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High-resolution carbon and
oxygen isotope records in the
Chang 7 organic-rich shale of the
Yanchang formation, Ordos
Basin, China and their geological
significance

Haowen Deng*

College of Geosciences, Northeast Petroleum University, Daging, China

The Late Triassic Chang 7 Member lacustrine organic-rich shale in the Ordos
Basin is the most significant source rock for the Mesozoic oil system in the
basin. This study utilizes high-resolution source rock samples to systematically
analyze the organic carbon isotopes and carbonate carbon-oxygen isotopes
of the Chang 7 Member source rocks. The results indicate that the average
BC,,p, values for the Chang 7, to Chang 75 sub-members are 0.17%., 0.33%,
and —2.8%., respectively, and the average 6§80, values are —14.1%., —14.3%,
and —16.0%., respectively. The Chang 75 sub-member exhibits anomalously low
BC,yp, and 880, values due to the influence of volcanic and hydrothermal
activity. The carbon-oxygen isotopes, together with other element proxies,
indicate that the Ordos Basin had semi-closed to semi-open hydrological
conditions during the depositional periods of Chang 7, and Chang 7,, with an
overall warm and humid climate. The climate during the Chang 7, depositional
period was relatively stable, while the Chang 7; period showed a trend
towards increasing aridity. The lake during the Chang 7 depositional period
had high paleo-productivity, with sedimentary organic matter being of mixed
origin, primarily from aquatic organisms with some contribution from C3-
type terrestrial higher plants. The findings of this study provide support and
reference for research on paleoclimate, paleoenvironment, and organic matter
enrichment mechanisms in the region.

triassic, carbon and oxygen isotope, organic matter, paleoproductivity, paleoclimate,
source rocks

1 Introduction

Paleolake sediments contain abundant and valuable records of environmental
conditions, often recording local and regional responses to climate (Alonso-Zarza,
2003; Jin et al, 2004). Stable carbon and oxygen isotopic composition of lake
sediments (including lacusrine authigenetic carbonate and organic matter) is one
of the most widely used indicator, which can be used in paleohydrology (e.g.,
closed or open lake, the change of water level and the source of lake water) and
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paleolake hydrochemistry (e.g., salinity), paleoclimate (e.g.,
temperature, precipitation and their seasonal variation) and lake
paleoproductivity (Wang and Zhang, 1999; Khadkikar et al,
2000; Nordt et al., 2002; Budd et al., 2002; Leng and Marshall,
2004; Retallack, 2005; Cai et al., 2009; Breecker et al., 2010;
Hong and Lee, 2012; Li et al.,, 2013; Arefev et al.,, 2015). These
paleoenvironmental and paleoclimate informations are important
for understanding the abundance, biochemical degradation and
preservation of organic matter in sedimentary rocks of petroliferous
basins (Liu et al., 2001; 2004).

The Chang 7 lacustrine organic-rich shale of the Upper
Triassic Yanchang Formation is the most important oil source
of the Mesozoic petroleum system in the Ordos Basin, Central
China (Qiu et al, 2014; Yuan et al., 2017; Yuan et al., 2019a;
Yuan et al,, 2019b; Yuan et al.,, 2020). Previous studies on the
stratigraphic sequence, lithofacies paleogeography, element and
organic geochemistry characteristics of the Chang 7 Member
have been carried out (Yang and Zhang, 2005; Qiu, 2011; Yang
and Deng, 2013; Qiu et al, 2014; 2015; Yuan et al, 2015;
Zhang et al., 2015; He et al,, 2016; Li et al., 2017; Wang et al,,
2017; Yuan et al., 2017; Yuan et al, 2019a; Yuan et al., 2020),
however, the characteristics of stable carbon and oxygen isotopes
remain uninvestigated. Their analysis can provide potential new
insights in comparison with existing studies. Therefore, it is
necessary to systematically analyze the carbon and oxygen isotopic
characteristics of the Chang 7 Membrer, further to reconstruct
the local and regional paleoclimate during the deposition of the
Chang 7 organic-rich shale and provide geochemical evidence for
the correct understanding of the sedimentary evolution of the
study area.

In this paper, a large number of high-resolution carbon and
oxygen isotope data from bulk carbonates and organic matters
in the Chang 7 Member lacustrine sediments are provided, and
many data of DOP, C,,:P, CIA and Al contents of the Chang 7
shale are collected from previously published literature (Yuan et al.,
2017; Yuan et al., 2019a; Yuan et al., 2020). We mainly attempt to
study the stable carbon and oxygen characteristics and changes of
paleoproductivity, paleoclimate and paleoenvironment during the
Chang7 sedimentary period.

