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Accurate prediction of water inrush volumes is essential for safeguarding tunnel
construction operations. This study proposes a method for predicting tunnel
water inrush volumes, leveraging the eXtreme Gradient Boosting (XGBoost)
model optimized with Bayesian techniques. To maximize the utility of available
data, 654 datasets with missing values were imputed and augmented, forming
a robust dataset for the training and validation of the Bayesian optimized
XGBoost (BO-XGBoost) model. Furthermore, the SHapley Additive explanations
(SHAP) method was employed to elucidate the contribution of each input
feature to the predictive outcomes. The results indicate that: (1) The constructed
BO-XGBoost model exhibited exceptionally high predictive accuracy on the
test set, with a root mean square error (RMSE) of 7.5603, mean absolute
error (MAE) of 3.2940, mean absolute percentage error (MAPE) of 4.51%, and
coefficient of determination (R2) of 0.9755; (2) Compared to the predictive
performance of support vector mechine (SVR), decision tree (DT), and random
forest (RF) models, the BO-XGBoost model demonstrates the highest R2 values
and the smallest prediction error; (3) The input feature importance yielded by
SHAP is groundwater level (h) > water-producing characteristics (W) > tunnel
burial depth (H) > rock mass quality index (RQD). The proposed BO-XGBoost
model exhibited exceptionally high predictive accuracy on the tunnel water
inrush volume prediction dataset, thereby aiding managers in making informed
decisions to mitigate water inrush risks and ensuring the safe and efficient
advancement of tunnel projects.

KEYWORDS

tunnel water inflow, XGBoost, bayesian optimization, data augmentation, model
interpretation

1 Introduction

Tunnels constitute a prevalent form of underground infrastructure, the construction
of which entails a multitude of risks and challenges (Kim J. et al., 2022; Liu et al.,
2022). Tunnel water inflow (WI) represents a common geological calamity within tunnels,
posing a significant threat to the safety of construction personnel and machinery within
the tunnel and substantially impeding the safe and efficient construction of tunnels
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(Li and Wu, 2019; Wang et al., 2020). The occurrence of WI
attributes to a variety of complex factors (Golian et al., 2018;
Farhadian and Nikvar-Hassani, 2019). The primary causes include:
(1) the intricate geological conditions, such as fractured rock strata,
well-developed fractures, and extensive karst formations, which
facilitate the easy ingress of groundwater during tunnel excavation
(Jin et al., 2016); (2) the adverse hydrogeological conditions, such
as high groundwater levels and hydraulic connectivity between
surface water and groundwater, which increase the likelihood of
WI; and (3) human-related factors during construction, such as
improper construction methods and inadequate support designs,
which may also trigger water gushing hazards. The WI disaster
in tunnels poses severe and multifaceted risks (Li et al., 2017).
First and foremost, it directly threatens the safety of construction
personnel, potentially causing casualties and equipment damage.
Secondly, the inflow of water increases construction difficulty
and reduces construction efficiency, leading to delays in project
timelines and increased costs. Additionally, prolonged water
immersion weakens the stability of tunnel structures, leaving
safety hazards and negatively impacting the tunnel’s service life.
Globally, hundreds of tunnel water inflow incidents have transpired,
inflicting substantial casualties and economic losses across various
countries and regions (Holmøy and Nilsen, 2014). For instance,
on 5 August 2007, a large-scale water inflow incident occurred
in the Youshanguan Tunnel of the Yichang-Wanzhou Railway in
China, resulting in considerable losses and difficulties in tunnel
construction (Jin et al., 2016). To mitigate or avert the damage
precipitated by water inflow disasters during tunnel construction,
a pivotal task is to assess the tunnel water inflow volume prior to
tunnel excavation, thereby enabling the formulation of appropriate
contingency plans to prevent or control water inflow (Farhadian and
Nikvar-Hassani, 2019).

In recent years, scholars have conducted extensive research
on predicting tunnel water inflow volumes, primarily employing
theoretical analysis, empirical methods, and numerical simulation
techniques (Hwang and Lu, 2007; Holmøy and Nilsen, 2014;
Farhadian and Katibeh, 2017; Golian et al., 2018). While theoretical
analysis methods are convenient and quick, their predictive
accuracy is limited due to reliance on simplistic circular or
rectangular interfaces, particularly when dealing with complex
hydrogeological parameters such as rock fractures. With the
rapid advancement of computer technology, numerous numerical
computation methods have been developed to study tunnel water
inflow volumes (Berkowitz, 2002; Yao et al., 2012). However,
the difficulty in obtaining accurate hydrological and geological
data often results in numerical simulations that fail to precisely
replicate the actual water inflow environment and calculate thewater
inflow volume accurately. Additionally, the numerous assumptions
and simplifications made during the construction of numerical
models can reduce the accuracy of the computational results.
Tunnel water inflow volume is influenced by a multitude of factors,
including hydrological and geological conditions, making it a
significant challenge to accurately predict using traditional research
methods.

As an emerging computational approach, machine learning
(ML) methods hold great potential in handling the complex
nonlinear relationships in underground engineering problems
influenced by multiple factors. ML methods have demonstrated

