AUTHOR=Ju Shengdong , Ou Guangzhao , Peng Tao , Wang Yanning , Song Quanlin , Guan Peng TITLE=Tunnel water inflow prediction using explainable machine learning and augmented partially missing dataset JOURNAL=Frontiers in Earth Science VOLUME=Volume 13 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2025.1590203 DOI=10.3389/feart.2025.1590203 ISSN=2296-6463 ABSTRACT=Accurate prediction of water inrush volumes is essential for safeguarding tunnel construction operations. This study proposes a method for predicting tunnel water inrush volumes, leveraging the eXtreme Gradient Boosting (XGBoost) model optimized with Bayesian techniques. To maximize the utility of available data, 654 datasets with missing values were imputed and augmented, forming a robust dataset for the training and validation of the Bayesian optimized XGBoost (BO-XGBoost) model. Furthermore, the SHapley Additive explanations (SHAP) method was employed to elucidate the contribution of each input feature to the predictive outcomes. The results indicate that: (1) The constructed BO-XGBoost model exhibited exceptionally high predictive accuracy on the test set, with a root mean square error (RMSE) of 7.5603, mean absolute error (MAE) of 3.2940, mean absolute percentage error (MAPE) of 4.51%, and coefficient of determination (R2) of 0.9755; (2) Compared to the predictive performance of support vector mechine (SVR), decision tree (DT), and random forest (RF) models, the BO-XGBoost model demonstrates the highest R2 values and the smallest prediction error; (3) The input feature importance yielded by SHAP is groundwater level (h) > water-producing characteristics (W) > tunnel burial depth (H) > rock mass quality index (RQD). The proposed BO-XGBoost model exhibited exceptionally high predictive accuracy on the tunnel water inrush volume prediction dataset, thereby aiding managers in making informed decisions to mitigate water inrush risks and ensuring the safe and efficient advancement of tunnel projects.