2 Geological setting

The Ordos Basin of central China (Figure 1) is a prolific
petroliferous basin consisting of six tectonic units: Yimeng uplift,
West margin thrust belt, Tianhuan depression, Yishan slope, Jinxi
flexure belt, and Weibei uplift (Figure 1) (Yang and Deng, 2013;
Qiu et al., 2014; Yuan et al.,, 2017; Yuan et al., 2019a; Yuan et al,,
2020). The basin formed on Paleozoic strata of the North China
Craton (Figure 2) (Wan et al.,, 2013; Qiu et al., 2014; 2015). The
tectonic evolution of the Ordos Basin during the Triassic was tied
to the Indosinian Orogeny, which comprises two episodes: the Early
Indosinian Orogeny corresponding with the end of Middle Triassic
and the Late Triassic Late Indosinian Orogeny (Yuan et al., 2019a;
Yuan et al., 2020). The Ordos Basin during Early-Middle Triassic
time was part of the North China intracratonic depression (Qiu et al.,
2014; 2015). By Late Triassic time, the Ordos Basin had evolved to
an intracontinental foreland basin characterized by an asymmetric
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cross-section comprising of low-gradient northeastern and high-
gradient southwestern flanks (Qiu et al., 2014; 2015). Rapid uplift
of the Qinling Mountains bordering the basin to the south was
accompanied by subsidence of the southern Ordos Basin coincident
with the onset deposition of Chang 7 Member (Qiu et al., 2014;
2015; Yuan et al.,, 2019a; Yuan et al., 2020). Evidence of enhanced
tectonic activity documented from the Chang 7 Member include
inferred seismites (Li et al., 2008; Qiu, 2011; Xia et al., 2007;
Yang et al., 2010), volcanic ash deposits (Qiu, 2011; Zhang et al.,
2009; Yuan et al., 2019a), and mineral concentrations (e.g., pyrite
veins, marcasite, gypsum, and manganese nodules) attributed to
hydrothermal fluid movement (Qiu, 2011; Zhang et al, 2010;
Yuan et al.,, 2017).

The Upper Triassic Yanchang Formation, 1000-1300 m of
terrigenous deposits (Qiu et al, 2015), comprises 10 members
(Chang 10-Chang 1 from bottom to top) distinguished on the basis
of marker beds, sedimentary cycles, and/or lithological association
(Qiuetal., 2014; 2015). Peak lake level coincided with deposition of
the Chang 7 Member (Yang and Deng, 2013), which is dominated
by lacustrine and deltaic sedimentary facies (Yuan et al, 2015).
The Chang 7, which includes three sub-members (Chang 7,,
Chang 7,, and Chang 7;), comprises 100-130 m of siltstone,
mudstone, black shale, and tuff intervals (Figure 3). The organic-
rich shale, the principal source of hydrocarbon source rock of
the Mesozoic petroleum system of the Ordos Basin, is distributed
over much of the southwest Yishan slope and southern portion
of the Tianhuan depression (Figure 1), covering an area of more
than 10° km? (Qiu et al, 2015). The Chang 7 shale is strongly
enriched in TOC content, mostly kerogens of type I or II,, indicating
that the organic matter mainly came from the aquatic plants
(Zhang et al., 2015).

3 Materials and methods

Forty-eight organic-rich shale samples used in this study
were collected from the Well Yan 56 core, which lies at the
periphery of Ordos Basin (Figure 1), covering a thickness of ~122 m
(2956-3078 m), including 20 Chang 7, samples, 15 Chang 7,
samples and 13 Chang 7; samples. Tuff intervals, pyrite veins and
visible phosphate nodules were carefully avoided in the sampling.
The total of 48 shale samples were powdered (<200 mesh) in an
agate mortar.

The 8§C and 8'0 of the bulk lacustrine carbonate in the
samples were measured using an automated carbonate preparation
device coupled to a Thermo Fisher MAT 253 isotope ratio mass
spectrometer (IRMS) at the Analytical Laboratory of the Beijing
Research Institute of Uranium Geology. CO, gas liberated from
the carbonate was extracted by reacting ground samples with
dehydrated phosphoric acid in a vacuum. The results are presented
using the delta notation referred to the VPDB standard. Repeated
measurements of a homogenized sample yields a standard deviation
of £0.1%o for §'*C and §'80 measurements. The §'*C of bulk organic
matter in the samples were measured at the State Key Laboratory
of Petroleum Resource and Prospecting, China University of
Petroleum (Beijing). Approximately 100 mg of powder was gently
leached using dilute HCI (hydrochloric acid) and rinsed with
distilled water to remove inorganic carbon. After drying, the shale
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FIGURE 1
Location of the Ordos Basin, its tectonic division, and the location of sample well (after Yuan et al., 2017). I-Yimeng uplift; [I-West margin thrust belts;
Ill-Tianhuan depression; IV-Yishan slope; V-Jinxi flexure belts; VI-Weibei uplift.

powders were analyzed using a Finnigan MAT 253 IRMS connecting
with Flash 2000HT elemental analyzer. The results are presented
using the delta notation referred to the VPDB standard. The
analytical precision was better than 0.1%o.

