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Slope stability prediction under
seismic loading based on the
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Predicting the stability of slopes under seismic conditions is critical for geological
hazard prevention and infrastructure safety. This study proposes an optimized
prediction model based on EO-LightGBM to enhance the accuracy of slope
stability assessment. A dataset containing 96 numerical simulation cases was
constructed using FLAC3D, incorporating key influencing factors such as slope
angle, inclination angle, slope height, rock mechanical parameters, and hard-
to-soft rock thickness ratio. The dataset was split into a training set (76 samples)
and a test set (20 samples). LightGBM, a gradient boosting decision tree (GBDT)
model, was initially trained on the dataset, while Equilibrium Optimizer (EO)
was utilized for hyperparameter optimization, focusing on learning rate, number
of decision trees, maximum depth, and number of leaf nodes. The five-fold
cross-validation approach was adopted to evaluate model generalization ability.
The experimental results demonstrate that EO-LightGBM achieves a prediction
accuracy of 94.0%, precision of 96.0%, recall of 92.0%, and an F1-score of
96.0%, outperforming traditional machine learning models such as SVM, KNN,
and Decision Tree. Comparative analysis further confirms that EO-LightGBM
effectively reduces error rates and enhances the adaptability of slope stability
prediction models under complex seismic conditions. This study provides a
reliable computational tool for seismic slope stability evaluation, contributing
to improved risk assessment in geotechnical engineering.

KEYWORDS

slope stability prediction, seismic response, equilibrium optimizer, Lightgbm, machine
learning

1 Introduction

Seismic slope stability assessment is of great significance in the fields of
geological engineering and infrastructure safety (Ahangari Nanehkaran et al., 2022;
Mahmoodzadeh et al., 2022; Zeng et al., 2021). Slope instability induced by earthquakes
may lead may lead to severe economic losses and casualties. Similarly, cyclic loading in
subsurface environments, such as that around buried cables, alters material properties over
time, making accurate prediction of slope stability under seismic loading a critical aspect of
disaster prevention and mitigation (Qin and Chian, 2018; Qin and Zhou, 2023). Traditional
slope stability analysismethods primarily include the Limit EquilibriumMethod (LEM) and
various computational tools, as seen across disciplines from fluid dynamics to geotechnical
engineering (Deng et al., 2017), Lattice Element Methods (LEM) have proven effective in
capturing multiphysics interactions in geomaterials, offering an alternative to traditional
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FEM/DEM approaches (Xu et al., 2020). (Azarafza et al., 2021)
investigated the application of the limit equilibrium method in
discontinuous rock slope stability analysis and found that this
method is widely applicable under various failure mechanisms
and geological conditions due to its computational simplicity,
short analysis time, and compatibility with probabilistic statistical
approaches for assessing safety factors and potential sliding surfaces.
Additionally, the study summarized two-dimensional and three-
dimensional slope stability analysis methods based on the limit
equilibrium approach and explored its application prospects in
natural slopes and artificial cut slopes. Kalatehjari and Ali (2013)
examined the instability factors of slopes along a highway in Anhui,
China, and discovered risks of wedge failure and toppling instability
due to jointed rock layers and discontinuities. The study employed
DIP.6 for kinematic analysis and Slide 6.020 for limit equilibrium
analysis to determine slope instability conditions. The results
indicated that empirical methods combined with limit equilibrium
analysis effectively validate slope failure mechanisms and provide a
basis for slope reinforcement design. The limit equilibrium method
evaluates slope stability by assuming sliding surfaces and calculating
mechanical equilibrium but does not account for the nonlinear
deformation characteristics of materials or the cyclic response
of geomaterials under repeated loading conditions (Deng et al.,
2017). Su and Shao (2021) proposed a three-dimensional slope
stability analysis method based on finite element stress analysis,
demonstrating its capability to compute both local and overall safety
factors for sliding surfaces. The study introduced an improved
ellipsoidal sliding surface construction method to enhance critical
surface search accuracy and employed a two-stage particle swarm
optimization algorithm to optimize the sliding surface search. The
results showed that this method effectively computes safety factors
for non-spherical sliding surfaces and exhibits high consistency
with the strength reduction method, verifying its applicability and
effectiveness. Kardani et al. (2021a) developed a hybrid stacked
ensemble approach combining finite element analysis (FEA) and
field data to enhance slope stability prediction accuracy. The study
utilized the Artificial Bee Colony (ABC) algorithm to optimize the
combination of base classifiers and selected an appropriate first-
level meta-classifier from 11 optimized machine learning (OML)
algorithms. Finite element analysis generated synthetic databases for
model training, while real-world slope cases were used for model
testing. Finite element analysis can simulate slope deformation
and stress distribution under seismic loading but has a high
computational cost. Sun et al. (2022) proposed a novel approach
(Y-slope) to simulate the entire slope failure process, including
failure initiation, propagation, and deposition. This algorithm
integrates finite element and discrete elementmethods and improves
computational efficiency by incorporating absorbing boundary
conditions to balance the initial stress state. The study adopted
the strength reduction method, considering both tensile and shear
failure modes, and automatically extracted safety factors and critical
failure surfaces. By introducing an energy dissipation mechanism,
themodel effectively simulates the kinematic process of slope blocks
in the later failure stages. Numerical tests validated the accuracy and
robustness of Y-slope, demonstrating the failure mechanisms and
processes of homogeneous and jointed rock slopes. Mebrahtu et al.
(2022) investigated the deep-seated landslides in the Debre Sina
region of Ethiopia and found that landslides frequently occur in this

