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Introduction: With the development of complex tight sandstone oil and
gas reservoirs, accurately and cost-effectively characterizing these reservoirs
have become a critical yet challenging task. To address the limitations of
conventional machine learning algorithms, which have low accuracy due to
data inhomogeneity and weak fluid logging responses, this study introduces a
novel method for fluid logging evaluation in dual-medium tight sandstone gas
reservoirs.

Methods: The method integrates core, thin section, and scanning electron
microscope observations, taking into account the effect of fractures.

Results: Reservoirs are divided into three types: fractured reservoirs (FR),
porous reservoirs (PR), and microfracture-pore composite reservoirs (MPCR),
highlighting the distinct fluid logging responses of each type. Reservoir
classification based on geological genetic mechanism significantly reduces
data noise and prediction ambiguity, thereby improving the efficiency of
model training.

Discussion: The final model is constructed by an ensemble method that
integrates multiple sub-models, including fuzzy C-means clustering (FCM),
gradient boosting decision tree (GBDT), backpropagation neural network
(BPNN), random forests (RF), and light gradient boosting machines (LightGBM).
Applied to the West Sichuan Depression in the Sichuan Basin, the model
validation accuracy reached 91.96%. In summary, this novel and reliable
method for log fluid prediction, significantly improved its accuracy and
robustness compared with single models and traditional methods, providing a
comprehensive perspective across geological and geophysical disciplines for
fluid logging evaluation in dual-medium tight sandstone gas reservoirs.

KEYWORDS

fluid identification, tight sandstone gas, ensemble learning, logging interpretation,
Sichuan Basin
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1 Introduction

In the past 2 decades, tight sandstone gas reservoirs have
been extensively studied and commercially developed worldwide
(Desbois et al., 2011; Zou et al., 2012; Kadkhodaie et al., 2021;
Ortiz-Orduz et al., 2021; Wang W. et al., 2023), including major
sedimentary basins in North America, such as the Alberta Basin
in Canada (Friesen et al., 2017), the Williston, San Juan, and
Appalachian Basins (Law, 2002; Hart, 2006; Ma et al., 2016), and key
Chinese basins, such as the Sichuan, Ordos, Songliao, Tarim, and
Bohai Bay Basins (Yue et al., 2018; Zhu et al., 2019; Liu et al., 2024).
Fluid identification has emerged as a critical yet challenging aspect
in current studies of tight sandstone gas reservoir heterogeneity
(Hua et al., 2024; Zhang et al., 2024). A variety of methods have
been developed for fluid characterization, including core analysis,
well logging interpretation, and seismic data evaluation techniques
(Hu et al., 2023; Huang et al., 2024). Well logging methods offer
an efficient and cost-effective way to identify fluid types in tight
sandstone gas reservoirs without the need for extensive coring or
well testing (Shedid and Mohamed, 2017; Li et al., 2022). However,
the combination of ultra-lowporosity, permeability, inhomogeneous
fracture distribution, and complex storage space makes it difficult to
predict fluids in tight sandstone gas reservoirs using logging data
(Lai et al., 2018; Pan et al., 2024). This is especially true in tight
reservoirs with complex gas-water combination patterns, where the
difficulty of logging identification of gas and water is even more
difficult (Kim et al., 2023; Li Q. et al., 2024a; Li et al., 2025).

Various well logging identification methods have been
developed to effectively characterize tight sandstone gas reservoirs,
including conventional methods such as petrophysics templates
and cross-plot analysis derived from core or log responses, and
non-cable logging techniques such as array acoustic wave and
nuclear magnetic resonance (NMR) logging (Tang et al., 2017;
Chen et al., 2020; Lai et al., 2024). However, each method faces
different challenges: conventional methods are often prone to
human bias, time-consuming, and limited by data with low
signal-to-noise ratios and strong nonlinearity (Deng et al., 2017;
He et al., 2020), while non-cable logging techniques can mitigate
some of these drawbacks yet still encounter major hurdles,
including relatively high costs, complex data processing, intricate
petrophysical model construction, and low computational accuracy
(Saboorian-Jooybari et al., 2016; Fan et al., 2019; Wu et al., 2024),
ultimately hampering their broader application in oilfields. A tight
sandstone dual-medium reservoir, also known as a fracture-pore
type reservoir, is characterized by a complex network of pores
and fractures that serve as the primary storage and flow channels
for fluids, respectively (Zhang et al., 2014). Identifying gas and
water in dual-medium tight sandstone gas reservoirs using logging
techniques is even more challenging because of the interaction
between pores and fractures (Li Q. et al., 2024b), yet this step
is critical for the economic and effective development of tight
sandstone gas.

Intelligent methods, such as discriminant analysis (Cui et al.,
2017), artificial neural networks (Tian et al., 2024), and support
vector machines (SVM) (Ao et al., 2019), have been successfully
applied to assist interpreters, thereby reducing interpretation costs
and improving analysis efficiency. Although these methods often
yield promising results, they remain constrained by challenges

such as limited training samples, hyperparameter selection, and
poor generalization performance of individual machine learning
models (Al-Mudhafar, 2017; Sun et al., 2020; Wood, 2020).
Driven by advances in model fusion technology, ensemble learning
has emerged as a powerful method that integrates multiple
models and significantly improves overall prediction performance
(Wolpert, 1992; Abba et al., 2022; Xiong et al., 2024). This
method has been extensively utilized in fluid prediction in tight
sandstone gas reservoirs, where its capability to integrate advantages
of multiple model has been proven to be highly effective in
addressing complex fluid prediction challenges (Abuzeid et al., 2025;
Wang et al., 2024a,Wang et al., 2024b).However, there are significant
differences in fluid features between different reservoir types, and
improving the prediction accuracy of ensemble learning models for
dual-medium complex reservoirs remains a significant challenge.
Reservoir classification enables the model to focus on the gas and
water features of a specific reservoir type, thereby reducing the
information interference caused by the mixing data from multiple
reservoir types and significantly improving prediction accuracy
(Szabó et al., 2023; Michael, 2024).