The data of DOPy, C,,:P,CIA and Al contents of the Chang
7 shale are collected from publicly available scholarly articles
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(Yuan et al,, 2017; Yuan et al,, 2019a; Yuan et al.,, 2020). DOPy
represents the ratio of pyrite Fe (based on total S) to total Fe, and
Corg:P means the molar ratio of organic carbon to total phosphorus
(Yuan et al, 2017). CIA = [AL,0;/(AL,O; + CaO"+ Na,O+
K,0)*100] in molecular proportions, where CaO*represents CaO

content of the silicate fraction (Nesbitt and Young, 1982).
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FIGURE 2
Global map of the Late Triassic and the location of the Ordos Basin.

4 Results

4.1 Carbon isotope values of bulk
carbonate

The stable carbon isotope values of bulk carbonates (§"*C,,3) in
the Chang 7 Member shale are presented in Table 1. The §"*C
values in Well Yan 56 vary between —5.7%o and 4.5%o, with an

carb

average of —0.6%o (n = 48). The 8'°C_,,,, values are relatively low
and range from —5.7%o to —0.9%o (mean = —2.8%o) in the Chang 7,
submember, showing decrease upward gradually to the middle (at
~3051 m) and then followed by an opposite trend (Figure 4). In the
Chang 7, submember, the §'3C_,;, values vary between —4.4%o and
4.5%o (mean = 0.3%o), higher than that in the Chang 7; submember.
The values show a general upward-decreasing trend, interrupted
by a sharp positive excursion to 4.5%o at ~3011 m. In the Chang
7, submember, the §3C
(mean = 0.2%o), showing twice obvious negative shifts at the bottom
and middle.

carp, vValues change from —5.2%o to 3.6%o

4.2 Oxygen isotope values of bulk
carbonate

The stable oxygen isotope values of bulk carbonates (§'%0,;,)
in the Chang 7 Member shale are listed in Table 1. The §"0_,,
values of the Chang 7 Member in Well Yan 56 range from —18.6%o to
~11.8%o, with an average of —14.7%o. Specifically, the 88O, values
change from —18.1%o to —13.4%o (mean = —16.0%o), from —15.7%o
to —12.2%o0 (mean = —14.3%o), and from —18.6%o to —11.8%o0 (mean
= —14.1%o0) in the Chang 7;, Chang 7,, Chang 7, submember,
respectively. Overall, there is a trend of gradual increase from the
bottom to the top (Figure 4). Throughout the Chang 7 Member, the
variation trend of §'¥Q_,,, values shows some similarity with that of
§-c

arb> With @ moderate positive correlation between the two.
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4.3 Bulk organic carbon isotope

The stable organic carbon isotope values of bulk rock (8" Corg)
in the Chang 7 Member shale are showed in Table 1. The 8" Corg
values of the Chang 7 member in Well Yan 56 range from —30.3%o
to —26.6%o0, with an average of —29.3%o. Specifically, the 513C0rg
values vary from -30.1%o0 to —26.6%o (mean = —29.4%o), from
-30.3%0 to —27.6%0 (mean = —29.5%0), and from -30.3%o to
—26.6%0 (mean = —29.4%o) in the Chang 7;, Chang 7,, Chang 7,
submember, respectively. There is no significant difference among
the three sub-members. Overall, most samples have §'* Corg values
around —29%o, with distinct higher values observed in the middle
of the Chang 7; sub-member, the middle of the Chang 7, sub-
member, and the bottom and middle of the Chang 7, sub-member
(Figure 4).

4.4 Alsccarb-org

The Alsccarb-org
carbon isotope values of carbonate minerals and organic matter
(8"Cy - 8°C It primarily reflects the degree of carbon
isotope fractionation between the organic and inorganic carbon
reservoirs (Wang et al, 2014). A larger ABCwb,mg
stronger degree of fractionation. In the Chang 7 Member of Well
Yan 56, the AISCcarb_org values range from 23.2%o to 34.5%o,
with an average of 28.7%o. Specifically, the A13Ccarb_0rg values
range from 23.8%o0 to 28.6%o0 (mean = 26.6%o), from 25.5%o
to 34.5%0 (mean = 29.8%o), and from 23.2%o0 to 32.3%o0 (mean
= 29.2%0) in the Chang 7;, Chang 7,, Chang 7, submember,
respectively. The lower A®C

represents the difference between the

carl org) .

indicates a

carb-org Value in the Chang 7; sub-
member is mainly related to the lower 8'°C_,,, values during
this period. Throughout the Chang 7 Member, the trend of
A13Ccarb—org

(Figure 4).

shows significant similarity to the §"C.,, values
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Integrated stratigraphic column of the Upper Triassic Yanchang Formation in Ordos Basin (after Yuan et al., 2017).
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TABLE 1 Carbon and oxygen isotope values from bulk carbonates and organic matters in the Chang 7 source rocks of the Yanchang Formation, Ordos
Basin.