area. The study assessed the stability of complex slopes composed
of different geological materials using the limit equilibrium method
and the shear strength reduction method based on finite element
analysis.The results indicated that slopes exhibited instability under
both static and pseudo-static loading conditions, with stability
strongly influenced by saturation conditions and seismic loads.
Although the discrete element method is suitable for simulating
large deformations and failure processes, obtaining high-precision
input parameters in practical applications remains challenging.
Furthermore, the computational accuracy of these methods largely
depends on empirical parameter selection, making them less
adaptable for slope stability assessment under complex working
conditions.

With the advancement of artificial intelligence (AI) and
machine learning (ML) technologies, data-driven approaches have
been widely applied in slope stability prediction. Zhang et al.
(2022) developed a support vector machine (SVM)-based slope
stability prediction model and proposed an algorithm for handling
complex data. The study first established an SVM regression
model and optimized its parameters using a grid search. The
model was trained on slope datasets, and the optimized SVM
prediction results were compared with those of random forests
and artificial neural networks. Lin et al. (2024) investigated a
convolutional neural network with self-attention (CNN-SA)-based
multi-material slope stability prediction model and proposed
an integrated prediction approach applicable to soil, rock, and
soil-rock mixed slopes. The study utilized digital twin (DT)
technology to construct a small-scale numerical slope dataset,
adjusting parameters to create a dataset containing 19,666 slope
scenarios. A total of 80% of the data was used to train the
CNN-SA model, while the remaining 20% and six real-world
slopes were used for testing. Xie et al. (2022) proposed a random
forest (RF)-based rock slope angle prediction model using real-
world measurement data. The study selected ten key factors
affecting slope angles, including rock strength, rock quality
designation (RQD), joint spacing, continuity, aperture, roughness,
filling, weathering, groundwater, and engineering direction, as
independent variables to construct an RF prediction model.
Machine learning methods such as support vector machines
(SVM), decision trees (DT), random forests (RF), and gradient
boosting decision trees (GBDT) have been applied to slope stability
prediction. These methods learn complex nonlinear relationships
from large-scale datasets, including those combining analytical
and machine learning techniques for thermal and geomechanical
property estimation (Rizvi et al., 2020a). Kai and Ke (2022)
developed a LightGBM-based slope stability prediction model
to mitigate slope failure-induced disasters and accidents. The
study selected six key factors—unit weight, cohesion, internal
friction angle, slope angle, slope height, and pore water pressure
ratio—as input variables, with slope stability as the output
variable. The model’s generalization ability was evaluated using
a confusion matrix and AUC. The results demonstrated that
LightGBM effectively captures the nonlinear relationships between
influencing factors and slope stability. Light Gradient Boosting
Machine (LightGBM), as an efficient algorithm based on gradient
boosting decision trees, has gained widespread attention in
engineering geology due to its fast computation speed, superir
model performance, and suitability for large-scale datasets. To
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TABLE 1 Summary of representative studies on slope stability prediction using machine learning methods.

References Machine
learning method

Input features Evaluation
metrics

Main advantages Limitations

Pe et al. (2023) Hybrid knowledge-data
model, knowledge-based
initiation,
knowledge-guided loss
function

Slope case histories
(varied)

Accuracy, comparison
with domain-based
models

Incorporates
geotechnical knowledge,
improves prediction
alignment with physical
behavior

Requires high-quality
labeled case histories

Qi and Tang (2018) Logistic Regression,
Decision Tree, Random
Forest, GBM, SVM, MLP
with Firefly Algorithm

Multiple slope
parameters

Confusion matrix, ROC,
AUC

Comprehensive
algorithm comparison;
FA improves
hyperparameter tuning

Limited to firefly
algorithm tuning; fixed
datasets

Khajehzadeh and
Keawsawasvong (2023)

SVR optimized with
GBAEF

6 slope parameters incl.
slope geometry and soil
properties

R2, Accuracy High prediction
accuracy; strong
generalization in case
study

Relies on SVR;
moderate-scale dataset
(153)

Rajan et al. (2025) MLR, ANN, RF, SVM 4,208 synthetic slope
cases via Slide software

Accuracy, validation
with real-world data

Broad data scope;
multi-model comparison

Synthetic data may differ
from actual field cases

Hoang and Pham (2016) FA + LS-SVM 168 real slope cases Classification accuracy,
ROC

Hybrid method
improves classification
performance;
multinational dataset

Small sample size; FA
may not sui

address recent advancements in machine learning applications
for slope stability prediction and to highlight the novelty of our
proposed approach, a summary of representative studies is provided
in Table 1. Although LightGBM has demonstrated promising
performance in slope stability prediction, and related numerical
techniques such as lattice element modeling have been successfully
used to characterize soil behavior, its effectiveness is highly
dependent on appropriate hyperparameter tuning (Rizvi et al.,
2018). As summarized in Table 1, various machine learning-based
models, including hybrid frameworks combining metaheuristics
and classical ML algorithms, have been explored to enhance
prediction accuracy. These studies highlight different optimization
strategies, data requirements, and performance metrics. However,
they also reveal certain limitations, such as reliance on synthetic
datasets, lack of cross-domain generalization, or insufficient
integration with engineering knowledge.Therefore, to address these
gaps, this study proposes an EO-LightGBM model that leverages
the global optimization capability of the Equilibrium Optimizer
(EO) to improve hyperparameter selection, thereby enhancing
the model’s robustness and predictive performance for slope
stability analysis under seismic conditions. Key hyperparameters
such as learning rate, number of trees, maximum depth, and
number of leaves have different optimal combinations across
datasets. Traditional hyperparameter optimization methods like
Grid Search and Random Search have low computational efficiency
in high-dimensional parameter spaces and may converge to
local optima.