This research introduces a novel method for gas and water
identification in dual-medium tight sandstone gas reservoirs, taking
the tight sandstone of the SecondMember of the Xujiahe Formation
in the Western Sichuan Depression, Sichuan Basin as an example.
The method reconstructs multiple gas-sensitive parameters using
conventional and specialized logging data, thereby effectively
improving the logging response of fluids. Additionally, a stacking
ensemble machine learning approach is used to improve prediction
efficiency and effectiveness, and reservoir classification based on
geological genetic mechanisms plays a critical role in reducing data
noise and minimizing prediction ambiguity, thereby reducing the
difficulty of model learning. This innovative approach offers an
efficient and reliable method for improving fluid prediction through
well-log analysis in dual-medium tight sandstone gas reservoirs.
Moreover, it integrates geological and geophysical perspectives to
provide a comprehensive framework for fluid evaluation in complex
reservoir environments.

2 Geological setting

The Sichuan Basin, situated in the northwest of the Yangtze
Craton, is one of themost significant gas-producing regions inChina
(Figure 1A) (Yue et al., 2018). The Western Sichuan Depression
(WSD) is located in the northwestern part of the Sichuan Basin
and consists of six structural units: the Chengdu sag, the Zitong
sag, the Longmenshan front thrust belt, the Zhixinchang structural
belt, the Zhongjiang-Huilong structural belt, and the Xinchang
structural belt (Figure 1B) (Wang et al., 2020). The Xinchang
structural belt, the focus of this study, lies in the central-north
of the WSD. This anticline has a nearly east-west major axis and
is characterized by numerous faults (Figure 1C). These faults are
primarily reverse faults caused by regional compressional stress
and are classified according to age and size. Early east-west faults
formed the anticline of the Xinchang structural belt, while later
south-north faults divided it into tectonic units. These faults play
a critical role in fracture development and high gas yield in
the study area.
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FIGURE 1
Tectonic location and features of the study area in the Sichuan Basin. (A) Overview map showing the regional location of the Sichuan basin in China. (B)
Tectonic divisions of the Western Sichuan Basin, with the study area (blue square) highlighting the focus region for this research (Wu et al., 2021;
Yue et al., 2018). (C) Well site distribution and hierarchical evaluation of T3x

2 faults in the Xinchang structural belt (Liu et al., 2023).
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The Xujiahe Formation in the Xinchang Tectonic Belt is divided
into 10 sand groups (Tx2

1-Tx2
10), each corresponding to 1–2 short-

term cycles (Figure 2). Among them, the T3x2 Group is the target
interval for this study. The sedimentary system of the T3x2 Group
consists of underwater distributary channels and mouth bars within
a braided river delta front, with a formation thickness of 400–700 m
(Liu et al., 2020). Hydrodynamic energy reached its peak during the
mid-depositional stage of the T3x2 Group, and medium to coarse-
grained sandstones were predominantly found in the middle and
upper parts of the interval.The channels formed in different periods
overlapped with each other, resulting in vertically stacked and
laterally interbedded sand bodies (Gou et al., 2024; Li et al., 2024).
The intense structural and diagenetic processes have complicated
the distribution of tight sandstone gas reservoirs, which are
characterized by extremely low porosity (average matrix porosity
3.4%) and ultra-low permeability (average matrix permeability 0.07
× 10−3 μm2).

3 Datasets, methods, and workflow

3.1 Dataset and methods

A total of 724 m of cores from 24 exploration wells (Figure 1C)
in the study area were systematically logged and photographed.
Due to the complex geological structure and extensive fractures in
the study area, sampling was focused on lithofacies with distinct
physical properties to capture the variations in different reservoir
types. Helium porosity and air permeability were measured on
representative core plugs, while mercury intrusion was used to
characterize pore structures. Thin sections were impregnated with
blue epoxy to identify open pores and fractures and stained with
Alizarin Red S and potassium ferricyanide to identify carbonate
minerals. Microscopic examination of these thin sections utilized
standard petrographic techniques, including plane-polarized light
(PPL), where light passes through a single polarizer allowing
observation of mineral relief, shape, cleavage, and pleochroism.
Point counting on thin sections was performed to analyze
mineral texture, composition, and content. Scanning electron
microscopy (SEM) was used to investigate mineralogy, pore types
and mineral dissolution (e.g., feldspars and rock fragments). The
conventional logging dataset includes natural gamma-ray (GR),
acoustic (AC), deep lateral resistivity (RD), shallow lateral resistivity
(RS), compensated neutron porosity (CNL), maximum horizontal
stress (σH), and minimum horizontal stress (σh). However, the
extensive fractures have caused distortions in certain conventional
logging parameters, such as hole diameter (CAL) and density
(DEN), and therefore they were excluded from this study. It should
be noted that all wells were equippedwith conventional logging data.
Beyond that, imaging logging data, specifically the formation micro
scanner image (FMI), were utilized for wells X3 and XS204H. In
addition, single-well production test data from all production wells,
including gas and water production rates, open-flow capacity, and
final test conclusions regarding fluid type, were also integrated into
the comprehensive analysis.

Fluid typing of every layer is themain target of log interpretation
in tight sandstone gas reservoirs in study area. The types of fluid
in the layers are usually defined and classified using the layer

production data. For gas reservoirs, the types of layers are the gas
layer, poor-gas layer, gas-water layer, water layer, and dry layer,
which are defined in Table 1.

