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The distinct Vertical Transverse Isotropy (VTI) heterogeneity and anisotropic
characteristics of shale are critical geophysical indicators for identifying
shale gas sweet spots. To address the need for dynamic monitoring of the
electrical properties of VTI shale reservoirs during hydraulic fracturing, this
paper proposes a fast time-domain electromagnetic inversion method based
on prior constraints and convolutional neural networks (CNN). Throughout
the process, prior information from logging and magnetotelluric data is
first integrated to construct a layered medium parameterization model. By
fixing the electrical parameters of non-target layers and varying the vertical
resistivity and anisotropy coefficient of the target layer, forward responses
are generated to build the training dataset. A convolutional neural network
(CNN) model is then designed to achieve the nonlinear mapping between
the electromagnetic decay curve and the target parameters. During training,
a dynamic learning rate scheduling strategy and Dropout regularization are
applied to accelerate model convergence while avoiding overfitting. The results
show that the convolutional neural network can effectively extract data features.
Under noise-free conditions, the average relative inversion errors for the target
layer’s resistivity and anisotropy coefficient are 2.26% and 2.32%, respectively,
with an inversion time of less than one second per point. Tests on noisy
data demonstrate the model’s noise resistance, with average relative errors
remaining within an acceptable range when Gaussian noise below 5% is added.
Application of field-measured transient electromagnetic data shows that the
method effectively identifies changes in the target layer’s vertical resistivity
and anisotropy coefficient induced by hydraulic fracturing, with the average
resistivity decreasing from 11.49 to 7.27 (a 36.7% reduction) and the anisotropy
coefficient decreasing from 3.21 to 1.58 (a 50.8% reduction). These trends are
consistent with conclusions from laboratory core fracturing experiments. This
study demonstrates that integrating prior constraints with deep learning can
overcome the efficiency bottleneck of traditional inversion methods, providing
a new approach for transient electromagnetic inversion in hydraulic fracturing
monitoring.
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1 Introduction

As the exploration and development of unconventional oil and
gas resources such as shale gas gradually become an important
part of the global energy strategy, how to efficiently and accurately
assess the physical properties and fluid distribution of underground
reservoirs has become a key issue in the field of oil and gas
exploration (Fahad and Kamal, 2022). The significant VTI-type
heterogeneity and anisotropic characteristics of shale reservoirs are
key geophysical indicators for identifying shale gas sweet spots.
Compared to seismic attributes (such as P-wave velocity and
impedance), the electrical anisotropy of shale is more pronounced
(Xiang et al., 2016). Especially during hydraulic fracturing, the
injection of high-pressure fluid induces fracture propagation,
causing significant changes in the electrical characteristics of
the formation, particularly anisotropy (Heng et al., 2015). While
magnetic source and electrical source magnetic component
transient electromagnetic methods are also insensitive to electrical
anisotropy, the electrical source electrical component transient
electromagnetic method (TEM) shows unique advantages in
this regard (Wang et al., 2015).

Traditional inversionmethods often struggle to capture complex
electrical variations in formations, especially in reservoirs with
strong anisotropy. These methods typically assume that the
subsurface medium is isotropic, which significantly affects the
accuracy of inversion results in complex geological environments
(Yin and Weidelt, 1999; Liu et al., 2018). To address this
issue, deep learning methods such as Convolutional Neural
Networks (CNN) provide new approaches for time-domain
electromagnetic inversion. In recent years, the successful application
of Convolutional Neural Networks (CNN) in fields such as image
recognition, natural language processing, and physical inversion
has demonstrated its advantages in handling high-dimensional
complex data (Zhou et al., 2017; Vladimir, 2019). In electromagnetic
inversion, Convolutional Neural Networks (CNN) can deeply
mine data features through supervised learning and obtain
effective inversion models through training, thereby overcoming
the shortcomings of traditional methods in nonlinear and high-
dimensional problems. Compared to traditional inversion methods,
deep learning methods have the advantage of providing real-time
inversion results once training is complete, effectively solving the
problem of the long processing times associated with traditional
inversion methods (Zhang et al., 2021). Among these, Liu et al.
(2021) proposed a novel 18-layer residual fully convolutional
neural network (18RFCN) for audio magnetotelluric (AMT) data
inversion, and achieved excellent results when applied to field
AMT data. Huang, (2021) implemented inversion in marine
controlled-source electromagnetic detection using deep learning
methods. Yan et al. (2023) achieved one-dimensional fast imaging
of transient electromagnetics based on Convolutional Neural
Networks (CNN), and introduced coordinate information as input
parameters to enable rapid processing of area data. Yu et al. (2025)
designed a ‘ResNet-50′residual neural network inversion model
for two-dimensional magnetotelluric inversion. They tested the
network with unfamiliar data and compared it with the NLCG
inversion method, showing that the model not only achieves real-
time accurate inversion but also has certain noise resistance. The
aforementioned deep learning-based geophysical inversionmethods