To address this issue, metaheuristic optimization algorithms
such as Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), and Differential Evolution (DE) have been introduced to

optimize hyperparameters globally and enhance model predictive
capabilities. Among these, the Equilibrium Optimizer (EO) has
gained increasing attention. EO, proposed by Afshin Faramarzi
et al., in 2020, is inspired by the mass balance phenomenon
and performs global search through equilibrium state simulation.
Sun et al. (2023) explored an EO-LightGBM model for inverse
analysis of mechanical parameters of surrounding rock in soft rock
tunnels. The study used displacement data for inversion analysis
and validated the results through FLAC3D numerical simulations,
achieving a maximum mean error of 6.03%, demonstrating the
rationality and accuracy of the EO-LightGBMmodel. EO simulates
mass transfer between different equilibrium states to optimize
variables toward optimal solutions, thereby improving search
efficiency and global convergence. Compared to other optimization
algorithms, EO has fewer control parameters and benefits from
integration with advanced modeling techniques such as dynamic
lattice element simulations of cemented geomaterials (Rizvi et al.,
2020b). Previous studies have shown that EO effectively enhances
classification and regression tasks by optimizing machine learning
model hyperparameters.This study integrates EOwith LightGBM to
develop an EO-LightGBM model for hyperparameter optimization
and improved slope stability prediction accuracy. The FLAC3D
numerical simulation software is used to construct a seismic slope
stability dataset, generating 96 slope stability cases with different
slope angles, inclinations, heights, rock mechanical parameters, and
soft-to-hard rock thickness ratios.The dataset consists of 76 samples
for model training and 20 samples for testing. LightGBM is initially
trained, and EO is used to optimize hyperparameters to enhance
prediction performance. Five-fold cross-validation is employed to
ensuremodel generalization and reduce bias fromdata partitioning.
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2 Methods

2.1 Equilibrium optimizer algorithm (EO)

The Equilibrium Optimizer (EO) algorithm was proposed by
Afshin Faramarzi et al., in 2020, with the fundamental idea of
performing a global optimization search by simulating the mass
balance phenomenon (Wang et al., 2021; Micev et al., 2021;
Kardani et al., 2021b). The EO algorithm is designed based on the
mass balance equation within a control volume, enabling efficient
searching within the solution space while avoiding local optima.The
search process of EO is established on a mathematical model that
guides optimization variables toward the target equilibrium state.
Assuming the optimization problem aims to minimize an objective
function, as shown in Equation 1.

min f(X), X ∈Ω (1)

where X = [x1,x2, ,xn] represents a candidate solution in the
search space, and Ω denotes the feasible solution domain. EO
introduces multiple equilibrium state solutionsXeq, which represent
the optimal solutions thatmay be reached during the search process.
The equilibrium state solutions are computed based on historical
best solutions and updated using statistical information from the
search population, defined as as shown in Equation 2.

Xeq =
1
N

N

∑
i=1

wi ·Xi (2)

where N represents the number of equilibrium state solutions, wi is
the weight coefficient, andXi denotes the best solution selected from
the current population.

The core of the algorithm is updating the solution position based
on themass balance equation. EO establishes an optimizationmodel
based on equilibrium states, assuming that the update process of
solution Xt at iteration t satisfies as shown in Equation 3.

Xt+1 = Xeq + r1(Xeq −Xt) + r2 · F (3)

where r1 and r2 are random numbers controlling the search step
size and direction, and F is the search factor, defined as shown in
Equation 4.

F = λ · (UB− LB) · r3 (4)

where λ is the control parameter,UB and LB are the upper and lower
bounds of the variables, respectively, and r3 is a randomperturbation
factor that enhances search diversity (Wang et al., 2021).The weight
is calculated using a fitness ranking method to ensure more stable
optimization searching, determined as shown in Equation 5.

wi =
f(Xi) − f(Xbest)

∑N
j−1
( f(Xj) − f(Xbest))

(5)

where f (Xbest) represents the optimal fitness value in the current
population. A balance factor G is introduced to regulate the search
intensity, as shown in Equation 6.

G = G0e
− t

T (6)

where G0 is the initial balance factor, T is the maximum number
of iterations, and t is the current iteration count. The optimization
process typically terminates at the maximum iteration count T or
when the convergence condition is met, as shown in Equation 7.

| f(Xt) − f(Xt−1)| < ϵ (7)

where ϵ is the convergence threshold, indicating that the variation in
the objective function has become sufficiently small.