Well | Sub-member | Depth(m) | TOC (%) BCearp 880 ,p 85Corg ABCp-or
(%, V-PDB) (%o, V-PDB) (%, V-PDB) (%, V-PDB

1 Yan 56 Chang 7, 2958.80 39 23 -11.8 -29.8 32.1
2 Yan 56 Chang 7, 2960.60 3.8 1.8 -11.8 -29.5 31.3
3 Yan 56 Chang 7, 2962.90 4.4 0.0 -13.5 -30.2 30.2
4 Yan 56 Chang 7, 2965.05 1.0 -1.8 -15.2 -28.8 27.0
5 Yan 56 Chang 7, 2967.30 33 1.0 -12.0 -29.9 30.9
6 Yan 56 Chang 7, 2968.95 2.1 -1.8 -14.7 -30.0 28.2
7 Yan 56 Chang 7, 2970.78 29 -0.1 -13.3 -29.2 29.1
8 Yan 56 Chang 7, 2972.40 4.4 -0.1 -13.5 -28.9 28.8
9 Yan 56 Chang 7, 2973.93 6.6 0.7 -13.6 -29.4 30.1
10 Yan 56 Chang 7, 2976.90 4.0 1.7 -13.1 -26.7 28.4
11 Yan 56 Chang 7, 2979.65 6.7 0.5 -14.4 -29.5 30.0
12 Yan 56 Chang 7, 2983.50 0.5 =52 -16.3 -29.2 24.0
13 Yan 56 Chang 7, 2986.40 5.9 0.5 —-14.5 -29.5 30.0
14 Yan 56 Chang 7, 2987.10 6.3 1.3 -14.6 -29.8 31.1
15 Yan 56 Chang 7, 2988.80 5.5 1.8 -14.6 -29.6 31.4
16 Yan 56 Chang 7, 2990.90 7.5 2.0 -14.7 -30.3 32.3
17 Yan 56 Chang 7, 2992.90 3.0 -14 -14.0 -27.1 25.7
18 Yan 56 Chang 7, 2993.00 4.7 0.9 -13.8 -30.0 30.9
19 Yan 56 Chang 7, 2995.80 1.3 -4.4 -18.6 -27.6 23.2
20 Yan 56 Chang 7, 2997.25 5.6 3.6 -14.4 -26.6 30.2
21 Yan 56 Chang 7, 2998.80 6.9 0.9 -15.6 -29.6 30.5
22 Yan 56 Chang 7, 3001.25 4.1 1.7 -13.9 -28.6 30.3
23 Yan 56 Chang 7, 3003.50 52 1.7 -13.2 -29.3 31.0
24 Yan 56 Chang 7, 3005.90 4.8 3.5 -13.8 -28.6 32.1
25 Yan 56 Chang 7, 3008.20 53 4.5 -14.4 -30.0 345
26 Yan 56 Chang 7, 3011.10 4.0 —4.4 -15.2 -29.9 255
27 Yan 56 Chang 7, 3014.30 6.3 -19 -15.4 -29.8 279
28 Yan 56 Chang 7, 3016.60 4.7 -1.1 -15.5 -29.6 28.5
29 Yan 56 Chang 7, 3020.10 4.7 0.4 -14.0 -27.6 28.0
30 Yan 56 Chang 7, 3020.50 3.7 -2.0 -13.6 -30.0 28.0
31 Yan 56 Chang 7, 3021.60 3.8 -0.3 -15.7 -28.3 28.0

(Continued on the following page)
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TABLE 1 (Continued) Carbon and oxygen isotope values from bulk carbonates and organic matters in the Chang 7 source rocks of the Yanchang
Formation, Ordos Basin.