satisfactory predictive accuracy in various studies, including tunnel
collapse prediction (Guo et al., 2022; Hou and Liu, 2022),
bedrock interface prediction (Qi et al., 2021; Zhu et al., 2021),
ground settlement prediction (Zhang W. et al., 2020; Jong et al.,
2021; Kim D. et al., 2022; Xu et al., 2024), surrounding rock
large deformation prediction (Zhang J. et al., 2020; Huang et al.,
2022; Zhou et al., 2022; Geng et al., 2023), tunnel convergence
prediction (He et al., 2020; An et al., 2024b; Sheini Dashtgoli et al.,
2024), and lithology prediction (Mahmoodzadeh et al., 2021a;
Xu et al., 2022). On the task of water inflow prediction in
tunnels, ML methods also demonstrated satisfactory performance
and significant potential. Li et al. (2017) adopted the Gaussian
process analysis to develop a model for water inflow prediction
into tunnels and applied this model to Zhongjiashan tunnel on
Jilian highway in China. Mahmoodzadeh et al. (2021b) developed
6 ML models of long short-term memory (LSTM), K-nearest
neighbors (KNN), deep neural networks (DNN), Gaussian process
regression (GPR), and decision trees (DT), support vector regression
(SVR) to conduct water inflow prediction into tunnels based
on a dataset with 600 samples. Mahmoodzadeh et al. (2023)
proposed an optimized model based on the gene expression
programming (GEP) method to estimate the water inflow in
tunnels. Zhou J. et al. (2023) enhanced the performance of tunnel
water inflow prediction by leveraging the capabilities of Grey
Wolf Optimization (GWO) combined with the Random Forest
(RF) algorithm. Zhang et al. (2024) proposed a method based on
RF algorithm to predicting the hazard level of water inrush in
water-rich tunnels. Samadi et al. (2025) developed several neural
network models, including AdaDelta-recurrent neural network,
AdaGrad-long short-term memory (AdaG-LSTM), AdaGrad-gated
recurrent unit (AdaG-GRU), Adam optimization-back propagation
neural network (AO-BPNN), and a novel stacking-ensemble model
for precise prediction of water inflow into the tunnels during
construction. However, there are still limitations to be addressed.
Firstly, there’s limited effort in predicting the WI based on partially
missing database. As a result, some samples withmissing values can’t
be used to extend the size of the database, thereby improving the
generalization of the ML models. Secondly, there are few attempts
to adopt oversampling techniques to conduct data augmentation to
enhance the predictive performance of ML models, which restricts
the enhancement of the predictive performance of ML models.
Thirdly, there’s a lack of consideration of the model explanation to
further reveal the contributions of input features to the output of
ML models.

The eXtreme Gradient Boosting (XGBoost) algorithm
demonstrates remarkable predictive potential in tunnel engineering
prediction tasks (Geng et al., 2023; An et al., 2024b). Therefore,
inspired by the successful application of ML techniques in water
inflow prediction, this study proposes an XGBoost model optimized
with Bayesian optimization (BO) to predict theWI into tunnels. Due
to the high cost and inherent risks associated with underground
engineering, it is often challenging to collect comprehensive tunnel
data, with many datasets being only partially available. During
data processing, merely deleting incomplete data can reduce
the size of the dataset, thereby diminishing its utility and the
predictive accuracy of ML models. To address this issue, this study
imputes missing data and employs the Synthetic Minority Over
Sampling technique for regression with Gaussian Noise (SMOGN)
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FIGURE 1
The workflow of the proposed approach.

technique to augment the imputed dataset, thereby maximizing
the value of tunnel data and enhancing the predictive accuracy of
ML models.

The objective of this study is to develop an XGBoost model for
accurately predictingWI during tunnel construction. To achieve this
goal, BO is utilized to fine-tune the hyperparameters of the XGBoost
model, thereby improving its predictive accuracy. To fully leverage
the value of tunnel data, 654 datasets with missing values from
various regions are imputed and subjected to SMOGN technique
to construct a comprehensive dataset for training and testing the
XGBoost model, ensuring robust and reliable results. To enhance
the transparency of the XGBoost predictions, the SHapley Additive
explanations (SHAP) method is employed to interpret the XGBoost
model, thereby increasing its credibility.

2 Methods

The proposed methodology for predicting tunnel water
inrush, leveraging interpretable machine learning models and
partially missing datasets, comprises four integral components:
data preprocessing, construction of ML models, hyperparameter
optimization, and model interpretation. The schematic
representation of this paper is depicted in Figure 1.

2.1 Data preprocessing

The data preprocessing primarily consists of three key
components: missing data imputation, data oversampling, and data
normalization.

2.1.1 Missing data imputation
Missing data can be handled by either deletion or imputation

before constructing predictive models. Considering the high
difficulty and cost associated with obtaining tunnel engineering
data, deleting missing data would reduce the efficiency of data
utilization. Therefore, this study employs imputation methods to
fill in the missing data within the dataset. Simply using the mean
or median for imputation would overlook the inherent distribution
patterns of the data, thereby degrading the quality of the dataset.
This study selects the widely used K-Nearest Neighbors Imputation
(KNNI) and Multiple Imputation (MI) methods to impute missing
data, thereby making full use of the missing data. The KNNI is
effective for handlingmissing values in both continuous and discrete
data, particularly when the dataset contains a certain degree of
noise and outliers. By employing majority voting (for classification
problems) or mean calculation (for regression problems), KNNI
can effectively reduce the influence of individual outliers on
the imputation results (Deng et al., 2016). MI handles missing
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values by constructing multiple complete datasets with different
imputed values, thereby reflecting the uncertainty associated with
missing values (Bo et al., 2023). It performs multiple random
imputations of the missing values, with each imputation based on
a model that incorporates random noise. Subsequently, it analyzes
each of these datasets individually and combines the results to
derive statistical inferences that account for the uncertainty of the
missing values. In the context of tunnelWI prediction, where feature
variables may exhibit complex interactions and correlations, the MI
method can effectively preserve these intricate relationships and
enhances the model’s robustness to data uncertainties.

2.1.2 Data augmentation
ML algorithms typically expect a roughly uniform target

distribution to achieve robust and generalizable models. Data
imbalance is one of the most challenging issues in the field of ML.
Imbalanced datasets may lead to undertraining of ML algorithms
and difficulty in mining important information.

The Synthetic Minority Over-sampling Technique for
Regression with Gaussian Noise is an innovative approach
specifically designed to address the challenge of imbalanced
datasets in regression tasks that involve continuous target variables
(Janković et al., 2021; Song et al., 2022). The implementation of
SMOGN is intended to enhance the performance of regression
models by effectively managing the imbalance between normal and
rare cases within the dataset (Song et al., 2022; Dablain et al., 2023).
SMOGN incorporates three primary strategies for the generation
of synthetic samples: random under-sampling, SmoteR, and the
introduction of Gaussian Noise (Wen et al., 2024).