2.2 LightGBM ensemble learning

LightGBM (Light Gradient Boosting Machine) is an efficient
machine learning algorithm based on Gradient Boosting
Decision Trees (GBDT), which achieves powerful ensemble
learning capabilities through the gradient boosting framework
(Guo et al., 2023; Sai et al., 2023). LightGBM employs a
histogram-based method for decision tree splitting and improves
computational efficiency and prediction accuracy using a leaf-wise
growth strategy.

LightGBM is built upon the GBDT method, with the core idea
of iteratively trainingmultiple weak learners, where each newmodel
fits the residuals of the previous iteration, allowing the overall
model to gradually converge to the optimal solution. Given a dataset
D = {(xi,yi)}

N
i−1, where xi represents the input features and yi denotes

the true labels, GBDT optimizes the objective function iteratively, as
shown in Equation 8.

Ft(x) = Ft−1(x) + ηht(x) (8)

where Ft(x) represents the cumulative prediction model at the
tth iteration, ht(x) is the weak learner (regression tree) trained
in the tth iteration, and η is the learning rate that controls
the update magnitude of the model. In each iteration, GBDT
computes the gradient direction based on the objective loss
function and fits the negative gradient using a new regression tree,
as shown in Equation 9.

ht(x) = argmin
h

N

∑
i=1

L(yi,Ft−1(xi) + h(xi)) (9)

where L(yi,F(xi)) represents the loss function, and the commonly
used squared loss function L(y,F(x)) = (y− F(x))2 is used to
compute the prediction error. LightGBM improves upon traditional
GBDT by optimizing splitting strategies and training methods,
including histogram-based splitting, efficient data storage, leaf-wise
growth strategies, and categorical feature processing.

LightGBM employs a histogram-based method for feature
partitioning, discretizing continuous features into a fixed number
of bins, where each bin represents a range of feature values.
This approach reduces memory consumption and accelerates
computation. For a given feature x, LightGBM constructs a
histogram H, as shown in Equation 10.

Hj = ∑
xi∈Bj

gi, H
′
j = ∑

xi∈Bj

hi (10)

where g i and hi represent the first-order and second-order
gradients of the objective loss function, respectively. Bj denotes
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the feature value range of the jth bin, while Hj and Hj’ represent
the sum of the first-order and second-order gradients of all
samples within that bin. LightGBM selects the optimal split point
by computing the gain value of the histogram, as shown in
Equation 11.

Gain =
(HL)2

H′L
+
(HR)

2

H′R
−
(HT)2

H′T
(11)

where HL and HL’ represent the first-order and second-order
gradients of the left child node, HR and HR’ denote the first-order
and second-order gradients of the right child node, and HT and
HT ’ correspond to the first-order and second-order gradients of the
current node. During the tree growth process, the leaf node with the
highest gain is selected for splitting to ensure a more balanced tree
structure, as shown in Equation 12.

SplitNode = argmax
leaf

Gain(leaf) (12)

This strategy enables faster loss reduction, enhances the model’s
representation capability, and avoids unnecessary computations.
LightGBM incorporates L1 and L2 regularization terms into
the objective function to prevent model overfitting, with the
regularized objective function formulated as shown in Equation 13
(Sibindi et al., 2023).

L(F) =
N

∑
i=1

L(yi,F(xi)) + λ1‖w‖1 + λ2‖w‖
2
2 (13)

where λ1w‖1 represents the L1 regularization term, which enhances
sparsity, and λ2w‖22 represents the L2 regularization term, which
prevents overly large parameters from causing model overfitting.
Feature importance is determined by the number of splits, as shown
in Equation 14.

Ij = ∑
t∈Tj

Gaint (14)

where Tj represents the set of all tree nodes where feature j
is used for splitting, and Gaint denotes the gain value of the
node. Ultimately, features with lower importance scores can be
pruned to improve training efficiency.The training process typically
terminates when one of the following conditions is met: the number
of training iterations reaches the predefined maximum T, or the
change in the loss function falls below the predefined threshold ϵ,
as shown in Equation 15.

|Lt − Lt−1| < ϵ (15)

2.3 EO-LightGBM integrated model

Theworkflow of the EO-LightGBM-based seismic slope stability
prediction model is illustrated in Figure 1. The dataset is generated
through numerical simulations using FLAC software to ensure
accuracy and diversity, covering slope stability characteristics under
various working conditions. After dataset construction, the data
is split into a training set (76 samples) and a test set (20
samples) in an 8:2 ratio, where the training set is used for model
training, and the test set is used for performance evaluation.

During the training process, the 76 training samples are first
fed into the LightGBM model, where a classifier is constructed
based on the Gradient Boosting Decision Tree (GBDT). Since
the LightGBM model includes multiple key hyperparameters, such
as learning rate, number of decision trees, maximum depth, and
number of leaf nodes, the Equilibrium Optimizer (EO) is employed
for hyperparameter tuning. By simulating the mass balance-
based search strategy, EO optimizes hyperparameter combinations
to enhance model predictive performance. A specific objective
function is defined to evaluate model performance under different
parameter combinations, and the EO algorithm searches within
the parameter space to achieve the optimal objective function
value, thereby constructing the optimized prediction model EO-
LightGBM. During model training, a five-fold cross-validation
method is applied to assess generalization capability. Upon training
completion, the optimal model is saved and validated using the test
set to evaluate its prediction accuracy for slope stability. In addition
to the EO-LightGBM model, conventional models are also trained
for comparative analysis. Various performance metrics, including
accuracy, precision, recall, and F1-score, are computed to assess
predictive performance, demonstrating the advantages of the EO-
LightGBMmodel in seismic slope stability prediction tasks.