No. Well | Sub-member | Depth(m) | TOC (%) 3BCam 8801 8BCorq ABCpoor

(%o, V-PDB) (%o, V-PDB) (%o, V-PDB) (%o, V-PDB
32 Yan 56 Chang 7, 3024.25 5.6 0.1 -15.1 -30.3 30.4
33 Yan 56 Chang 7, 3026.15 2.6 0.6 -12.2 -30.1 30.7
34 Yan 56 Chang 7, 3029.30 3.7 -0.4 -13.5 -30.0 29.6
35 Yan 56 Chang 7, 3036.30 4.1 1.6 -13.5 -29.9 31.5
36 Yan 56 Chang 7, 3038.90 5.4 -1.7 -15.8 -29.8 28.1
37 Yan 56 Chang 7, 3042.90 8.3 -2.0 -17.9 -30.0 28.0
38 Yan 56 Chang 7, 3044.50 9.0 -0.9 -17.4 -28.4 27.5
39 Yan 56 Chang 7, 3047.35 1.8 -2.2 -14.0 -29.7 27.5
40 Yan 56 Chang 7, 3048.60 9.1 -2.5 -15.9 -29.8 27.3
41 Yan 56 Chang 7, 3050.00 5.6 -1.0 -13.4 -29.5 285
42 Yan 56 Chang 7, 3051.10 8.2 -5.7 -16.8 -30.0 24.3
43 Yan 56 Chang 7, 3054.30 8.5 -5.2 -16.8 -29.8 24.6
44 Yan 56 Chang 7, 3055.40 7.1 =53 -18.1 -29.7 244
45 Yan 56 Chang 7, 3058.40 6.0 -2.8 -14.3 -26.6 23.8
46 Yan 56 Chang 7, 3061.90 5.0 -3.1 -15.4 -30.1 27.0
47 Yan 56 Chang 7; 3064.55 8.9 -0.9 -16.0 -29.5 28.6
48 Yan 56 Chang 7, 3067.10 6.9 -33 -16.8 -29.9 26.6

TOC data are from Yuan et al., 2017.

5 Discussion

5.1 Impact of volcanic and hydrothermal
activity on carbon and oxygen isotope
values

From the preceding data analysis, it is evident that the average
813C,,,,, values for the Chang 7, to Chang 7, sub-members in
Well Yan 56 are 0.17%o, 0.33%0, and —2.8%o, respectively, while
the average 8'80,,, values are —14.1%o, —14.3%o, and —16.0%o.
The Chang 7, sub-member exhibits relatively lower §"*C,,;, and
880, values compared to the Chang 7, and Chang 7, sub-
members. The carbon and oxygen isotope values of terrestrial
or lacustrine carbonate rocks are primarily influenced by their
sources and isotopic fractionation. Anomalies in these isotope
values over short periods often reflect special geological events
or changes in climatic conditions. Previous studies have shown
that intense volcanic and hydrothermal activities, evidenced by
diagnostic minerals (pyrite veins, marcasite, gypsum, siliceous rock,
etc.) and element indicators (Al/(Fe + Mn), Al/(Al + Fe + Mn)),
occurred in the Ordos Basin during the depositional period of the
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Chang 7 member of the Yanchang Formation, especially during
the Chang 7; sub-member (Zhang et al., 2009; 2010; Qiu, 2011;
Yuan et al., 2017; Yuan, 2018; Yuan et al., 2019b; Yuan et al., 2020;
Yuan et al., 2022). Core observations from Well Yan 56 revealed
the presence of tuff (altered volcanic ash sediments) indicative of
volcanic activity and carbonate veins indicative of hydrothermal
activity in the Chang 7, sub-member (Figure 5). Therefore, the
, and 8'%0
member may be influenced by volcanic and hydrothermal activities.

anomalously low §"*C b Values in the Chang 7; sub-

carl cari

Volcanic and hydrothermal activities release large amounts of CO,,
which typically has a lower §'*C value (close to —5%o to —8%o),
significantly lower than the §'*C values of seawater (about 0%o) and
lake water. When this CO, dissolves in water and participates in
the formation of carbonate rocks, it significantly reduces the §*C
value of the carbonate rocks. Hydrothermal fluids also generally
have lower 8'80 values, and under high-temperature conditions, the
fractionation effect of oxygen isotopes (with heavy oxygen isotopes
being largely lost in high-temperature environments) can also lead
to a decrease in the §'0 value of carbonate rocks (Veizer et al., 1999;
Chiodini et al., 2000; Wang et al., 2013). For example, studies in
southern Italy have shown that volcanic and hydrothermal activities
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TOC are from Yuan et al. (2017).

significantly reduce the 813C values of carbonate rocks, with the
lowest values reaching —10%o; research in Yellowstone National
Park in the United States indicates that hydrothermal activities
reduce the 8'80 values of carbonate rocks by about 3%o-5%o
(Veizer et al., 1999; Chiodini et al., 2000). Our preliminary studies
also found that the carbon and oxygen isotopes of hydrothermal
carbonate laminae in the Chang 7 source rocks of Well Wu
100 in the Ordos Basin exhibit anomalously low values, with

8C,,,,, and 880, values of —8.2%o and —20.0%o, respectively
(Yuan, 2018).
In summary, the intense volcanic and hydrothermal

activities during the depositional period of the Chang 7,
sub-member in the Yanchang Formation of the Ordos Basin
caused the anomalously low carbon and oxygen isotope
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values during this period. Therefore, in subsequent analyses
of other aspects, we primarily utilize the carbonate carbon
and oxygen isotope data from the Chang 7, and Chang 7,
sub-members.