To be more specific, random under-sampling entails the
removal of samples that fall outside the normal range of the
target variable, thereby mitigating the dominance of the majority
class. SmoteR, an adaptation of the original SMOTE algorithm
originally developed for classification tasks, is specifically tailored
for regression applications (Chawla et al., 2002). It generates
synthetic samples through interpolation between a seed sample and
its k nearest neighbors, utilizing a weighted average of their target
variable values while also interpolating their feature values. The
introduction of Gaussian Noise serves to complement the under-
sampling of normal cases by generating synthetic rare examples,
thereby adding diversity to the dataset. Furthermore, SMOGN
employs a relevance function to differentiate between normal
and rare samples based on a predefined threshold. This function
evaluates the relevance of each sample’s target value, assigning values
that range from 0 to 1. By taking into account the real-world
distribution of the target variable, SMOGN produces a diverse set
of synthetic samples capable of improving the predictive accuracy of
regression models when faced with imbalanced data scenarios.

2.1.3 Data normalization
Thedataset, after undergoingmissing value imputation and data

augmentation, requires normalization according to Equation 1 to
eliminate the impact of data scale on model training effectiveness.

x∗ =
x− μ
σ

(1)

where x is the data before normalization, x∗is the data after
normalization; μ and σ are the mean value and standard deviation of

the samples, respectively. The normalized dataset is then randomly
divided into a training set and a prediction set, with a ratio of 8:2.

2.2 XGBoost

Ensemble learningmethods refer to the combination ofmultiple
learningmodels to achieve better results and stronger generalization
capabilities. The XGBoost algorithm, proposed by Chen and
Guestrin, is currently one of the fastest andmost integrated decision
tree algorithms (Chen and Guestrin, 2016). This algorithm employs
classification and regression tree (CART) as the base classifier, with
multiple correlated decision trees making decisions collectively;
hence, the input samples for the next decision tree are related
to the training and prediction results of the previous decision
tree. XGBoost is a highly flexible and versatile tool capable of
addressing most regression and classification problems, as well
as user-defined objective functions. Assuming that the XGBoost
model itself consists of K CARTs, the model can be represented as
Equation 2.

̂yi = ϕ(xi) =
K

∑
k=1

fk(xi), fk ∈ F (2)

where, ̂yi represents the predicted value,ϕ(xi) denotes the prediction
function of the XGBoost model, fk denotes the kth tree, fk(xi) is
the score of the ith sample in the kth tree, K is the total number of
samples, xi is the ith input data, and F is the set of all possible CARTs.
Similar to most machine learning models, the objective function of
XGBoost can be the sumof a loss function and a regularization term,
which respectively control themodel’s accuracy and complexity.The
specific equations are as Equations 3, 4:

L(ϕ) = l(ϕ) +Ω(ϕ) =
n

∑
i=1

l(yi, ̂yi) +
K

∑
k=1

Ω( fk) (3)

and

Ω( f) = γT+ 1
2
λ

T

∑
j=1

ω2
j (4)

where, L(ϕ) is the objective function of the model, consisting of loss
function and regularization term. yi represents the observed value,
and l is the loss function, primarily used to measure the difference
between yi and ̂yi. The second term, Ω, is the regularization term,
which penalizes model complexity to prevent overfitting; γ denotes
the complexity of each leaf; T represents the total number of leaves
in the decision tree; λ is a trade-off parameter, mainly used to scale
the penalty; ωj represents the score on the jth leaf.

Using the tree ensemble model in Equation 4, which takes
functions as parameters, the training of the model is conducted in
an additional manner. That is, assuming ̂y(t)i is the predicted value
for the ith instance at the tth iteration, a new function ft is added to
minimize the following objective:

L(t) =
n

∑
i=1

l(yi, ̂y
(t−1)
i + ft(xi)) +Ω( ft) (5)

The optimization process of Equation 5 is approximated by the
Taylor expansion in Equation 6. Taking the optimization at step t as
an example, the optimized objective function is as Equation 7.

f(x+Δx) = f(x) + f(x)′Δx+ f(x)″Δx (6)
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L(t) ≅
n

∑
i=1
[l(yi, ̂y

(t−1)) + gi fi(xi) +
1
2
hi f

2
t (xi)] +Ω( ft) (7)

gi = ∂ ̂y(t−1)l(yi, ̂y
(t−1)) (8)

hi = ∂2 ̂y(t−1)l(yi, ̂y
(t−1)) (9)

where, gi and hi represent the first and second order statistics of
the loss function, and are expressed as Equations 7, 8, respectively.
Then, by removing the constant term fromEquation 7, the following
simplified objective is obtained as Equation 10.

L(t) =
n

∑
i=1
[gi ft(xi) +

1
2
hi f

2
t (xi)] +Ω( ft) (10)

Substituting the parameters of the decision tree into the
objective function, the sample set for the jth leaf is defined as
follows: Ij = {i ∣ q(xi) = j}. By expanding Ω, Equation 10 can be
rewritten as Equation 11.

L(t) =
T

∑
j=1

[

[
(∑

i∈Ij

gi)ωj +
1
2
(∑

i∈Ij

hi + λ)ω2
j
]

]
+ γT (11)

For a fixed structure q(x), the optimal weight ω⋆j for leaf j can be
calculated using Equation 12.

ω∗j = −

∑
i∈Ij

gi

∑
i∈Ij

hi + λ
(12)

Then, Equation 13 is used to calculate the corresponding
optimal value.

L(t) = −1
2

T

∑
j=1

(∑
i∈Ij

gi)
2

∑
i∈Ij

hi + λ
+ γT (13)

Generally, it is not feasible to enumerate all possible tree
structures q. Instead, a greedy algorithm starts with a single leaf and
then iteratively adds branches to the tree. Let IL and IR be the instance
sets after splitting into left and right nodes, respectively, with I = IL ∪
IR, then the reduction in loss after splitting is given by Equation 14.

Lsplit =
1
2

[[[[[[

[

(∑
i∈IL

gi)
2

∑
i∈IL

hi + λ
+

(∑
i∈IR

gi)
2

∑
i∈IR

hi + λ
−
(∑

i∈I
gi)

2

∑
i∈I

hi + λ

]]]]]]

]

− γ (14)

where Lsplit denotes the reduction in loss after splitting.
Typically, all possible solutions are enumerated to address each

expansion. For a specific split, the sum of the left and right sub-
derivatives of that split needs to be calculated, and then the change
in loss before and after the split is compared based on the loss.
Finally, the segment with the greatest change is selected as the most
suitable segment.