In the EO-LightGBM model, the hyperparameter optimization
process was implemented as follows. The search space for
hyperparameters was defined within practical engineering ranges:
learning rate [0.01, 0.3], number of decision trees [50, 300],
maximum tree depth (Zeng et al., 2021; Zhang et al., 2022), and
number of leaf nodes [10, 80]. The initial population size was set
to 30, and each individual represented a set of hyperparameter
combinations. The EO algorithm simulated the mass balance
transfer among individuals to iteratively update solutions. Random
initialization ensured population diversity. The stopping criterion
was set as either reaching a maximum of 100 iterations or achieving
convergence when the objective function change was less than
×110−4. During the search, five-fold cross-validation error was used
as the objective function to guide the optimization. This design
ensured a balanced exploration and exploitation process, enhancing
the stability and reproducibility of hyperparameter selection.

3 Slope stability prediction and
analysis

3.1 Dataset construction

3.1.1 Simulation model construction and
experimental design

The FLAC3D software is utilized to investigate the dynamic
response mechanisms of soft and hard rock slopes under seismic
loading. A high-precision finite element simulation model is
established to address the complex nonlinear behavior inherent in
geotechnical dynamic problems. The ideal linear elastic constitutive
model and the Mohr–Coulomb criterion are adopted as instability
criteria to characterize the failure behavior of geomaterials under
seismic excitation. Additionally, strain-softening characteristics are
incorporated to simulate the influence of different lithologies on
the dynamic stability of slopes (Yuan et al., 2024; Qi, 2023). To
enhance computational accuracy, a high-resolution unstructured
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FIGURE 1
Slope stability prediction workflow.

mesh is applied for model discretization, with particular emphasis
on refining the mesh density along the slope surface and within
critical failure zones to accurately capture stress concentration
effects. The mesh configuration is illustrated in Figure 2. Seismic
loading is applied using dynamic acceleration time histories with
varying intensities, frequencies, and durations to replicate real
seismic effects. Three representative synthetic seismic motions
are selected for loading, and their corresponding time history
curves are presented in Figure 3. The study primarily analyzes the
dynamic response characteristics of slopes under different seismic
magnitudes, lithological distributions, and slope angles, focusing on
parameters such as displacement, acceleration, stress distribution,
and failuremodes. Seismic loading is applied through a combination

of equivalent static loading and time-domain dynamic analysis
methods, where the former provides a preliminary assessment of
overall slope stability and the latter captures transient dynamic
response characteristics. The boundary conditions incorporate a
combination of free-field and non-reflective boundaries tominimize
seismic wave reflections and ensure the realistic propagation of
seismic loading.

The experimental parameter settings are shown in Table 2. The
computational results of differentmodels will be used to evaluate the
impact of soft-hard rock interfaces on the dynamic stability of slopes,
revealing the Fs values of slopes under seismic loading. Table 3
presents the source code configuration for a specific experiment
implemented in FLAC3D 3.0 software.

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2025.1591219
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Ma et al. 10.3389/feart.2025.1591219

FIGURE 2
Example of soft and hard rock slope numerical model construction.

FIGURE 3
Artificially synthesized seismic acceleration time histories.

3.1.2 Data results and statistical analysis
In slope stability studies, statistical analysis of key

parameters can reveal the primary factors influencing
slope stability and provide data support for subsequent
predictive model development. Geological and mechanical
characteristic variables, such as seismic loading, slope
angle, slope height, and rock pressure parameters, exhibit
different distribution trends and correlations under various
conditions. To investigate these relationships, this study employs
scatter plot distribution analysis and correlation analysis to
examine the distribution characteristics of the data and the

interrelationships among variables. The detailed analysis results
are presented in Figure 4.

Figure 4a illustrates the scatter plot distribution of the data. The
distribution of samples under different seismic accelerations (0.2 g,
0.3 g, 0.4 g) across various variable spaces is visually presented,
with the diagonal elements representing the histogram distribution
of each variable. The scatter plot reveals that the values of slope
height, slope angle, and rock pressure parameters are relatively
concentrated, while the dispersion of data varies under different
acceleration conditions. The Fs exhibits distinct distribution
characteristics across different variables, with parameters such as
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TABLE 2 Experimental parameters table for dynamic response of soft and hard rock slopes.