5.2 Is the lake open or closed?

Previous studies have analyzed the dynamic background and
the bottom morphology of the lake basin during the Late Triassic
Yanchang Formation depositional period in the Ordos Basin. These
studies revealed that the southwestern part of the basin was relatively
steeply inclined, while the northeastern part was relatively gentle,
as a whole exhibited a northwest-southeast orientation, opening
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FIGURE 5
Core photographs from the Chang 75 sub-member of Yan 56 Well in the Ordos Basin. (a) Tuff, Chang 73, 3044.67 m; (b) Carbonate veins in the source
rock, Chang 75, 3065.24 m (after Yuan et al.,, 2022).

towards the southeast, roughly parallel to the Qinling orogenic belt
(Qiu, 2011). This suggests that the lake basin during this period
had a certain degree of openness. The correlation between the
83C.,yp, and 80, of lacustrine carbonate minerals can also
be used to identify whether a lake was open or closed (Talbot,
1990; Li and Ku, 1997; Leng and Marshall, 2004; Li et al., 2013;
Hou etal., 2014). In closed lake systems, intense evaporation and/or
prolonged water retention can lead to the enrichment of heavy
oxygen isotopes (!%0) in the lake water, while the equilibrium
exchange between long-retained lake water and atmospheric CO,
can increase the §'>C value of dissolved inorganic carbon in the
lake water (Leng and Marshall, 2004; Hou et al., 2014). Generally, a
, and 880

high correlation between §'*C_,

carb Values in lacustrine
carbonate minerals is widely used as a paleohydrological indicator
for closed lake systems. According to Talbot (1990), the square
of the correlation coefficient (R?) between 8'°C_,, and 80,
in closed lakes is typically greater than 0.5, whereas open lakes
show weaker correlations and a smaller range of §'%0,,, values
(Talbot, 1990; Li and Ku, 1997; Valero Garcés et al., 1997; Alonso-
Zarza and Calvo, 2000; Li et al., 2013). The correlation between
8C,,, and 880, values in lacustrine carbonate minerals
from the Chang 7 Member of the Yanchang Formation in the
Ordos Basin is shown in Figure 5. The samples from Well Yan
56 reveal two characteristics. Firstly, there is a weak to moderate
correlation between 8°C_,, and 8'80,,, values (R* = 0.31, p-
value <0.05); Secondly, the §'30_,, values of the carbonate minerals
are relatively dispersed (—18.6%o to —11.8%o). These characteristics
suggest that the hydrological conditions of the lake during the
Late Triassic Chang 7 depositional period in the Ordos Basin were
likely semi-open to semi-closed, which aligns with the findings
of Qiu (2011). Furthermore, the correlation between 8'*C_,, and
8180, values in the Chang 7, sub-member is generally poor
(R? values distributed around 0.16, p-value <0.05), while the
correlation in the Chang 7, sub-member is better (R* = 0.46, p-
value <0.05) (Figure 6). This indicates that the lake during the Chang
7, depositional period was relatively more closed, possibly due to
the smaller lake area and shallower water depth during this time
(Yuan, 2018).
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5.3 Source of organic matter

The carbon isotope values of organic matter in sediments or
sedimentary rocks are primarily influenced by the source of the
organic matter, the depositional environment, and the degree of
thermal evolution (Yu et al., 2001). During the Late Triassic Chang
7 depositional period in the Ordos Basin, the water bodies were
mainly freshwater, and the overall thermal evolution degree of the
Chang 7 source rocks did not vary significantly (with an average
vitrinite reflectance of about 8.5%) (Yuan, 2018). Therefore, the
813 Corg values of the shale in the Chang 7 section of Well Yan 56
are closely related to the source of the organic matter. Previous
studies have shown that the 813Corg values of aquatic organic matter
(Type I) are typically less than —28%o, those of mixed organic
matter (Type II) are usually between —28%o and —25%o, and those
of terrestrial higher plant organic matter (Type III) are generally
above —26%o (Schoell, 1984). In subsequent research, Huang (1988)
proposed a more detailed classification standard: Type I organic
matter has 613Corg values < —30%o, Type II, organic matter has
513C0rg

has 613C0rg values between —28%o and —26%o, and Type III organic

values between —30%o and —28%o, Type II, organic matter

matter has 613C0rg values > —26%o. The §'® Corg values of the source
rock in the Chang 7 section of Well Yan 56 in the Ordos Basin
range from —30.3%o to —26.6%o, with an average of —29.3%o. As
can be seen from Figure 7, the organic matter types in the Chang
7 section of the Yanchang Formation in the study area are mainly
Type I and Type II,, indicating that the organic matter during
the Chang 7 depositional period was primarily aquatic, with some
contribution from terrestrial higher plant organic matter. This is
consistent with previous research findings (Yang and Zhang, 2005;
Zhang et al., 2008; 2015).