The XGBoost algorithm demonstrates remarkable predictive
potential, showcasing superior predictive performance in

FIGURE 2
Illustration of the BO principle (An et al., 2024a).

tunnel engineering prediction tasks, such as tunnel squeezing
prediction (Guan et al., 2025), tunnel convergence prediction
(An et al., 2024b; Sheini Dashtgoli et al., 2024), and tunnelling-
induced ground settlement prediction (Zhou X. et al., 2023).
Therefore, this study employs the XGBoost algorithm for tunnel
WI prediction.

2.3 Bayesian Optimization

Bayesian Optimization is an efficient global optimization
algorithm primarily utilized for hyperparameter tuning of machine
learning models to identify the global optimum of the objective
function (Bergstra et al., 2011; Hutter et al., 2011). The BO
algorithm is predicated on the concept of approximation, employing
previous evaluations of the objective function to construct a
surrogate function that aids in locating the minimum value of the
objective function (Shahriari et al., 2016). Consequently, the BO
method proves highly effective in scenarios where computations
are exceedingly complex and the number of iterations is substantial
(Zhang et al., 2021;Du et al., 2022).TheBayesian algorithm leverages
Bayesian principles to estimate the posterior probability of the
objective function and selects the subsequent set of hyperparameters
for optimization based on this estimation, thereby learning the shape
of the objective function to search for optimal parameters. The
principle of BO is illustrated in Figure 2. In comparison to grid
search and random search, BO boasts a reduced computational load
and enhanced optimization efficiency (An et al., 2024b). The core of
the BayesianOptimization algorithm consists of two parts: Gaussian
Process (GP) regression and the acquisition function (Feurer and
Hutter, 2019).

GP regression is a probability-based non-parametric regression
method. Its fundamental idea is to assume that the target function
f (x) to be predicted follows a Gaussian distribution, and then use
existing data to estimate the mean and variance of this distribution.
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The prediction formula for GP regression is as indicated by
Equations 15, 16:

μ(a∗) = c∗T(C+ σ2nI)
−1b (15)

cov(a∗) = c− c∗T(C+ σ2nI)
−1c∗ (16)

where, a∗represents the input point corresponding to the predicted
value of the target function, μ(a∗) denotes the mean of the function
at a∗; cov(a∗) represents the covariance of the function at a∗; c
represents the covariance of the test point itself; c∗represents the
covariance vector between the test point and the training data points;
C denotes the covariancematrix between the training data points; σ2n
is the variance of Gaussian noise; I represents the identity matrix; b
denotes the target vector of the training data points.

GP regression is employed to estimate the posterior distribution
of the target function, and the next set of hyperparameters to sample,
X = x1,x2, ...,xn, is selected using Bayes’ theorem, representing
possible parameter values. The goal is to identify the set of
hyperparameters that optimizes the target function, either by
minimizing or maximizing it. This process is iteratively refined by
utilizing previous sampling results to improve the target function,
ultimately aiming to find the global optimal hyperparameters. The
acquisition function is expressed as Equation 17.

x∗ = argmax
x∈X

f(x) (17)

where f(x) denotes the objective function of the hyperparameters,
x∗represents the optimal hyperparameter set.

2.4 SHAP

SHapley Additive explanation is a global interpretation method
that explains the outcomes of machine learning models by assessing
the contribution of each feature to the model’s output (Li et al.,
2023). Unlike existing feature importance attributes in machine
learning models, SHAP can identify whether the contribution of
each input feature is positive or negative, which helps enhance the
credibility of the model and the user’s acceptance of it. Additionally,
it aids in understanding the reasons behind the model’s specific
predictions, thereby better explaining and optimizing the model.
This method employs the Shapley values, defined in game theory,
to evaluate the importance of local features (Zhou J. et al., 2023).
The Shapley value of a specific feature i(φi) can be calculated as the
average of the marginal contributions (the model’s output with and
without feature i computed over all subsets S(N) excluding feature i,
as shown in Equation 18.

φi = ∑
S⊆N\{i}

|S|!(K− 1− |S|)!
K!

[ fx(S∪ {i}) − fx(S)] (18)

where f is the model, S is the feature subsets; N is the set of all
features; i is a specific feature; n is the total number of features.

In SHAP, the output of the model of single observed value
x (that is f(x)) can be explained using linear function g, as
expressed in Equation 19.

f(x) = g(x′) = φ0 +
M

∑
i=1

φix
′
i (19)

where x is the instance to be explained, x′ is the simplified input,
and they are linked by the mapping function x = hx(x′). φ0 is the
base value when all the features are absent; M is the number of
simplified features.

3 Dataset description

In predictive modeling, the selection of input parameters
profoundly influences the outcomes, as appropriate input
parameters can enhance predictive accuracy.The chosen parameters
should encompassmultiple dimensions that influence the prediction
results. However, an excessive number of influencing factors is not
always advantageous. An overabundance of factors can lead to a
decrease in prediction accuracy and a substantial increase in the
cost and difficulty of data acquisition (Li et al., 2017). For the
issue of tunnel water inflow, factors such as rock mass fracture
distribution, tunnel burial depth, water-producing characteristics
of the surrounding rock aquifer, and groundwater level significantly
impact the volume of water inrush in tunnels (Zhou J. et al., 2023). It
should be noted that the environmental, climatic, and anthropogenic
factors may also affect WI. However, this information is generally
difficult to collect during the construction of the mountain tunnels,
and thus are not considered in this study.

Therefore, drawing on previous research (Mahmoodzadeh et al.,
2021b; Mahmoodzadeh et al., 2023; Zhou J. et al., 2023), this study
selects tunnel burial depth (H), groundwater level (h), rock mass
quality index (RQD), and the water-producing characteristics of the
surrounding rock aquifer (W) as input features for predicting water
inrush volume, with tunnel water inflow volume (WI) as the target
output. The incomplete dataset used in this study originates from
different tunnels in Iran (Mahmoodzadeh et al., 2021b) and China
(Li et al., 2017), all of which were excavated using the drill-and-
blast method. The dataset comprises a total of 654 data samples,
with statistical characteristics shown in Table 1 and data distribution
depicted in Figure 2.