Test No. Slope angle α
(°)

Inclination
angle β (°)

Slope height
H (m)

Rock
pressure
parameter k

Equivalent
soft rock
thickness
(d/m)

Hard:Soft
thickness
ratio λ

1 30 21 19 2 4 2:1

2 31 21 26 2 10 2:1

3 31 25 28 3 10 1:2

4 29 26 32 3.5 12 1:2

5 29 30 40 2.5 4 1:2

6 29 29 38 3.5 14 3:2

7 29 34 48 1.5 8 3:2

8 31 35 52 2 10 3:2

9 35 20 32 1.5 8 1:2

10 34 21 32 3.5 6 3:2

11 36 26 28 2.5 6 3:2

12 35 26 31 3 14 3:2

13 35 29 50 3 8 1:2

14 35 30 51 4.5 8 1:2

15 36 35 39 1 14 1:2

16 35 34 42 2.5 8 1:2

17 39 21 48 3 6 1:1

18 41 19 48 3.5 14 1:1

19 39 26 30 2 6 3:2

20 40 24 29 2.5 8 3:2

21 41 31 38 3 10 1:2

22 41 29 38 4.5 6 1:2

23 41 36 31 2 6 2:1

24 39 36 30 3.5 10 2:1

25 45 19 40 2.5 12 1:2

26 45 20 40 1 10 1:2

27 46 25 51 2.5 8 3:2

28 44 25 50 2 8 1:2

29 45 31 40 3 14 3:2

30 44 29 38 2.5 10 3:2

31 45 36 30 3.5 8 1:2

32 45 34 31 4 6 1:1
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TABLE 3 FLAC3D simulation code example.

Code Section Description

mode new Initialize a new model

zone im “JC-P40Q20H20-8-1-1” Define the calculation region

zone cmode assign mohr-co Assign the Mohr-Coulomb
constitutive model

zone pro den 2500 young 10e9 pois
0.2 c 2e6 fri 35

Set hard rock parameters (density,
Young’s modulus, Poisson’s ratio,
cohesion, friction angle)

zone pro den 2200 young 1e9 pois 0.30
c 0.1e6 fri 25 range group “ruanyan”

Set soft rock parameters

zone grid fix vel-x 0 range position-x 0 Fix velocity at x = 0 boundary

zone grid fix vel-y 0 range position-y 0 Fix velocity at y = 0 boundary

zone grid fix vel-z 0 range position-z 0 Fix velocity at z = 0 boundary

model gravity 9.81 Apply gravitational acceleration

model solve Solve the static equilibrium

model save “ini” Save the initial model state

zone grid ini displacement 0 0 0 Initialize displacement to zero

zone grid ini velocity 0 0 0 Initialize velocity to zero

model dynamic active on Activate dynamic analysis mode

table “1” import “E:/FLAC/0.1g_
displacement/0.1gacc.txt”

Import seismic acceleration
time-history data

zone face apply acceleration-x 1.5
table “1”range position-z 0

Apply horizontal acceleration at the
bottom boundary

zone dynamic free-field on Enable free-field boundary conditions

zone dynamic damping local 0.1571 Set local damping coefficient

zone dynamic multi-step on Enable multi-step dynamic analysis

model solve time-total 10 Compute the seismic effect for 10 s

model save “dizhen” Save the post-seismic model state

model restore “ini” Restore the initial model state

model factor-of-safety filename “ini” Calculate the initial factor of safety

model restore “ini” Reload the initial model state

model gravity −0.75 0 -9.81 Apply reverse gravity for post-seismic
stability analysis

model factor-of-safety filename
“dizhen”

Calculate the factor of safety after
seismic loading

slope angle and slope height having a significant influence. The
overall distribution trend reflects the potential impact of different
variables on slope stability. Figure 4b presents the correlation

matrix heatmap, where correlation coefficients between variables are
depicted using a color gradient. Positive correlations are indicated
by warm colors, while negative correlations are represented by
cool colors, with the intensity of the colors reflecting the strength
of the correlation. The data analysis indicates that slope angle
and Fs exhibit a strong negative correlation (−0.45), and slope
height and Fs also show a notable negative correlation (−0.44).
Additionally, seismic acceleration and Fs demonstrate a significant
negative correlation (−0.43), suggesting that increasing seismic loads
considerably reduce slope stability. Furthermore, the interaction
between different variables, such as slope angle and slope height
(−0.21), and slope angle and inclination angle (−0.59), exhibits a
certain structural pattern.These correlation analysis results indicate
that slope parameters and seismic loading are the key factors
influencing slope stability, and the variation trends of the Fs under
different variable conditions require further in-depth investigation.

To evaluate the predictive performance of the trained model,
several widely used metrics are adopted, including accuracy,
precision, recall, and F1-score. Accuracy reflects the overall
correctness of the model’s predictions, while precision measures the
proportion of true positives among all positive predictions. Recall
evaluates the model’s ability to identify actual positive cases, and
F1-score provides a balanced evaluation by harmonizing precision
and recall. These metrics offer a comprehensive assessment of
classification performance under different slope stability scenarios.

3.2 Model training and hyperparameter
optimization

The EO-LightGBM algorithm is employed for model training
to enhance the accuracy of slope stability prediction under
seismic loading. The dataset includes key variables such as
seismic acceleration, slope angle, slope height, and rock layer
mechanical parameter ratios. The data is divided into a training
set and a test set in an 8:2 ratio, with the training set used
for model development and the test set for model evaluation.
LightGBM is implemented within a gradient boosting framework
that iteratively learns data features and optimizes the objective
function to minimize prediction errors. Hyperparameter tuning is
performed using the Equilibrium Optimizer (EO) through a global
search strategy, optimizing parameters including the learning rate,
number of decision trees, maximum depth, and number of leaf
nodes. EO simulates the mass balance phenomenon to determine
the search step size and direction, updating the hyperparameter
combinations at each iteration to ensure convergence of the objective
function toward an optimal value. A five-fold cross-validation
approach is employed to evaluate model stability across different
hyperparameter configurations, and the best parameter set is
selected based on minimization of the prediction error. Figure 5
illustrates the impact of different parameter combinations on the
convergence behavior of the loss function during model training.