are significantly more efficient than traditional regularization
inversion methods, indicating that deep learning technology has
broad application prospects in the field of electromagnetic inversion.
However, there is a common issue that requires extensive coverage
of the subsurface structure, which results in an exceptionally large
training set, causing redundancywith a significant amount of invalid
data. Therefore, this can significantly reduce the size of the training
dataset, save computational resources, and improve efficiency.
Additionally, by controlling variables, we can capture changes in
the electrical properties of the target layer caused by fracturing
during the inversion process, providing more reliable support for
fracturing monitoring and decision-making.

Based on this scenario, this paper introduces a one-dimensional
time-domain electromagnetic rapid inversion method based on
CNN under VTI media, and discusses in detail the establishment
of the training set, data preprocessing, deep learning model design
and construction, network training, and hyperparameter design.
First, fully utilize the existing prior geological data in the project
to determine the physical property parameters of layers other
than the target layer of interest. Then, set the range of variation
for the physical property parameters of the target layer within a
reasonable interval, and traverse the physical property parameters
within the interval using logarithmic spacing to generate forward
models. Use a data filtering algorithm to numerically simulate
the transient electromagnetic response of the reservoir’s electrical
anisotropy model to construct the sample dataset. Three datasets
were generated to test the theoretical feasibility of the method by
simulating low-resistivity target layers, high-resistivity target layers,
and conventional target layers in a horizontally layered medium.
Gaussian random noise with different proportions was added to
the samples in the test set to evaluate the model’s noise resistance.
Additionally, a learning rate scheduling strategy was introduced
during training to accelerate the convergence of the model’s loss
function. Finally, a set of formation model datasets was designed
based on actual geological data combined with magnetotelluric
inversion results. On the basis of inversion validation using synthetic
data, real measured data from a survey line before and after
fracturing was used for inversion.The results show that the network
model constructed in this paper can invert the resistivity and
anisotropy coefficients of the target layer. Especially in hydraulic
fracturing scenarios, this method can efficiently capture the changes
in subsurface resistivity and anisotropy coefficients, providing a
new approach for transient electromagnetic inversion in hydraulic
fracturing monitoring.

2 Methods

Inversion problems essentially involve deducing certain
properties based on limited observations. In the hydraulic fracturing
application scenario assumed in this paper, we simulate the
formation conditions as a horizontally layered medium based
on prior geological data. The forward process of the transient
electromagnetic response can be represented by a function G
(Equation 1):

d = G(m,k) (1)
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FIGURE 1
Steps of Transient Electromagnetic Deep Learning Inversion. Step 1 involves dataset construction, step 2 is neural network training, and step 3 performs
the inversion.

where d represents the transient electromagnetic response data, m
represents the physical parameters of the concerned target layer,
including the anisotropy coefficient and the vertical resistivity,

and k represents other parameters that can be constrained a
priori, including non-target layer physical property parameters,
transmitter output power, transmitter-receiver distance, survey
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FIGURE 2
Forward modeling results of a one-dimensional isotropic model. “Aniso” shows results from the anisotropic modeling program developed in this study
with anisotropy coefficients set to 1.0, while “iso” shows results from the isotropic modeling program.