3.2 Conventional machine learning
algorithms

This study utilizes several well-established machine learning
algorithms for the construction of integrated frameworks, including
fuzzy C-means clustering (FCM), gradient boosting decision tree
(GBDT), back propagation neural networks (BPNN), random
forests (RF), and light gradient boosting machines (LightGBM).
FCM performs soft clustering by assigning membership degrees
for each data point to multiple clusters, minimizing an objective
function based on weighted distances (Wu et al., 2023). BPNN
are feedforward artificial neural networks trained using the
backpropagation algorithm, which iteratively adjusts network
weights by propagating error gradients backward from the output
layer (Wang et al., 2023a; Wang et al., 2023b). RF constructs
a multitude of decision trees on bootstrapped data subsets
and random feature selections, aggregating their predictions for
improved robustness and accuracy (Zhao et al., 2024). GBDT builds
trees sequentially, where each new tree attempts to correct the
residual errors made by the previous ensemble, optimizing a loss
function using gradient descent (Liu and Liu, 2021). LightGBM is
a highly efficient implementation of GBDT that employs techniques
like gradient-based one-side sampling (GOSS) and exclusive feature
bundling (EFB) to accelerate training speed and reduce memory
consumption, particularly on large datasets (Yang et al., 2025).

3.3 Integrated workflow

To address the challenges faced by conventional machine
learning algorithms, including low accuracy resulting fromhighdata
heterogeneity and weak fluid logging responses, our proposed fluid
logging evaluation method for dual-medium tight sandstone gas
reservoirs integrates the following four key steps: (A) reconstruction
and optimization of fluid prediction parameters from the original
dataset, (B) reservoir classification based on geological genetic
mechanisms, (C) development and implementation of an integrated
stacking-based ensemble model, and (D) generation of logging
interpretation results (Figure 3).

The original dataset underwent depth shift correction, data
cleaning, and z-score normalization (Zheng et al., 2021), as
well as additional preprocessing steps to ensure accurate core-
log calibration (Figure 3A). The production data from actual wells
were carefully selected, excluding samples thatwere tested uniformly
throughout the entire wells or across multiple formations. These
preprocessing steps effectively reduced errors and improved the
reliability of the log samples. Effective feature selection is critical
to improve prediction accuracy, and hybrid feature selection
methods represent a state-of-the-art approach (Ebrahimi Warkiani
and Moattar, 2025). This process includes: (i) reconstructing gas-
and water-sensitive parameters using mathematical techniques to
enrich feature dimensions, (ii) filtering redundant features through
Pearson’s correlation coefficient analysis, and (iii) pre-training with
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FIGURE 2
Comprehensive stratigraphic column of the second member of the Xujiahe formation in the Xinchang area, illustrating the stratigraphic section,
lithology, sedimentary facies of its 10 gas-bearing sand groups (Tx2

1–Tx2
10), percentage of medium-coarse grained sandstone, and hydrodynamic

energy (modified from Liu et al., 2020).

TABLE 1 Fluid types of the tight sandstone gas reservoirs in the Western Sichuan Basin (Tan et al., 2020).

Fluid types Production description

Gas Gas is dominated, and no water or and the water cut is low than 10%

Poor-gas Gas is present but in low quantities, with the gas production rate being significantly low, and the water cut low than 10%

Gas-water Both gas and water are produced, and the water cut is from 10% to 90%

Water A little gas is produced and water is dominated, and the water cut is higher than 90%, or no gas product and only water is produced

Dry A little fluid is produced, or no fluid is produced
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FIGURE 3
Integrated workflow diagram illustrating the comprehensive methodology for fluid logging identification in dual-medium reservoirs. Four key steps: (A)
reconstruction and optimization of fluid prediction parameters from the original dataset, (B) reservoir classification based on geological genetic
mechanisms, (C) development and implementation of a stacking-based ensemble model, and (D) generation of logging interpretation results.

BPNN, AdaBoost, and RF to evaluate feature importance, calculate
average importance scores, rank features, and retain those above the
threshold to form the final feature set.

Based on core observations and FMI image log data, the
macroscopic lithological and petrophysical structural differences
of the reservoirs were identified. On this basis, core test data,
including impregnated thin sections and SEM images, were
used to examine the microscopic pore structure differences. By
integratingmacroscopic andmicroscopic differences, a classification
standard for tight sandstone reservoir types was established
(Figure 3B).

Stacking improves prediction accuracy by integrating multiple
models, where diverse base learners first capture various aspects
of the data (Xiong et al., 2024), and a meta-learner subsequently
synthesizes their outputs. The success of stacking depends on
ensuring diverse base learners and employing an appropriate
ensemble strategy. In this study, the preferred base learners include
fuzzy C-means clustering (FCM), gradient boosting decision
tree (GBDT), backpropagation neural network (BPNN), random
forest (RF), and light gradient boosting machine (LightGBM)
(Figure 3C). Each sub-model was selected for its unique strengths
and complementary characteristics: FCM for handling fuzzy
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relationships and providing insight into complex system dynamics;
GBDT for effectively boosting weak learners into strong performers
with complex, non-linear data relationships; BPNN for its robust
pattern recognition capabilities; and RF and LightGBM for their
efficiency and reliability when processing large datasets with
multiple features. These models collectively reveal data patterns,
handle nonlinearities, and approximate complex functions, reducing
errors and reinforcing generalization capabilities. Weight allocation
for each sub-model is determined through cross-validation, with
higher validation accuracy corresponding to greater weight in the
final ensemble. Selecting an appropriate meta-learner is essential for
optimal performance, as some learners with high error rates can
introduce unwanted noise to themodel. In practice, Lasso regression
is often used because it mitigates overfitting via regularization and
exploits sparse feature relationships, resulting in superior prediction
accuracy and enhanced generalization. When the analysis of
accuracy estimates in K-fold cross validation and non-trained well
data meet the predefined threshold, the prediction results are
generated and output (Fig. 3D).