Figure 5 shows that all curves exhibit a rapid decline in the loss
functionwithin the initial 5–10 iterations, followed by a stabilization
phase with minor fluctuations before gradually converging. When
using a lower learning rate (LR = 0.05), the model experiences
a smaller initial drop and a relatively slower overall convergence
speed. In contrast, a higher learning rate (LR = 0.2) results in a
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FIGURE 4
Statistical analysis of data. (a) Scatter plot distribution (b) correlation analysis.

faster decline in the loss value over the same number of iterations,
maintaining the lowest level in later stages, indicating that a
higher learning rate accelerates model convergence. Increasing the
maximum depth and the number of decision trees further improves

model convergence performance.Models with greater depth achieve
lower loss values in later stages with smaller fluctuations, suggesting
their superior ability to learn complex features. Overall, the
parameter combination (LR = 0.2, Trees = 200, Depth = 10) exhibits
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FIGURE 5
Loss curves for different parameter combinations after model optimization.

the best performance in terms of lossminimization and convergence
stability.

3.3 Analysis of prediction results

To validate the accuracy of the EO-LightGBM model in
predicting slope stability, a total of 20 test samples were input
into the trained and saved optimal predictive model for evaluation.
To facilitate the prediction analysis of the slope Fs, the regression
problem was transformed into a classification problem, where a
slope Fs greater than 1 was classified as 1 (stable), while a factor less
than 1 was classified as 0 (unstable). The prediction results of the
EO-LightGBM model were compared with those of the LightGBM
model alone and the actual slope stability conditions. Incorrectly
predicted samples were marked with (×) in the visualization, as
illustrated in Figures 6, 7.

Figure 6 presents the comparison between EO-LightGBM
predictions and actual slope stability conditions. The majority of
the predicted results are consistent with the actual stability states,
with only a few misclassified samples. These misclassified samples
are primarily located near the decision boundary, indicating that the
modelmay still producemisclassifications under specific conditions.
Overall, EO-LightGBM exhibits fewer prediction errors, and the
distribution of errors is relatively scattered, demonstrating its strong
generalization ability and high accuracy in identifying slope stability
conditions.

Figure 7 illustrates the comparison between LightGBM
predictions and actual slope stability conditions. Compared to
Figure 6, the number of misclassified samples in the LightGBM
model is higher, with errors more concentrated within the data
distribution, particularly near the decision boundary.The increase in
error rate reflects that the model’s adaptability to complex slope data

is slightly inferior to that of EO-LightGBM, indicating that applying
EO for hyperparameter optimization enhances prediction accuracy
and reduces misclassification.Experimental results demonstrate
that EO-LightGBM exhibits higher accuracy in slope stability
prediction, with the optimized model significantly reducing errors
and improving the model’s ability to distinguish slope stability
conditions more effectively.

3.4 Comparative analysis with traditional
machine learning models

To further validate the advantages of the EO-LightGBM model
in slope stability prediction, multiple traditional machine learning
models were selected for comparison. The predictive performance
of different models on the test set was analyzed. Figure 8 presents
a comparison of EO-LightGBM with traditional models across
various evaluation metrics, including accuracy, precision, recall,
and F1-score, quantifying the models’ predictive capability and
stability.

EO-LightGBM outperforms all compared models across all
evaluationmetrics, achieving an accuracy of 0.94, a precision of 0.96,
a recall of 0.92, and an F1-score of 0.96, demonstrating its superiority
over traditional models. Although SVM achieves a precision
comparable to that of EO-LightGBM, its lower recall suggests
weaker generalization capability, particularly near classification
boundaries. KNN shows the weakest performance across all
metrics, with a recall as low as 0.76, indicating limited capability
in distinguishing between stable and unstable slope conditions.
The decision tree model achieves a reasonable F1-score of 0.94 but
exhibits slightly inferior stability compared to EO-LightGBM.While
LightGBM performs well in terms of accuracy and precision, its
overall predictive stability remains lower than that of the optimized
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FIGURE 6
Comparison of EO-LightGBM predictions and actual slope stability states.

FIGURE 7
Comparison of LightGBM predictions and actual slope stability states.

FIGURE 8
Comparison of prediction results with traditional models.
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EO-LightGBM. These results indicate that EO-LightGBM, after
hyperparameter optimization, significantly enhances prediction
accuracy and stability, reduces misclassification, and improves
model adaptability under complex working conditions. The
comparative analysis further confirms the superiority of EO-
LightGBM, providing amore robust computational tool for practical
applications in seismic slope stability prediction.

4 Discussion

This study constructed a dataset for the seismic stability of
soft-hard interlayered rock slopes based on FLAC3D numerical
simulations, and proposed an EO-LightGBM hybrid intelligent
model that integrates the Equilibrium Optimizer (EO) with the
Light Gradient Boosting Machine (LightGBM) to achieve efficient
and high-accuracy prediction of slope safety factors under complex
geological conditions. The results demonstrate that the proposed
model performs well in both training and testing stages, indicating
strong fitting capacity and generalization ability.

