURE 8
Comparison between observed precipitation (blue bars), historical average precipitation (dashed line), and the predicted monthly precipitation from the
best-performing model.
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TABLE 5 Values of observed (last column), average (penultimate column), and predicted monthly rainfall by model in 2022 (first to fifth column).

Month RNN LSTM VARMAX SARIMAX SARIMA Average precipitation Precipitation

Jan 172.872 368.885 224.587 318.449 341.031 345.740 371.000

Feb 263.295 520.819 259.499 522.036 546.931 459.200 195.400

Mar 367.583 520.923 277.069 639.611 556.806 490.333 119.200

Apr 423.675 381.306 283.765 508.098 387.157 317.400 86.933

May 349.733 331.936 285.475 446.697 351.436 309.167 54.667

Jun 303.732 253.926 295.597 539.231 283.095 122.667 22.400

Jul 247.042 149.148 285.579 244.798 183.934 132.367 132.400

Aug 184.404 162.460 258.286 186.564 181.175 126.600 184.600

Sep 158.280 197.034 236.337 195.011 178.338 133.600 74.800

Oct 171.431 216.081 245.307 245.542 200.942 134.933 88.200

Nov 184.433 215.574 287.733 285.977 226.128 162.600 233.600

Dec 194.497 195.606 288.486 311.925 282.947 214.733 236.400

TABLE 6 Values of APE obtained by the models in each month of 2022.

Month SARIMA (%) SARIMAX (%) VARMAX (%) RNN (%) LSTM (%)

Jan 8.08 14.16 39.46 53.4 0.57

Feb 179.9 167.16 34.97 345.73 166.54

Mar 367.12 436.59 132.44 208.38 337.02

Apr 345.35 484.47 226.42 387.36 338.62

May 542.87 717.13 422.21 539.76 507.2

Jun 1,163.82 1,503.71 1,174.99 1,255.95 1,033.6

Jul 39.13 85.17 116.02 86.87 82.2

Aug 1.86 1.06 54.84 0.11 11.99

Sep 138.42 155.88 282.8 111.6 163.41

Oct 127.82 178.39 225.4 94.37 144.99

Nov 3.2 22.42 23.17 21.05 7.72

Dec 19.69 31.95 22.03 17.73 17.26

humidity, solar radiation, and instantaneous temperature as inputs.
This is particularly noteworthy, as this same configuration not only
produced the lowest RMSE for forecasts in 2022 but also highlighted
the importance of relative humidity (second-highest direct Spearman
correlation)andsolarradiation(highest inverseSpearmancorrelation)
in enhancing predictive accuracy, even in the presence of data
anomalies related to solar radiation measurements.

However, it is important to note that the precipitation levels
observed in 2022diverged from thehistorical average recordedduring

the training period (2016–2021), suggesting the presence of data
drift. As shown in Figure 8, the SARIMA, SARIMAX, RNN, and
LSTM models aligned more closely with the historical average than
with the actual observed values (blue bars), indicating a systematic
challenge in adapting to non-stationary climatic conditions. From a
climatological perspective, this deviationmay reflect broader impacts
of global warming, which is progressively altering meteorological
dynamics across the Amazon and introducing significant changes
in precipitation patterns. These evolving conditions increase the
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magnitudeof data drift, therebymakingmonthly rainfall prediction in
this region increasingly complex. This hypothesis is supported by the
high APE values observed during the rainy season across all trained
models, as shown in Table 6.

5 Conclusion

Statistically investigating the associations betweenmeteorological
variables and precipitation levels is essential to understanding the
influence that the dynamics of these environmental variables have on
monthlyrainfall formationinthecityofBelém,whichexperienceshigh
rainfall volumesbetweenDecember andApril, significantly impacting
the city’s social dynamics.

Although there is a well-known difficulty in obtaining abundant
and high-quality meteorological data from the Amazon region,
mainly due to the scarcity of measurement stations and limited
data accessibility, our analyses highlighted key aspects of the
collected meteorological data, emphasizing that rainfall formation
in Belém is intrinsically linked to certain environmental variables,
primarily the rainfall volume in the previous month and relative
humidity. On the other hand, other factors, such as solar radiation,
instantaneous temperature, atmospheric pressure, wind speed, and
wind direction, exhibited lower correlation levels with monthly
rainfall in the capital of Pará.

From a predictive standpoint, although the amount of evaluated
data is not substantial at the monthly scale—due to meteorological
data availability limitations—the results highlight the strong
potential of using statistical and ML models for learning tasks and
precipitation forecasting. Our simulation results clearly demonstrate
that the VARMAX model, which is based on the selection of
the environmental variables with the highest correlations with the
current precipitation volume (FC-2), achieves the best performance
across all performance evaluation stages, yielding an RMSE value
8.97% lower than that of SARIMA, which is the second-best
model in terms of monthly rainfall prediction for 2022. However,
an in-depth analysis of the predictions revealed that the LSTM
model achieved the best performance in terms of relative error,
yielding the lowest average APE (2.28%) for forecasts throughout
2022. Unlike the VARMAX model, LSTM can capture the seasonal
dynamics of precipitation data, which may have contributed to
its higher accuracy in certain months. Therefore, these findings
suggest that the proposed LSTM andVARMAXmodels trained with
the meteorological variables with the highest correlations with the
current precipitation volume are promising tools for operational
monthly precipitation forecasting in Belém, potentially enhancing
decision-making in the context of climate monitoring.

In future research, it would be beneficial to collect additional
meteorological data from the city of Belém to perform additional
spatiotemporal analyses at greater scales and assess the consistency
of the resulting statistical correlations and predictions. Furthermore,
expanding the dataset could enhance the training performance and
robust of the predictive models by providing additional valuable
information. Furthermore, the use of machine learning techniques
such as deep learning, hybrid models, and transformer-based
architectures like TimesNet, FEDformer, and TimeXer can also
contribute to capturing the dynamic relationships between climatic

variables andmonthly precipitation in Belém, potentially improving
forecasting performance metrics.
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