4 Results

4.1 Features of reservoir space

The impregnated thin-section and SEM images show that the
reservoir space in the target formation exist in the form of primary
pores, secondary pores, and fractures. The primary pores are a
small amount of residual intergranular pores, primarily located
between quartz grains coated with chlorite (Figures 4A, B, G). Some
primary intercrystallite micropores are mainly developed in the
matrix (Figure 4H). The secondary pore spaces are characterized by
intraparticle dissolution pores and interparticle dissolution pores.
Intraparticle dissolution pores are mainly formed by the dissolution
of feldspar and other clastic components (Figures 4B, C, D, I, J).The
extent and distribution of intraparticle pores depend on detrital
composition, resulting in uneven pore development. Interparticle
dissolution pores are formed during the mid to late stages of
diagenesis due to the dissolution of the heterogeneous matrix
or cement, typically occurring along the boundaries or edges of
mineral grains and exhibiting irregular shapes (Figures 4C, H, I, K).
The pore radius of interparticle pores is often larger than that
of intraparticle pores. Microfractures are broadly developed,
including intragranular fractures and shear fractures. Intragranular
fractures occur within crystalline grains and have poor connectivity
(Figures 4B, C, I). Shear fractures are oftennarrow, but can penetrate
clastic grains, link throats and pores, and form a network structure
that significantly increase the permeability (Figures 4C, E). Under
strong stress and dissolution, these fractures may widen, with
the largest recorded aperture reaching 0.30 mm (Figure 4F). These
microfractures thus provide effective reservoir space and fluid
migration pathways.

4.2 Classification of reservoir space types

The reservoirs in the study area are divided into fractured
reservoirs (FR), porous reservoirs (PR), and microfracture-pore

composite reservoirs (MPCR) (Li et al., 2024) (Figure 5).The storage
space and seepage pathways in FR are primarily controlled by
fractures, including shear and dissolution fractures (Figure 6A).
Although the porosity of these reservoirs is low, typically under
3%, the fracture–matrix connectivity ensures relatively high
permeability, generally above 0.03 mD and often exceeding 1 mD.
Consequently, FR is a relatively high-quality reservoir type in the
study area. FR reservoirs predominantly occur in tectonically active
regions, such as fault zones or fold deformation areas (Liu et al.,
2023). Core samples show reveal distinct fractures (Figure 6G), and
imaging logs show that high-angle and low-angle fractures intersect,
forming a fracture network (Figure 6D).

The MPCR reservoirs have well-developed pores and fractures,
and the storage space mainly composed of pores and flow channels
formed by fractures and throats. Microfractures effectively connect
the widely developed intergranular dissolution pore and primary
intergranular pores, aligning closely with throats (Figure 6B), which
makes MPCR the highest-quality reservoir type in tight sandstone
gas reservoirs. This reservoir type has excellent physical properties,
with a porosity over 3% and a permeability above 1 mD. MPCR
reservoirs are predominantly found in tectonically active regions,
such as fault zones or areas of fold deformation. In contrast to
fractured reservoirs (FR), MPCR reservoirs are mostly located in
non-core areas. Unlike fractured reservoirs (FR), core samples in
MPCR often display low-angle fractures, forming a distinctive layer-
cake structure (Figures 6E, H).

The PR reservoirs are mainly composed of pores, while fractures
are largely absent.The primary storage space is pores between clastic
particles, and the flow channels formed by throats that connect
these pores. Porosity generally exceeds 3%, and permeability is
largely controlled by the development of throats, which display a
positive correlation with porosity (Figure 5). The reservoir pores
are predominantly intergranular dissolution pore, intragranular
dissolution pore, and intercrystallite micropore (Figure 6C).

4.3 Reconstruction of fluid prediction
parameters

For tight sandstone gas reservoirs, the contribution of pore
fluids to logging responses is minimal, making it challenging to
directly identify fluids using conventional cable logging (Tan et al.,
2020). Effective fluid identification in such reservoirs relies on
suppressing interference signals and emphasizing the contribution
of gas-bearing fluids by developing sensitive parameters for gas-
bearing identification. Among them, the amplitude difference in
dual laterolog resistivity curves serves as an effective indicator
of formation permeability and fluid properties. Gas layers
generally exhibit higher permeability than dry or poor-gas layers,
characterized by a positive amplitude difference where the deep
lateral resistivity, RD, exceeds the shallow lateral resistivity, RS,
while dry layers have almost no amplitude difference, with RD/RS
approaching 1. The resistivity invasion correction difference ratio
method provides a reliable method for determining reservoir
fluid properties, and can distinguish between gas layers, poor-
gas layers, and dry layers (Rasmus and Services, 1982). Based on
this principle, gas-bearing sensitive parameters K1 (Equation 1)
and K2 (Equation 2) are constructed to improve the accuracy of
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FIGURE 4
Reservoir space features of the T3x