To enhance the quality of the dataset and thereby improve the
predictive performance and generalization capability of the model,
preprocessing is conducted on the dataset, which is then used for
trainingandtesting theXGBoostmodel. Initially,KNNIisemployedto
interpolatemissingvalues in theoriginal dataset, preventing the loss of
useful information from deleted samples. Subsequently, the SMOGN
is applied to the interpolateddataset for data augmentation, increasing
the sample size and thereby enhancing the model’s generalization
capability. It is important to note that different combinations of
missing data imputation methods and SMOGN data augmentation
techniques yield distinct datasets, which in turn result in varying
predictive performances of the trained models. In this study, the
KNNImethod is chosen formissingdata imputation,with thenumber
of neighbors set to 15, followed by data augmentation using the
SMOGN technique. The parameter k for the number of neighbors
in the SMOGN process is set to 5.

The dataset, after missing value imputation and data
augmentation, contains a total of 1,347 tunnel water inflow samples,
with statistical characteristics shown in Table 2. It can be observed
that there is no significant change in the statistical characteristics
of the dataset after interpolation and augmentation compared
to the original dataset. Figure 3 illustrates the data distribution
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TABLE 1 Statistical description of the partially missing water inflow dataset.

Features H (m) h (m) RQD (%) W (m3/hm) WI (m3/h)

Count 654.00 624.00 600.00 600.00 654.00

Missing count 0 30 54 54 0

Mean 88.01 48.82 48.24 5.73 79.63

Standard deviation 69.00 55.79 20.28 3.97 41.22

Minimum 15.00 0.00 4.00 1.00 10.00

25% 54.00 21.00 34.00 3.20 59.90

50% 66.00 33.00 45.00 4.65 71.10

75% 89.00 47.00 63.00 7.00 88.43

Maximum 500.00 312.00 99.00 33.60 380.00

Data source Iran (600 samples) (Mahmoodzadeh et al., 2021b) and China (54 samples) (Li et al., 2017)

TABLE 2 Statistical description of the proccessed water inflow dataset.

Features H (m) h (m) RQD (%) W (m3/hm) WI (m3/h)

Count 1,347 1,347 1,347 1,347 1,347

Mean 89.67 48.97 47.74 5.74 79.48

Standard deviation 71.81 61.78 18.54 4.12 49.50

Minimum 15.00 0.00 4.00 1.00 10.00

25% 48.00 14.00 35.00 3.27 54.05

50% 66.00 27.00 49.27 4.30 70.40

75% 93.40 45.00 56.00 7.00 101.70

Maximum 500.00 312.00 99.00 33.60 380.00

characteristics of the tunnel water inrush dataset before and after
interpolation and augmentation. Figure 3 demonstrates that the
number of data samples has undergone a significant increase
compared to the original dataset, while the normal distribution
characteristics of the data have remained relatively consistent. This
suggests that the augmented dataset preserves the distribution
characteristics of the original dataset.

4 Bayesian optimized XGBoost
(BO-XGBoost) model for WI prediction

4.1 Model development and
hyperparameter optimization

The selection of hyperparameters in ML models undeniably
influences the models’ predictive accuracy, with an appropriate
combination enhancing the model’s predictive performance.

Consequently, hyperparameter optimization constitutes a critical
step (Feng et al., 2024). Random search and grid search are
extensively utilized methods for hyperparameter optimization.
However, the stochastic nature of hyperparameter selection in
random search may result in overlooking the optimal solution.
Grid search (GS), on the other hand, identifies the global optimal
solution by exhaustively traversing all hyperparameter combinations
within the search space. This method, while thorough, incurs
an exceedingly large computational burden, especially when
dealing with numerous hyperparameters and a vast search space,
thereby reducing optimization efficiency. Recently, researchers have
increasingly utilized advanced algorithms, such as metaheuristic
optimization methods, to fine-tune hyperparameters instead
of traditional techniques. However, metaheuristic optimization
methods, such as Grey Wolf Optimization (Mirjalili et al., 2014),
Beluga Whale Optimization (Zhong et al., 2022) require manual
setting of population size, and an increase in population size
significantly increases computational burden.
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FIGURE 3
Distribution of original and augmented dataset.

In this study, BO is employed to optimize the hyperparameters
of the XGBoost model, achieving higher optimization efficiency
with reduced computational effort by locating an approximate global
optimal combination of hyperparameters. The flowchart of BO is
depicted in Figure 4, with n denoting the maximum number of
optimization iterations. The optimization process of the XGBoost
model on the training set is illustrated in Figure 5, utilizing five-
fold cross-validation throughout the optimization to avert model
overfitting.Theoptimization target is set to the negativemean squared
error (NMSE) according to literature (An et al., 2024b). The search
space and results for thehyperparameters involved in theoptimization
are detailed in Table 3, while the remaining hyperparameters are
maintainedat their default setting.Tobemore specific,γ (penalty term
for complexity) is set 0, colsample_bytree is set 1, α (L1 regularization
parameter) is set 0, and λ (L2 regularization parameter) is set 1.

As shown in Table 3, during the optimization of the four
hyperparameters of the XGBoost model, the BO algorithm achieved
an optimal NMSE of −0.00128 in 81 s. In contrast, the GS algorithm
required 5,196 s to achieve an optimal NMSE of −0.00181. Within
the same search space, the BO algorithm demonstrated superior
optimization performance, with a time consumption that was only
1.6%of that of theGS algorithm.This underscores the high efficiency
of the BO algorithm.

4.2 Result analysis

The BO-XGBoost model, constructed with the optimal
hyperparameter combination obtained through BO, is presented in

FIGURE 4
Flowchart of the Bayesian optimization.
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FIGURE 5
Optimizing process of the BO-XGBoost model.

TABLE 3 The optimal hyperparameters of the XGBoost model.