Terrestrial plants can be classified into three major categories:
C3, C4, and CAM plants, based on the number of carbon atoms
in the primary products of photosynthesis (Liu et al, 2005).
Due to significant differences in photosynthetic pathways, leaf
structure, photorespiration, ecological adaptability, water use
efficiency, and photosynthetic efficiency between C3 and C4 plants,
their living environments and carbon isotope compositions also
differ (Liu et al, 2005). C3 plants have lower photosynthetic
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efficiency and lower water use efficiency, typically thriving in  2005). The 613C0rg values from the Chang 7 section of Well
warm and humid environments, with carbon isotope compositions ~ Yan 56 indicate that the terrestrial plants contributing to the
ranging from -22%o to —34%o, averaging -27%o (Liu et al,  sedimentary organic matter during that period were likely C3
2005). In contrast, C4 plants exhibit higher photosynthetic  plants. This further suggests that the climate conditions at that
efficiency and higher water use efficiency, usually found in  time were probably warm and humid, which aligns with the
hot and arid environments, with carbon isotope compositions  findings from paleomagnetic studies, pollen analysis, and elemental

ranging from —-9%o to —19%o, averaging —13%o (Liu et al, indicators (Yuan et al., 2019b).
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5.4 Lake paleoproductivity

The carbon isotopic composition of lacustrine carbonate rocks
is primarily controlled by the carbon isotopic fractionation during
carbonate formation and the carbon isotopic composition of
dissolved inorganic carbon (DIC) in the lake water (Chen et al.,
2010). The carbon isotopic composition of lake water DIC is
influenced by various factors, including the carbon isotopic
composition of inflowing lake water, CO, exchange between
the atmosphere and lake water DIC, the magnitude of lake
palaeoproductivity, and the degradation of organic matter
(Chen et al,, 2010). However, significant positive shifts in the
813C values of freshwater lacustrine carbonate rocks can only be
attributed to the intense degradation of sedimentary organic matter
by methanogenic bacteria during the diagenetic stage and the
increase in lake palacoproductivity (Zhang et al., 2013). Among
these, the increase in §'>C values caused by the degradation of
sedimentary organic matter by methanogenic bacteria is quite
significant, often showing a positive shift of >4%o (Garzione et al.,
2004). In the study area, except for one sample from the Chang 7,
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sub-member (4.5%o), the §'>C_,,, values in Well Yan 56 are mostly
below 4%o, indicating that the variation in 8'*C_,;, values is not
influenced by methanogenic bacteria. Redox conditions have been
demonstrated to exert a signiﬁcant influence on isotopic signatures,
owing to the capacity of redox conditions to modify the isotopic
fractionation of carbon, predominantly through the process of
bacterial sulfate reduction. DOPy and C,,,:P suggest that the water
column during the Chang 7, and Chang 7, depositional period
was dominately oxic-suboxic (Figure 8), suggesting that redox
conditions had a limited influence on isotopic fractionation during
this period. So, the §'*C_,;, values of Chang 7 samples may be closely
related to lake palaeoproductivity. When lake palacoproductivity is
high, aquatic organisms thrive and preferentially absorb '2C from
the DIC in the water through photosynthesis, leading to a relative
increase in the '*C content in the inorganic carbon pool (Liu,
1998). This increases the degree of carbon isotopic fractionation
between the inorganic carbon pool and organic matter, thereby
increasing the §"C,; and AC values. Therefore, the

8BC,,p, and AL Cearb-org values can be used to analyze changes
in lake palaeoproductivity.

carb-org
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The mean §'*C
members in Well Yan 56 are 0.17%o and 0.33%o, respectively, and
the mean AISCcarb_org values are 29.2%o and 29.8%o, respectively,
indicating that the lake palaeoproductivity during the Chang 7,
depositional period was generally relatively high. From the vertical
changes in §"*C,;, and AC
both are very consistent, indicating that the palacoproductivity of

carl

., values for the Chang 7, and Chang 7, sub-

values (Figure 4), the trends of

car carb-org
the Chang 7, and Chang 7, sub-members had periodic fluctuations.
In the Chang 7, sub-member, two obvious cycles from large to

small can be seen, and the §°C_,, and AC values in

carb-org
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the upper cycle of the Chang 7, sub-member are larger than
those in the lower cycle (Figure 4), indicating that the late Chang
7, depositional period had higher lake palacoproductivity. The
lake palaeoproductivity in the Chang 7, sub-member shows two
cycles from large to small and then to large in the middle
and lower parts, while in the upper part, it shows a gradually
increasing trend (Figure 4).