2 Group of the Xinchang area. (A) Chlorite film residual intergranular pores and feldspar intragranular solution pores
(PPL image; Well XC12, 4839.48 m; Ф = 6.25%, K = 0.11 mD). (B) Feldspar intragranular dissolution pores grains coated by chlorite films, residual primary
intergranular porosity, and intracrystalline fractures within quartz. (PPL image; Well CG561, 4992.67 m; Ф = 10.61%, K = 0.75 mD). (C) Intergranular and
intragranular dissolution pores, crystal periphery fractures and quartz intracrystalline fractures (PPL image; Well XS204H, 4608.73 m; Ф = 4.53%, K =
0.33 mD). (D) Intercrystallite dissolution pores are mostly filled with calcite, with only a few intragranular dissolution pores, and widely developed
microfractures (PPL image; Well GM2, 5035.98 m; Ф = 2.03%, K = 0.09 mD). (E) Numerous microfractures and intergranular dissolution pores (PPL
image; Well XC12, 4820.34 m; Ф = 7.06%, K = 33.37 mD). (F) Wide microfracture, lower part filled by organic matter (PPL image; Well CG561,
5065.54 m). (G) Residual primary intergranular pores (SEM image; Well XC7, 5190.15 m; Ф = 11.67%, K = 0.64 mD). (H) Intergranular dissolution pores
and illite intercrystallite micropores (SEM image; Well X3, 4731.06 m; Ф = 2.47%, K = 0.02 mD). (I) Intergranular and intragranular dissolution pores of
feldspar (SEM image; Well X10, 4940.01 m; Ф = 5.47%, K = 0.05 mD). (J) Dolomite intragranular dissolution pores and cleavage fractures (SEM image;
Well X101, 5041.51 m; Ф = 2.53%, K = 0.02 mD). (K) Intergranular and intragranular dissolution pores, with illite filling the upper right portion (SEM image;
Well X101, 5101.02 m; Ф = 3.53%, K = 0.11 mD). (L) Shear fractures (SEM image; Well X5, 5025 m; Ф = 2.68%, K = 3.36 mD). Q = quartz; F = feldspar; L =
lithic fragments; Ca = carbonate cement; Ill = illite; Ch = chlorite; Mic = mica; PPL = plane-polarized light; SEM = scanning electron microscope; Ф =
helium porosity; K = nitrogen permeability. Red arrows indicate primary intergranular pores; white arrows indicate intergranular dissolution pores; blue
arrows indicate intragranular dissolution pores; green arrow indicates intercrystallite micropores; and yellow arrows indicate fractures.

fluid prediction.

K1 =
RD −RS

RD
= 1−

RS

RD
(1)

K2 =
RD

RS
(2)

K3 =
RD

∆σ
=

RD

σH− σh
(3)

where RD is the deep lateral formation resistivity (Ωm), RS is the
shallow lateral formation resistivity (Ωm), ∆σ is the stress difference
in the formation (MPa), σH is the maximum horizontal principal
stress in the formation (MPa), and σh is the minimum horizontal
principal stress in the formation (MPa).

The gas-bearing sensitive parameters K1 and K2 are significantly
affected by fractures and dynamic drilling fluid invasion, resulting in
unclear responses of water layers and gas–water layers. To address
this limitation, this study innovatively integrates electrical and
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FIGURE 5
Scatter plots showing the relationship between porosity and permeability for different reservoir types. The black dashed lines indicate the classification
thresholds for porosity and permeability for different reservoir types. All data points were identified using thin sections impregnated with blue epoxy
resin and SEM images.

FIGURE 6
Classification criteria and features of different reservoir type of in the T3x

2 Group of the Xinchang area. (A) The fracture is distributed along the diagonal
line, and the pores are mainly developed as intragranular soluble pores and intercrystallite micropores (PPL image; Well X856, 4722.45 m; Ф = 2.85%, K
= 5.94 mD). (B) Microfractures connect the numerous intergranular and intragranular dissolution pores, and the microfractures themselves can
dissolve and expand (PPL image; Well CG561, 4929.25 m; Ф = 6.72%, K = 23.54 mD). (C) Intergranular and intragranular pores are dominant, and the
seepage channel is mainly a lamellar throat. (PPL image; Well XC12, 4826.52 m; Ф = 6.02%, K = 0.11 mD). (D) Web-like fractures (FMI image; Well X3).
(E) Laminated fractures (FMI image; Well XS204H). (F) No fracture development (FMI image; Well X3). (G) High-angle fractures (80.17°; Well L150,
4932.37–4732.94 m). (H) Flat joints resembling a mille-feuille fractures (almost 0°; Well XC12, 4821.05–4821.28 m). (I) Massive medium-coarse
sandstone (Well XS204H, 4601.68–4601.92 m). PPL = plane-polarized light. The dark blue curve represents the FMI image interpreting the fracture.
Yellow arrows indicate fractures.
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rock mechanical parameters to develop a new gas-bearing sensitive
parameter K3 (Equation 3). Pore fluids reduce the elastic limit
and strength of rocks, and the increased toughness reduces stress
differences—a phenomenon more pronounced with gas intrusion,
which exhibits a general downward trend as gas saturation increases
(Phillips, 1972; Pandey andOjha, 2024). Since the resistivity of water
layers is significantly lower than that of gas layers, the ratio method
is adopted to amplify gas-bearing logging responses. This newly
created parameter effectivelymitigates the influence of fractures and
provides clear discrimination among gas layers, gas–water layers,
and water layers.

4.4 Optimization of fluid prediction
parameters

Data preprocessing plays a crucial role in improving the
efficiency of algorithm training. To enrich the dimensions of
fluid prediction parameters, gas-bearing sensitive parameters were
reconstructed. The Pearson correlation coefficients were then
employed to analyze the relationships among all fluid prediction
parameters. By calculating these coefficients, highly correlated
redundant parameters (with correlation coefficients close to 1 or -
1) were identified. A heatmap was used in this study to visually
represent the correlations between the parameters (Figure 7).
Notably, K3 exhibited strong correlations with RD and Rs, as well
as σH and σh. Since the gas-bearing sensitive parameter K3 is
constructed based on electrical and rock mechanical parameters,
the redundant parameters (RD, Rs, σH and σh) were excluded from
subsequent analyses.