Nevertheless, there are several limitations associated with this
study. First, the dataset is entirely based on numerical simulations
rather than real-world monitoring data. Although simulations
allow for controlled variable experiments, systematic parameter
combinations, and consistent boundary conditions, they cannot
fully replicate the complexity of real engineering conditions. In
practice, slope stability is influenced by factors such as anisotropy of
rock mass, joint distribution, fluctuations in groundwater level, and
material heterogeneity, which are difficult tomodel comprehensively
in idealized numerical simulations. This limitation may affect the
model’s adaptability and robustness in real-world applications.

Second, the FLAC3D simulations adopt a linear elastic
constitutive model that does not consider nonlinear deformation,
strain-softening, or plastic flow behavior of rock and soil materials
under strong seismic loading. As a result, the instability process in
highly strained regions may not be accurately captured, potentially
reducing the authenticity of the dataset used for model training.
Moreover, the complex structure of soft-hard rock slopes, including
weak interlayers and interface effects, has not been explicitly
discussed in the simulation design or analysis.

Regarding optimization, while the Equilibrium Optimizer
improves the efficiency of hyperparameter search for the LightGBM
model, its performance is still constrained by initial population
distribution and parameter ranges. In complex non-convex search
spaces, it may fall into local optima, causing instability in training
outcomes. In future studies, optimization methods such as Bayesian
optimization, differential evolution, or adaptive particle swarm
optimization could be introduced to enhance the reliability and
convergence of hyperparameter tuning.

As for evaluationmetrics, this study employed three widely used
regression indicators: mean absolute error (MAE), rootmean square
error (RMSE), and coefficient of determination (R2). Results show
that EO-LightGBM performs better than the baseline LightGBM
in prediction accuracy, particularly under small-sample conditions,
confirming its modeling strength in high-dimensional feature
spaces. However, with only 96 samples in total, the size of the
test set remains limited. Although five-fold cross-validation helps

reduce evaluation bias, it cannot entirely eliminate accidental errors.
Expanding the dataset and adopting Monte Carlo cross-validation
would help improve the model’s robustness.

To enhance the engineering applicability and academic
contribution of the proposed model, future work could proceed
in the following directions:

1. Multi-source data fusion: Real monitoring data, such as InSAR
displacement, fiber Bragg grating (FBG) strain measurements,
and UAV-based photogrammetry, could be integrated with
simulation data to improve prediction reliability under
complex loading and geological conditions. Developing a
comprehensive database of soft-hard rock slopes will also aid
training and validation.

2. Advanced modeling strategies: Deep learning techniques such
as convolutional neural networks (CNN) and long short-
term memory networks (LSTM) can be introduced to extract
features from spatial or spatio-temporal datasets. This is
particularly valuable for handling 2D/3D data derived from
images, sensors, or monitoring platforms.

3. Comparative algorithmic analysis: In addition to LightGBM,
alternative models such as XGBoost, Random Forest,
support vector regression (SVR), and deep neural networks
(DNN) should be incorporated and compared using various
metaheuristic optimizers like genetic algorithms (GA) or
artificial bee colony (ABC) algorithms to comprehensively
assess model effectiveness.

4. System development for practical deployment: Combining the
EO-LightGBM model with a GIS-based interface can yield an
intelligent slope assessment tool. Such a system can allow users
to input key parameters, rapidly assess slope stability, identify
high-risk zones, and generate engineering recommendations.
This integration will promote intelligent design and decision-
making in slope engineering.

Although the proposed EO-LightGBM model provides a
promising and effective approach for seismic slope stability
prediction, it must be validated on more diverse real-world
cases. Future studies should focus on expanding the dataset,
incorporating field data, applying advanced algorithms, and
developing practical systems to improve the model’s generalization
ability and engineering significance. These efforts will support
disaster early warning, optimized construction practices, and
intelligent slope management.

5 Conclusion

This study proposed an EO-LightGBM model for predicting
slope stability under seismic loading. Based on a FLAC3D-
simulated dataset of 96 samples, the model incorporates key
parameters such as slope angle, height, seismic acceleration, and
lithological configuration. The Equilibrium Optimizer (EO) was
applied to fine-tune LightGBM hyperparameters, enhancing the
model’s generalization capability and accuracy.

Experimental evaluation using five-fold cross-validation
demonstrated that EO-LightGBMachieved the highest performance
among all compared models. Specifically, EO-LightGBM obtained
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an accuracy of 0.94, precision of 0.96, recall of 0.92, and F1-score of
0.96.These metrics significantly outperformed traditional classifiers
such as SVM (accuracy: 0.82, F1-score: 0.87), KNN (accuracy: 0.78,
F1-score: 0.92), Decision Tree (accuracy: 0.87, F1-score: 0.94), and
even non-optimized LightGBM (accuracy: 0.92, F1-score: 0.79).

The results confirm that the EO-LightGBM model provides
superior predictive power and robustness, especially under complex
geotechnical conditions. The hybrid strategy of combining machine
learning and global optimization offers a promising approach
for seismic slope stability assessment, with strong applicability in
practical geohazard risk mitigation. Future work will incorporate
field monitoring data and deep learning models to further enhance
prediction reliability and engineering adaptability.
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