Optimization
method

Hyperparameter Search
space

Optimal
value

Number
of iterations

Optimal
NMSE

Time
consumption

BO

n_estimators [5, 500] 384

100 −0.00128 81 s
max_depth [1, 50] 43

learning_rate [0.001, 0.3] 0.1476

subsample [0.6, 0.9] 0.7811

GS

n_estimators [5, 500] 500

5,808 −0.00181 5,196 s
max_depth [1, 50] 5

learning_rate [0.001, 0.3] 0.09

subsample [0.6, 0.9] 0.8

Figure 6, illustrating its predictive results on both the training and
test sets, with corresponding prediction errors shown in Figure 7.
The model’s predictive performance is assessed using four metrics:
the coefficient of determination R2, root mean square error (RMSE),
mean absolute error (MAE), and mean absolute percentage error
(MAPE). The method for calculating these metrics are referenced
from the literature (Li et al., 2023;Wang et al., 2023; An et al., 2024a).
As depicted in Figure 6, the BO-XGBoost model achieves R2 values
of 0.99995 and 0.97551 on the training and test sets, respectively,
indicative of exceptionally high predictive accuracy across both
datasets. The MAE and MAPE of the BO-XGBoost model on
the test set are 3.2940% and 4.51%, respectively. These minimal
prediction errors suggest that the model is capable of accurately
forecasting water inrush volumes in real-world tunnel engineering
scenarios, thereby assisting managers in making informed decisions

to prevent tunnel water inrush disasters and ensure the safe and
efficient progression of tunnel construction.

4.3 Model explanation

ML models are capable of accurately capturing the complex
nonlinear relationships of input features; however, their “black-
box” nature can undermine the persuasiveness of their predictive
outcomes. To address this, the current study employs the SHAP
method to interpret the BO-XGBoost model, thereby enhancing the
credibility of its predictive results. Figure 8a illustrates the impact
of each data sample involved in the interpretation on the model’s
output, with red points indicating samples with low feature values
and blue points representing samples with high feature values. It is
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FIGURE 6
Prediction results of the BO-XGBoost model: (a) training set; (b) test set.

FIGURE 7
Prediction error of the test set of BO-XGBoost model.

evident from Figure 8a that h (groundwater level) and W (water-
producing characteristics of the aquifer) exert a significant influence
on the model’s output. Specifically, for groundwater level and the
water-producing characteristics of the aquifer, samples with low
feature values exhibit negative SHAP values. This suggests that a
lower groundwater level andweakerwater-producing characteristics
of the aquifer are associatedwith a reduced volume ofwater inflow in
the tunnel. Figure 8b presents the average SHAP values of each input
feature across all sample data; the larger the average SHAP value, the
more critical the feature is to the model. The average SHAP values
for h, W, H, and RQD are 0.06, 0.05, 0.02, and 0.02, respectively.
Consequently, the feature importance ranking for the BO-XGBoost
model constructed in this study is h >W > H > RQD.

The groundwater level (h) is the most critical feature, as
it directly influences the magnitude of inflow during tunnel

construction. Higher groundwater levels imply greater hydraulic
pressure and potentially larger inflows, making h the most
important factor in the model. Water-producing characteristics
(W) is the second most significant, as they directly determine
the replenishment of groundwater, which in turn affects tunnel
inflow. Tunnel burial depth (H) is relatively less significant, yet
still substantial. Tunnel depth influences the geological conditions
and hydraulic pressure at the tunnel site. Although its direct
impact is smaller compared to groundwater level and aquifer
characteristics, it remains an important factor that must be
comprehensively considered in practical engineering applications.
Rock mass quality index (RQD) is the least significant factor.
While RQD reflects the integrity and stability of the rock mass and
has a critical impact on tunnel structural safety, its influence on
predicting inflow is relatively minor.
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FIGURE 8
BO-XGBoost model explanation: (a) SHAP values of the input features; (b) importance of the input features.

The utilization of the SHAP method to interpret the BO-
XGBoost model not only enhances the credibility of its predictive
results but also provides a valuable reference for management
and decision-makers in formulating appropriate strategies for the
prevention and control of tunnel water inflow.

5 Discussion

5.1 Comparison analysis of different
models’ performance

To demonstrate the superiority of the BO-XGBoost model
proposed in this study in predicting the tunnel water inrush dataset,
a comparative analysis of its predictive performance is conducted
against three widely used ML models: Support Vector Regression,
Decision Tree, and Random Forest. The training processes for
the SVR, DT, and RF models follows the data preprocessing and
hyperparameter optimizationmethods described earlier. To bemore
specific, BO is adopted to tune the hyperparameters of the baseline
models to ensure a fair comparison. The optimal hyperparameters
of these baseline models are displayed in Tables 4–6. The predictive
performance of the four models on the test set is summarized in
Table 7 and illustrated in Figure 9.

In Table 7, the optimal values for the four predictive
performance metrics are emphasized in boldface. Among the

4 ML models optimized via BO, the BO-XGBoost model achieves
the smallest prediction error and the highest coefficient of
determination on the test set. As depicted in Figure 8, the prediction
results of all 4 ML models closely align with the line on the test set,
with the BO-XGBoost model demonstrating the highest degree
of conformity to the line. Figure 10 illustrates the Taylor diagram
of the prediction performance of the four candidate ML models.
It can be observed that BO-XGBoost model is the closest to the
reference point, indicating that BO-XGBoost model holds the
best prediction performance. Further, Figure 11 illustrates the
probability distribution of prediction errors for the 4 ML models
on the test set. It is evident from Figure 11 that the prediction
error distribution curve of the BO-XGBoost model is the tallest
and narrowest among the four models, indicating that its error
distribution is the most concentrated, with error values being
relatively smaller than those of the other three models. Based on
the fitting of the predicted values and the distribution of prediction
errors on the test set, the predictive performance of the models can
be ranked as follows: BO-XGBoost > BO-RF > BO-DT > BO-SVR.

5.2 Ablation experiment of input features

This study identified the input features for the WI prediction
model based on existing studies and engineering experience, and
employed the SHAP method to analyze the importance of these
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TABLE 4 Optimization parameters and results of Bayesian optimized SVR (BO-SVR) model.

Parameter Range Value or type Iterations NMSE Time consumption (s)

Kernel function — “rbf ”

100 −0.003383 45c [0.001, 1,000] 542.25

γ [0.001, 1,000] 12.91

TABLE 5 Optimization parameters and results of Bayesian optimized DT (BO-DT) model.

Parameter Range Value or type Iterations NMSE Time consumption (s)

max_depth [1, 50] 41

100 −0.0026 34
max_leaf_nodes [1, 200] 138

min_samples_split [2, 20] 11

min_samples_leaf [1, 20] 1

TABLE 6 Optimization parameters and results of Bayesian optimized RF (BO-RF) model.