RandomForest (RF) evaluates feature importance by calculating
the mean decrease in Gini (MDG) index of input features
(Wang Q. et al., 2023), while AdaBoost determines feature
importance based on the weights of weak classifiers in the trained
strong classifier (Cui et al., 2023); Backpropagation neural network
(BPNN) assess feature importance by calculating the mean impact
value (MIV), which measures the effect of proportional changes
in input sample values on the output (Bai et al., 2021). Using
these principles, BPNN, AdaBoost, and RF were employed for
pre-training to evaluate feature importance, and by averaging the
importance scores obtained from these models, a comprehensive
ranking of feature importance was established. The results show
that K3 and AC features consistently exhibit high importance across
all models, highlighting their strong predictive capabilities within
the dataset and demonstrating the superiority of the innovatively
reconstructed parameters in this study. Features K1 and K2 are of
secondary importance; although their weights vary among models,
they are still generally regarded as significant features. In contrast,
CNL and GR features show low importance in all models, with GR
consistently ranked as the least important feature (Figure 8).

To ensure the generalization and accuracy of prediction
results, various combinations of logging features were used for
ensemble learning training in descending order of their importance
contributions. The combination with the highest accuracy in
pre-trained models was selected as the optimal logging feature
combination. The final optimal combination consists of K3, AC,
K1 and K2, while accuracy decreases after adding CNL and
GR features (Figure 8). Consequently, K3, AC, K1 and K2, along with

their corresponding fluid type labels, were selected to construct the
training set.

4.5 Variations in fluid logging responses in
different reservoir types

Dual-medium reservoirs are characterized by complex fracture
and pore structures. The degree of development of fracture and
pore leads to changes in rock physical properties and fluid features,
resulting in different logging response features for different reservoir
types. Moreover, even in the same reservoir type, significant
differences in logging responses are observed among gas layers,
water layers, and dry layers due to the pronounced differences
in the physical properties of gas, water, and the rock framework.
Despite these differences, the logging responses of individual
fluid parameters in different reservoir types generally follow
similar trends (Figure 9). Statistical analysis of sensitive parameters
selected for different fluid types reveals that the K3 logging value is
typically highest in dry layers, while the AC and K1 logging values
are the lowest. As water content increases, transitioning from gas
layers to gas-water layers and finally to water layers, K3 logging
values exhibit a decreasing trend, whereas AC logging values show a
corresponding increase.

From the perspective of economic efficiency and resource
development, gas layers and poor-gas layers are the primary targets
of exploitation. Therefore, this research compared the logging
responses of different reservoir types in gas layers and poor-gas
layers through typical singlewells.TheACandK3 values of gas layers
in FR are relatively high. Due to the influence of fractures, the K1
and K2 values are overall high (Figure 10A). By contrast, although
the MPCR is affected by micro-fractures, it exhibits favorable gas-
bearing features, with a relatively high overall K3 value. As the main
development is micro-fractures, the amplitude difference between
RD and RS is smaller than gas layers of FR, resulting in moderate
K1 and K2 values (Figure 10B). PR show intermediate logging
responses, with moderate AC, and K3 values. Local abnormal
increases in acoustic waves occur, presenting the phenomenon of
cycle skipping (Figures 10C, D). The amplitude difference between
RD and RS is the smallest, and K1 and K2 values are the lowest. It is
worth noting that the porous reservoirs exhibit strong heterogeneity,
and their logging responses vary widely, primarily affected by gas-
bearing capacity. Higher gas-bearing capacity corresponds to higher
K2 and larger AC values.

5 Discussion

5.1 Accuracy and reliability of fluid type
prediction

Since the rock physical structures of different reservoirs are
affected by different geological genetic mechanisms, the logging
responses of different types of reservoir fluids are significantly
different. The new method we proposed in this study (Section 3.2)
for fluid logging evaluation in dual-medium tight sandstone gas
reservoirs significantly improves the accuracy and reliability of fluid
prediction.
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FIGURE 7
Correlation heatmap of fluid prediction logging parameters, with highly correlated parameters indicated in Blue or Red.

FIGURE 8
Feature importance for fluid prediction parameters and performance comparison of combined training models in logging datasets.

To evaluate the effectiveness of fluid prediction models, the sub-
models and the new method were trained using the same dataset.
Since the validation set results better reflect model performance,
the confusion matrices for both the sub-models and the new
method were generated for comparison (Figure 11). In terms of
overall classification accuracy, the BPNN model achieved 77.85%,

the RF model 78.38%, the LightGBM model 75.37%, the FCM
model 76.69%, and the GBDT model 73.21%. The new method
achieved a significantly higher accuracy of 91.96%, indicating that
each conventional algorithm (sub-model) has difficulty in accurately
identifying fluid types in complex reservoirs. In contrast, the
proposed new method developed in this study outperforms all
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FIGURE 9
Variability in logging responses for fluid types across different reservoir types in T3x

2 tight sandstones. Subplots represent reservoir types: (A) Fractured
reservoirs, (B) Microfracture-pore composite reservoirs, and (C) Porous reservoirs. Each subplot with the range (bar), 25th and 75th percentiles (box),
and median (midline) illustrates response differences of K1, K2, K3, and AC for different fluid types, including gas, poor-gas, gas-water, water, and dry
layers. Additionally, K1, K2, and K3 are dimensionless, while the unit of AC is Us/m.

individual sub-models, demonstrating a substantial improvement in
overall prediction accuracy.