FIGURE 3
Setting of physical property parameters of the target layer under three backgrounds. This figure illustrates the model settings of physical property
parameters of the target layer under three background conditions: high-resistance target layer, low-resistance target layer, and conventional
target layer.

point coordinates, etc. Given that the forward method’s correctness
is validated, we control the variable k and set it consistent
with the actual fracturing scenario. Then, we can attempt to
establish the matrix mapping relationship g between response

d and the concerned target layer’s physical parameters m for
inversion, namely (Equation 2):

g:d→m (2)
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TABLE 1 Distribution of Sample Dataset.

Model type Model quantity

High Resistivity Target Layer Model 50,000

Low Resistivity Target Layer Model 50,000

General Target Layer Model 100,000

Datasets were constructed for three Model Types respectively, and these datasets were used
for the method testing.

Due to the highly complex relationship between the
electromagnetic field and the model parameters, it is difficult to
express the mapping relationship g in simple mathematical terms.
Therefore, we use supervised learning to train a convolutional
neural network to extract the complex features embedded in the
response data, in order to obtain the mapping relationship gθ, that
is (Equation 3):

m = gθ(d) (3)

where θ represents the hyperparameters and structural information
of the neural network. To enable the neural network to learn the
appropriate θ, a loss function L(θ) is introduced:

L(θ) = 1
N

N

∑
i=1

‖diobs(θ) − d
i
pred(θ)‖

2 (4)

whereN is the number of samples, diobs(θ) is the response data of the
ith sample, and dipred(θ) is the electromagnetic response predicted
by the neural network. By optimizing this loss function, the network
learns the best target layer parameter predictionmodel.Whether the
loss function L(θ) can effectively converge to ensure the effectiveness
and accuracy of the complex mapping gθ mainly depends
on the following parts: (1) Dataset construction, (2) Forward
algorithm validation, (3) Data normalization, (4) Network structure
optimization, (5) Inversion prediction model parameters. The
flowchart of one-dimensional anisotropic transient electromagnetic
inversion based on deep learning is shown in Figure 1.

2.1 Dataset construction

2.1.1 Anisotropic modeling and forward
calculation

According to the study by Yan Liangjun on the transient
electromagnetic response of the reservoir electrical anisotropy
model, let the electric dipole be located at the coordinate origin,
with its direction along the x-axis. In this case, the vector potential
A has only Ax and Az components. In cylindrical coordinates, the
equations for Ax and Az take the following forms (Yan et al., 2014)
(Equations 5, 6):

∂2Ax

∂r2
+ 1
r
∂Ax

∂r
+
∂2Ax

∂z2
− k2tAx = 0 (5)

∂2Az

∂r2
+ 1
r
∂Az

∂r
+ 1
λ2

∂2Az

∂z2
− k2nAz = (1−

1
λ2
)
∂2Ax

∂x∂z
(6)

In the equation, the anisotropy coefficient is defined as λ =

√
ρn
ρt
,where the resistivity in the parallel direction is ρxx = ρyy = ρt,

and the resistivity in the vertical direction is ρzz = ρnn, with units of

Ω·m.The wavenumber in the vertical direction is kn = √−
iwμ
ρn
, while

the wavenumber in the parallel direction is kt = √−
iwμ
ρt

.

By applying the method of separation of variables and
incorporating the continuous boundary conditions of the vector
potential at the interface, the expressions for the electric and
magnetic field components on the surface can be obtained
(Vanyan et al., 1967). When the source is excited by a step current,
the relationship between the electric field in the frequency domain
and the time domain is given by (Niu, 2007) (Equation 7):

e(t) = − 2
π
∫
∞

0
 
ReE(w)

w
sin (wt)dw (7)

Among them:

Ex  (w) =
iwμ0I
2π
∫
∞

0
  m
m+ n1

R∗
J0  (mr) dm+

iwμ0I
2π

× ∫
∞

0
 (

λn1
R∗k2t1
− 1
m+ n1

R∗
)

×  [mJ0  (mr) cos2 θ− J1  (mr)  cos2θ
r
] dm (8)

Equation 8 is the expression for the horizontal electric field
component in the frequency domain, where J0 and J1 are the zeroth-
order and first-order Bessel functions, respectively, R