Parameter Range Value or type Iterations NMSE Time consumption (s)

n_estimators [10, 1,000] 164

100 −0.0026 538
max_depth [1, 50] 39

max_samples_split [2, 20] 3

min_samples_split [1,20] 1

TABLE 7 Predicting performance of the four candidate models.

Models RMSE MAE MAPE R2

BO-XGBoost 7.5603 3.2940 0.0451 0.9755

BO-SVR 22.6936 18.8917 0.3495 0.7794

BO-DT 17.3770 9.3210 0.1181 0.8706

BO-RF 11.0818 6.4310 0.0746 0.9474

Note: The bold values represent the best performance metrics.

input features. To further analyze the importance of each input
feature on model prediction performance, ablation experiments on
input features were conducted. To be more specific, each input
feature was individually removed, and the model was trained using
the remaining three input features. For each feature, the ablation
experiment was repeated 100 times, with a different “random_state”
used each time to control the division of the training and test sets,
thereby eliminating the influence of random factors during dataset
splitting on the experimental results. The results of the ablation
experiments are shown in Figure 12.

As shown in Figure 12, without removing any features, the
average RMSE, MAE, and MAPE values from the 100 experimental
runs were smaller than those obtained when one feature was
removed. This indicates that deleting an input feature increases
the model’s prediction error and reduces its prediction accuracy.
When the input feature h was deleted, the model’s RMSE,
MAE, and MAPE average values were the largest, indicating that
deleting “h” had the greatest impact on the model’s prediction
performance. When the RQD was deleted, the RMSE, MAE,
and MAPE average values were the smallest, indicating that
deleting RQD hold the least impact on the model’s prediction
performance.

Therefore, based on the increase in model error, the importance
of input features in terms of their impact on model prediction
performance can be ranked as: h > W > H > RQD. This
conclusion is consistent with the results derived from SHAP
analysis.

5.3 Enhancement of SMOGN on model
performance

Thepredictive accuracy ofMLmodels is significantly influenced
by the size and quality of the dataset. To enhance the accuracy
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FIGURE 9
Predicting results on the test set: (a) BO-XGBoost model; (b) BO-SVR model; (c) BO-DT model; (d) BO-RF model.

of the tunnel water inrush prediction model, this study employs
SMOGN for data augmentation. To verify the effectiveness of
SMOGN data augmentation in improving the predictive accuracy
of the BO-XGBoost model, a series of comparative experiments
are designed. The BO-XGBoost model is trained using datasets
obtained from various parameter combinations, and the predictive
accuracy on the test set is evaluated using MAE as the metric, as
illustrated in Figure 13.

The candidate datasets are categorized into five groups, with
each group’s base data defined as follows: Group A consists of
the complete part of the original dataset; Group B is generated
by interpolating the original data using the 5-Nearest Neighbor
Imputation (5NNI) method (interpolated using KNNI with K =
5); Group C uses the 10NNI method; Group D utilizes the 15NNI
method; and Group E is generated by interpolating the original
dataset using the MI method. Each group contained four datasets:
(1) not processed with the SMOGN method, (2) processed with
the SMOGN method with K = 5 neighbors, (3) processed with the

SMOGNmethod with K = 10 neighbors, and (4) processed with the
SMOGNmethod with K = 15 neighbors.

From Figure 13, it is evident that the BO-XGBoost models
trained on the base datasets of the five groups exhibit the highest
MAE on the test set within each group. In contrast, the BO-
XGBoostmodels trained on the datasets processedwith the SMOGN
technique in each group shows a significant reduction in MAE on
the test set compared to the base datasets. This outcome indicates
that the SMOGN data augmentation technique effectively reduces
the prediction error of the BO-XGBoost model on the test set,
thereby enhancing its predictive accuracy. Among the five base
datasets, the BO-XGBoost models trained on the base datasets
obtained by KNNI interpolation in Groups B, C, and D have
slightly lower MAE on the test set compared to Group A (without
interpolation) and Group E (interpolated with the MI method).
KNNI interpolation of missing data can marginally improve the
predictive accuracy of the BO-XGBoost model, whereas the MI
interpolation technique diminishes the predictive accuracy of the
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FIGURE 10
Taylor diagram of the four candidate models.

FIGURE 11
Predicting error of the four candidate models.

BO-XGBoost model. This result suggests that for the tunnel water
inrush missing dataset utilized in this study, KNNI is more suitable
than the MI method for imputing missing values to enhance the
model’s predictive accuracy. Furthermore, among the 20 datasets
involved in this experiment, the model trained using dataset 15NNI
with SMOGN [15NNI-SMOGN (K = 5)] had the lowest MAE on
the test set, indicating the highest predictive accuracy. Consequently,
this study selected this dataset for training the BO-XGBoost
model.

5.4 Comparative analysis with related
works

The performance of different models in predicting water inflow
in tunnels from the previous study is summarized in Table 8.The R2

is taken as the accuracy metric for comparison. The BO-XGBoost
model established in this study shows high prediction accuracy
compared tomost of theMLmodels in the related studies, indicating
that the proposed BO-XGBoost model is as reliable as the models in
the previous studies. However, models like LSTM, DNN, and GEP
show better performance than the proposed BO-XGBoost model,
suggesting that the efforts are still needed to improve the prediction
accuracy of the BO-XGBoost model in further study.

It is worth noting that the BO-XGBoost model proposed
in this study is a black-box model. On the other hand,
GEP method (Mahmoodzadeh et al., 2023) can generate
mathematical formulas for prediction, thereby offering a more
transparent solution. However, in terms of handling complex
nonlinear relationships, GEP may exhibit lower predictive accuracy
compared to BO-XGBoost. Additionally, GEP requires manual
adjustment of parameters, such as population size and the number
of generations, and the generated formulas may become overly
complex, resulting in higher computational costs, especially when
dealing with large-scale datasets. In contrast, the BO-XGBoost
method can automatically tune hyperparameters and demonstrates
strong capabilities in handling large-scale data.

5.5 Implementing of the ML model in
real-world tunnels

The proposed BO-XGBoost model demonstrates satisfactory
predictive performance in the task of tunnel WI prediction.
Furthermore, the constructed BO-XGBoostmodel can fully leverage
its predictive potential when applied to real tunnel projects for water
inflow prediction. Specifically, the tunnel water inflow prediction
workflow consists of three critical steps, as illustrated in Figure 14.