Detailed analysis of the confusion matrices further shows that
the sub-models are less effective in distinguishing between gas-water
layers, water layers, and poor-gas layers. For instance, the random
forest (RF)model, which has the highest prediction accuracy among
the sub-models, misclassifies 43.75% of gas-water layers and 44.44%
of water layers as poorer-gas layers, resulting in poor performance.
In contrast, the new method achieves over 85% accuracy in
predicting gas-water layers, poor-gas layers, and water layers, with
a prediction accuracy of 93.85% for water layers. This represents
a significant improvement in fluid type prediction, particularly in
distinguishing between categories with similar logging response
features, such as gas layers and poor-gas layers, gas-water layers and
water layers.

5.2 Validation of the new model using a
blind well

To further evaluate the generalization ability and reliability of
the model, the constructed sub-model and the new model were
applied to predict fluid types in the X856 blind well, which refers
to unknown well data in the study area excluded from the model
testing process. Several well sections with production test results
were selected to compare their predicted outcomes (Figure 12).
Notably, three significant differences were observed between the
fluid type predictions (marked by red rectangles in Figure 12). In
the first segment (4821.3 m–4826.5 m), where fractures are more
developed, the sub-models predominantly predict gas-water and
water layers, while the integrated model identifies gas and poor-
gas layers. In the second (4827.5 m–4844.5 m) and the third (4832
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FIGURE 10
Comprehensive logging histogram of gas and poor-gas reservoirs in T3x

2 tight sandstones across different reservoir types, illustrating logging response
differences, lithology, depth, porosity (Por) and permeability (Perm) measured by core plugs, gas and water production rates, open-flow capacity, and
final test conclusions regarding fluid type to the analyzed intervals.

m–4862.4 m) segments, where fractures are largely undeveloped,
the predictions from both the sub-model and the integrated model
are relatively consistent, with only the FCM and LightGBM models
identifying gas-water layers. The actual production test results
(4812.4 m–4862.4 m) showed only a natural gas production of 1.019
million m3/day, with almost no water production. This indicates
that the predictionsmade by the stacking-based ensemblemodel are
more reliable and consistent with the production data.

5.3 Importance of reservoir classification
based on geological genetic mechanisms
in the integrated model

We performed ablation experiments using the same datasets
to validate the effectiveness of each component in the integrated
workflow to enhance performance refinement. The dataset used
in this experiment includes the original dataset containing all
logged and labeled data, which has undergone conventional
preprocessing and z-score normalization, as well as reconstruction
and optimization of the fluid prediction log parameters, which have
been described in detail in Section 4. Under these conditions, four
variable control groups were established as follows: (a) no reservoir
classification based on geological genetic mechanisms, only the
selected sub-models were used; (b) no reservoir classification
based on geological genetic mechanisms, only the stacking-based
ensemble model was used; (c) with conduct reservoir classification
based on geological genetic mechanisms, and then the selected
sub-models were used; (d) with reservoir classification based
on geological genetic mechanisms, and then the stacking-based
ensemble model was used.

The results demonstrate the enhanced model performance
when data is classified based on geological genetic mechanisms
or when a stacking-based integrated model is adopted. This
highlights the effectiveness of the proposed integrated workflow
and its significance in improving model performance. In addition,
classifying reservoirs based on geological genetic mechanisms
significantly improves the performance of the sub-models and the
integrated model. This shows that such classification plays a crucial
role in reducing data noise and the multiplicity of predictions,
thereby alleviating the difficulty of model learning and effectively
improving training efficiency and prediction accuracy (Table 2).

5.4 Mechanisms of gas content differences
in different reservoir types

Different types of reservoirs exhibit obvious differences in gas
content, mainly affected by reservoir quality and the geological
structural setting. Reservoir densification and natural gas migration
in the Xinchang area of the West Sichuan Depression occurred
simultaneously (Yue et al., 2018). Rapid densification leads to
variability in pore structures of different reservoirs (Figure 13A).
This phenomenon is evident in the high-pressure mercury intrusion
curves of representative samples from four reservoir types, where the
maximum mercury saturation gradually decreases with increasing
pore structure variability, while the displacement pressure rises
markedly as pore structure variability intensifies (Figure 13B). In
reservoirs with low densification and favorable pore structures,
natural gas charging remains strong, forming gas or gas–water
layers depending on the extent of formation water displacement. As
densification progresses, formation water in the reservoir pore space
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FIGURE 11
Comparison of classification results between conventional algorithms (sub-models) and the stacking-based ensemble model on the validation set. (A)
BP neural network (BPNN); (B) Random forest (RF); (C) Gradient boosting decision tree (GBDT); (D) Fuzzy C-means clustering (FCM); (E) Light gradient
boosting machine (LightGBM); (F) The proposed new method.

turns into bound water. At this stage, natural gas charging capacity
weakens, hindering the displacement of bound water and leading
to the formation of gas or poor-gas layers, depending on the gas
content. In addition, as reservoir densification intensifies, natural gas
charging ceases when pore space is severely reduced. Under these

conditions, boundwater dominates the internal pore space, resulting
in overall dry-layer features (Figure 13E).

The impact of late-stage tectonic evolution on different types of
reservoirs are significantly different (Figure 13F). The FR typically
occur in complex tectonic settings (e.g., fracture-fold systems, large
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FIGURE 12
Comparison of logging fluid prediction results between proposed new method and sub-models for Well X856.

TABLE 2 Ablation experiments of four variable control groups. The prediction accuracies for all sub-models are averaged for comparison.