In addition, as can be seen from Figure 9, except for the Chang
75 sub-member, which is affected by volcanic and hydrothermal
activity, the TOC content in the Chang 7 Member of Well Yan 56 in
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the Ordos Basin has a good positive correlation with the §'*C
N Ccarb-org
during the Chang 7, and Chang 7, depositional periods in the Ordos

carb and

values, indicating that the enrichment of organic matter

Basin was mainly controlled by lake palaeoproductivity. This can
provide support for studying the enrichment of sedimentary organic
matter or the formation of source rocks during this period.

5.5 Paleoclimate

The oxygen isotope composition of lacustrine carbonates is closely
related to the oxygen isotope composition of dissolved oxygen in
the water body at the time of carbonate formation. The oxygen
isotope composition of the water body, in turn, is influenced by
various factors such as the oxygen isotope composition of atmospheric
precipitation and inflow runoff, evaporation intensity, and hydrological
conditions ofthelake (Chen etal., 2010). Therefore, the oxygenisotopes
in lacustrine carbonates can often be used to qualitatively indicate
paleoclimate information from the time of their formation. The size
of the lake area, whether the lake is open or closed, the residence time
of lake water, and the intensity of evaporation are the most important
factors controlling the oxygen isotope composition of lake water (Liu,
1998). During the Chang 7 depositional period, the Ordos Basin was
a large lake (Qiu, 2011). Even during the depositional periods of the
Chang 7, and Chang 7, sub-members, when the hydrology was semi-
closed to semi-open, the residence time of the lake water would still be
relativelylong, and the §'80 of the lake water was mainly influenced by
the precipitation/evaporation ratio (P/E) (Leng and Marshall, 2004).
Therefore, 80,
changes in the lake area. Enriched 8'80 signatures (positive values)

can, to some extent, indicate the wet and dry

in climate archives typically reflect aridification, whereas depleted
880 (negative values) correlates with increased humidity (Leng and
Marshall, 2004).

The mean §'%0,,
sub-members in the Yanchang Formation of Well Yan 56 in the

values for the Chang 7, and Chang 7,

Ordos Basin are —14.1%o and —14.3%o, respectively, characterized by
negative excursions, indicating that the overall climatic conditions
during these two depositional periods were both humid, which
aligns with the findings from paleomagnetic studies, pollen analysis,
and C-value (Yuan et al,, 2019b). From the vertical variation of
8180, values in Well Yan 56 (Figure 4), the §'30,,,, values during
the depositional period of the Chang 7, sub-member show two
cycles of first increasing and then decreasing, indicating periodic

changes in climate during this period. In contrast, the §'80,;, values

cari
during the depositional period of the Chang 7, sub-member show
an overall increasing trend from bottom to top, indicating a gradual
drying trend in the climate during this period. In addition, both
the CIA (chemical index of alteration) values and Al contents of the
Chang 7, samples exhibit a consistent downward trend from the base
to the top of the section, indicating a progressive decline in chemical
weathering intensity over time (Figure 8). The lithology of the Chang
7, sub-member also coarsens from bottom to top (Figure 4), and
from the Chang 7, to the Chang 7, depositional period, the lake
underwent a gradual shrinking process (Yuan, 2018), which aligns
well with the climatic changes observed during this period.
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6 Conclusion

1. The average values of 8"°C_,, in the Chang 7,-Chang 7,
sub-sections of Well Yan 56 in the Ordos Basin are 0.17%o,
0.33%o, and —2.8%o, respectively, and the average values of
8180, are —14.1%o, —14.3%o, and —16.0%o, respectively. The
Chang 7; sub-section exhibits anomalously low values of
8C,,yp, and 880
hydrothermal activity.

carp due to the influence of volcanic and

2. During the depositional periods of Chang 7, and Chang 7,,
the Ordos Basin had semi-closed to semi-open hydrological
conditions. The overall climate during these periods was warm
and humid supported by carbon-oxygen isotopes and other
element proxies (CIA and Al), with relatively stable climatic
conditions during the Chang 7, depositional period, while the
Chang 7, depositional period showed a gradual trend towards
drier conditions.

3. The lake palacoproductivity during the Chang 7 depositional
period in the Ordos Basin was relatively high. The sedimentary
organic matter was of mixed origin, primarily from aquatic
organisms, with some contribution from C3-type terrestrial
higher plants.
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