Step 1: Data collection. Conducting engineering geological
investigations and groundwater condition assessments for
the tunnel under consideration, and collecting relevant
tunnel design and construction data to obtain the values of
model input parameters.

Step 2: Data preprocessing. Interpolating missing values in the
input parameters and performing data scaling to normalize
the dataset.

Step 3: WI prediction: Inputting the scaled data into the well-
trained BO-XGBoost model to predict the WI and
subsequently reversing the scaling of the predicted results.

Both the data preprocessing and WI prediction steps can be
implemented in Python language. Anaconda is one of the ideal
platforms for coding and running. Referencing the predicted WI
values, informed decisions regarding tunnel construction planning
and safety measures can be made. The ML models utilized in this
study have relatively low computational requirements, as a computer
equipped with an i5 processor and 16 GB of RAM is sufficient to
deploy the XGBoost model developed in this research. Given that
the number of input parameters for the model is only four, the
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FIGURE 12
Prediction results of ablation experiment: (a) RMSE; (b) MAE; (c) MAPE; (d) R2.

FIGURE 13
Predicting errors of the BO-XGBoost model on different datasets.
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TABLE 8 Summary of tunnel squeezing prediction performance of related studies.

Literature Model Input R2 Database size

Samadi et al. (2025)

AO-BPNN

H, h, RQD,W

0.8817

600

AdaD-RNN 0.9007

AdaG-LSTM 0.9410

AdaG-GRU 0.9514

Stacking-ensemble 0.9730

ALFS-IC 0.9507

Zhou et al. (2023a)

RF

H, h, RQD,W

0.8726

600

Bagging 0.8693

AdaBoost 0.8683

HGBoosting 0.8147

GBRT 0.8673

Voting 0.8634

Stacking 0.8712

GWO-RF 0.9290

Mahmoodzadeh et al. (2023) GEP H, h, RQD,W 0.9804 600

Mahmoodzadeh et al. (2021b)

LSTM

H, h, RQD,W

0.9866

600

DNN 0.9815

KNN 0.7665

GPR 0.9714

SVR 0.8554

DT 0.7210

Li et al. (2017)

GPR

FC,WT, SD,W, PYP, H

0.9397

24SVM 0.9134

ANN 0.8331

This study

BO-XGBoost

H, h, RQD,W

0.9755

1,347
BO-SVR 0.7794

BO-DT 0.8797

BO-RF 0.9474

Notes: FC, fracture condition;WT, water transmission; SD, spacing distance; PYP, pore water pressure.

XGBoost model can yield the predicted WI results within 1 s. This
rapid prediction speed is fully capable of meeting the practical needs
of tunnel engineering projects and providing a fast and reliable
reference for the development of WI disaster prevention plans.

5.6 Limitations

The proposed approach achieves precise WI prediction based
on the partially miss dataset by data imputation and augmentation.
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FIGURE 14
Workflow of WI prediction in real-world tunnels.

Moreover, The SHAP method is adopted to reveal the contribution
of input features, which is not considered in existing WI prediction
research.However, there’restill somelimitationstobefurtherexplored.
Firstly, KNNI and MI are used to achieve data imputation. However,
KNNI is sensitive to outliers, as imputations heavily depend on
distance-basedneighbor selection,whileMI tends tobemore complex
compared to single imputation approaches. Therefore, a more robust
and efficient imputation method is required. Secondly, the dataset
after imputation and SMOGN are still imbalanced with a few high
WI samples. The SMOGN adopted in this paper achieve data
augmentation, but data balance still needs further effort. Moreover,
divergence analysis is not considered after data augmentation.Thirdly,
although the BO-XGBoost model can precisely predict the WI, a
WI interval will provide more information and reference for the
engineers, which needs further exploration. Fourthly, the feature
selection in this study referred to relevant studies and engineering
experience. However, advanced feature selection methods, such
as SFS, with XGBoost and RF with an explainable ensemble
model and subset regression is not considered (Nandi et al., 2024;
Mondal et al., 2025; Nandi and Das, 2025).

6 Conclusion

Tunnel water inflow disasters present substantial challenges to
the safe and efficient construction of tunnels, and the ability to
predictwater inflowprior to tunnel excavation is critical for ensuring
the safety of bothmachinery and personnel. However, the prediction
of tunnel WI is fraught with challenges due to the influence of
multiple factors. In this study, the XGBoost model is utilized for
predictingWI, with BO employed to fine-tune the hyperparameters
of the XGBoost model, thereby enhancing its predictive capabilities.
To maximize the utility of tunnel data, 654 sets of missing data are
imputed and augmented using the KNNI and SMOGN technique,
respectively, and the resultant comprehensive dataset is divided in
an 8:2 ratio for training and test purposes.The following conclusions
are drawn from this study.

(1) The constructed BO-XGBoost model exhibited exceptionally
high predictive accuracy on both the training and test sets, with
an RMSE of 7.5603, MAE of 3.2940, MAPE of 4.51%, and R2

of 0.9755 on the test set.
(2) Compared to the predictive performance of SVR, DT,

and RF models, the BO-XGBoost model demonstrates the
highest R2 values and the smallest prediction errors, with
the most concentrated error distribution. Consequently, the
performance ranking of the 4 ML models in predicting WI is
BO-XGBoost > BO-RF > BO-DT > BO-SVR.

(3) Different imputation methods and SMOGN parameters
resulted in varied datasets, which in turn led to differing
predictive accuracies of the trained models. Among the 20
datasets examined in this study, the BO-XGBoost model
trained with 15NNI-SMOGN (K = 5) achieved the lowest
MAE on the test set, indicating the highest predictive accuracy.

(4) The BO-XGBoost model was interpreted using the SHAP
method, yielding a feature importance ranking of h >W >H >
RQD.

The proposedWI prediction method can be applied in practical
tunnelling projects following a process of data collecting, data
preprocessing and WI prediction. Future research can focus on
two aspects: (1) Integrate the ML model with real-time monitoring
systems to facilitate real-time prediction of WI into tunnels; (2)
Collect more tunnel data from diverse geological settings, and
applicate the ML model to tunnels of different geological settings to
enhance the generalization performance of the ML model.
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