Fluid type Accuracy of group a
(%)

Accuracy of group b
(%)

Accuracy of group c
(%)

Accuracy of group d
(%)

Gas 84.16 88.63 89.37 91.06

Poor-gas 77.15 81.52 86.55 89.94

Gas-water 30.00 55.41 64.51 85.47

Water 24.44 43.55 77.84 93.85

Dry 100.00 100.00 100.00 100.00

fault blocks, and fold-thrust belts) with concentrated geological
stresses, and the natural fractures act as highly efficient fluid
conduits. Such reservoirs are prone to intense gas charging, which
is favorable for the formation of gas layer. However, due to
poor development of pore structures and generally low porosity,
bound water accumulates more readily, leading to the formation of
gas–water layers via fracture connectivity or evenwater layers if large
fracture openings are present (Figures 13E, F).

The MPCR has the advantages of both fractures and pores, with
high porosity, permeability, and excellent pore–throat connectivity
that supports efficient gas storage and flow. These characteristics
make MPCR less likely to form dry layers and more favorable to
the development of gas, gas–water, or water layers (Figure 13C).
The interaction between microfractures and pores enhances
fluid mobility, thereby maintaining high gas saturation in the
reservoir (Figure 13D).
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FIGURE 13
Effect of reservoir quality on gas and water distribution. (A) Representative PPL images of impregnated thin sections from reservoirs with varying
qualities. PPL = plane-polarized light. (B) Corresponding the mercury intrusion curves for varying quality reservoirs. (C) Cumulative histograms of
logging interpretation differences across gas and water layers from different types of reservoirs. (D) Box plots with the range (bar), 25th and 75th
percentiles (box), and median (midline) illustrates water saturation differences measured in cores from various reservoir types. (E) Gas and water
distribution patterns controlled by reservoir quality changes (modified from Wang et al., 2025). (F) Gas and water distribution patterns controlled by
reservoir quality changes with the impact of faults and fractures (modified from Wang et al., 2025).

The gas-bearing capacity of PR primarily depends on pore
structures and gas charging intensity. Reservoirs with favorable pore
structures and strong gas charging intensity are more conducive
to the formation high-productivity gas layers, while insufficient
charging or poor pore structures may lead to dry or low-quality
gas layers. Late-stage tectonic evolution has a significant impact on
the fluid properties and gas-bearing potential of all reservoir types,
showing variations in gas content and gas-charging dynamics under
tectonic activity (Figures 13C, D, F), with the MPCR reservoirs
exhibit superior physical properties and higher gas content, making
them the most promising candidates for further exploitation.

5.5 Implications for petroleum exploration
and development in complex oil and gas
fields

Large basins worldwide exhibit complex and heterogeneous
geological conditions (Peace et al., 2022; Perkins et al., 2023;
Kiswaka et al., 2025). With long-term exploitation of conventional
oil and gas fields, the amount of remaining conventional resources
has gradually decreased, while unconventional oil and gas reservoirs
in complex field blocks are becoming increasingly important and
have great development potential (Zhao et al., 2025). Advances
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in exploration and development technologies have also driven the
shift of oil and gas exploration towards complex oil and gas field
blocks and unconventional reservoirs, which is a key trend in future
oil and gas exploration (Wen et al., 2024). Integrating geological
genetic mechanisms with advanced artificial intelligence tools offers
an effective strategy to overcome the challenges of exploration and
development in complex oil and gas field blocks (Kang et al.,
2025). Elucidating these geological geneticmechanisms helps develop
sophisticated models that emphasize the geological significance of
geophysical well-logging data, facilitate the visual interpretation of the
models, and increase their transparency andcredibility (Wang Z. et al.,
2024). The innovative approach proposed in this study integrates
geological and geophysical methods for fluid logging evaluation in
dual-medium tight sandstone gas reservoirs, and then combines
the knowledge from geological genetic mechanisms with artificial
intelligence algorithms. This approach can more effectively and
accurately address the challenges posed by reservoirs with complex
pore structures, and provides a novel solution framework for the
exploration and development of complex oil and gas reservoirs under
different geological conditions.

6 Conclusion

This study proposes an integrated machine learning framework
to predict fluid types in dual-medium tight sandstone gas reservoirs
using logging technology, with the goal of achieving cost-effective and
efficient predictions. The study provides a detailed overview of the
processes of data preparation, preprocessing, reservoir classification,
and integratedmodel construction.Themain findings are as follows:

(1) The reservoirs in the study area are classified into three
types: fractured reservoirs (FR), porous reservoirs (PR), and
microfracture-pore composite reservoirs (MPCR). Significant
differences in fluid logging responses are observed among
these three types of reservoirs.The classification based on prior
knowledge ensures the relative stability of the data structure
and effectively reduces the impact of noise.

(2) A new integrated model based on the classification and
artificial intelligence tools was proposed. It integrates multi-
source geological data, establishes a reservoir classification
based on geogenic mechanisms, applies genetic mechanism
constraints to data processing, and proposes an integrated
framework grounded in genetic mechanisms. The novel
model applied and validated in tight sandstone dual-
medium reservoirs in the western Sichuan Basin with an
accuracy of 91.96%, significantly improving the accuracy and
robustness of fluid prediction compared to single models and
traditional methods.

(3) The reconstruction and optimization of fluid prediction
logging parameters significantly improved prediction
accuracy. In this study, electrical and rock mechanical
parameters are innovatively combined to create a new gas-
bearing sensitive parameter, K3.This new parameter effectively
minimizes the impact of fractures and clearly distinguishes gas
layers, gas-water layers, and water layers.

(4) The gas content of different reservoir types varies significantly
mainly affected by reservoir quality and tectonic environment.

The interaction between microfractures and pores in MPCR
reservoirs promotes high fluid flow, thereby maintaining high
gas saturation. Overall, these MPCR reservoirs represent the
highest quality reservoir type in the study area and have
substantial development potential.
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