∗
and R∗ is

the reflection coefficient, And spatial frequency: n2i =m
2 + k2ti; n

2
i =

m2 + k2ni.
To verify the accuracy of the forward modeling program,

we first use a three-layer 1D isotropic model with the following
parameters: ρ1 = 100Ω ·m,h1 = 2000m,ρ2 = 10Ω ·m,h2 = 300m,
and ρ3 = 100Ω ·m,When calculating with the anisotropic forward
modeling program, the anisotropy coefficients are set as λ1 =
λ2 = λ3 = 1.0, representing an isotropic medium. The calculation
results are shown in Figure 2. It can be observed that the electric
field curves obtained from both the theoretical solution and the
anisotropic forward modeling program fit well. This demonstrates
that the forwardmodeling program based on the theory of electrical
anisotropy is reliable.

2.1.2 Dataset construction
During the hydraulic fracturing process, the injection of high-

pressure fluid promotes the expansion of fractures, which usually
causes significant changes in the electrical properties of the target
layer (Shen et al., 2009), while the physical parameters of the upper
and lower layers remain relatively stable. Based on this background,
this paper sets the parameters of the target layer as inversion
variables and fixes the parameters of other layers to reduce the scale
of the parameters. To ensure the effectiveness of the algorithm, we
generated three datasets for testing. In the case of a three-layer
horizontally layered medium, forward simulations were conducted
for both high-resistivity and low-resistivity target layers, resulting in
datasets D1 and D2. Additionally, a ten-layer underground model
was forward simulated, with the target layer located in the ninth thin
layer, generating dataset D3. The model parameters of each layer
in these three datasets, as well as the changes in vertical resistivity
and anisotropy coefficient of the target layer, are shown in Figure 3.
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FIGURE 4
Decrease in the loss function under different normalization strategies. Among the three normalization strategies, the time-weighted normalization of
early apparent resistivity yields the best performance.

FIGURE 5
Training performance after normalizing both the sample data and labels. The figure shows the training results of the neural network after applying
normalization to both input samples and output labels. The training process exhibits good convergence and stability.

In the high-resistivity target layer training set, the resistivity of the
first and third layers is fixed at 30 Ω-meters, and the thickness
of the first and second layers is 200 and 400 m, respectively. The
resistivity range of the second layer (target layer) is 1–150 Ω m,
with 250 resistivity values taken at logarithmic intervals, and the
anisotropy coefficient (λ) ranges from 0.1 to 10.0, with 200 λ values
taken at logarithmic intervals. In the low-resistivity target layer
training set, the resistivity of the first and third layers is fixed at
300 Ω m, and the resistivity range of the second layer (target layer) is
150–1,000 Ω m, also with 250 resistivity values taken at logarithmic
intervals and 200 λ values. In the general target layer training set, we
refer to the actual prior data (from a specific location) to construct a
ten-layer underground model, with the target layer located in the
ninth layer. The resistivity range of the target layer is 1–1,000 Ω-
meters, with 500 resistivity values taken at logarithmic intervals,

and the λ range is 0.1–10.0, with 200 λ values. The distribution
of the three sample sets ultimately used for testing is shown
in Table 1.

2.2 Data normalization

As mentioned earlier, to enhance the nonlinear expression
capability of the neural network, we need to introduce activation
functions in the network layers. However, activation functions
are most effective within a specific range, and their effectiveness
diminishes when the input data exceeds this range. Therefore, we
need to normalize the data to ensure that it is transformed to
a reasonable magnitude range while retaining as much feature
information as possible.
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FIGURE 6
Convolutional Neural Network Architecture Diagram. The figure illustrates the structure of the convolutional neural network used in this study,
including the arrangement of convolutional layers, and fully connected layers.

TABLE 2 Hyperparameter Settings.

Hyperparameter Setting

Number of Training Epochs 500

Batch Size 50

Activation Function ReLU

Learning Rate Initial learning rate 0.01, decayed by 75% upon
trigger conditions

Optimizer Adam

Dropout 0.1

The settings include the number of training epochs, batch size, activation function,
learning rate, optimizer, and Dropout rate.

To this end, we tested the training effects of three normalization
methods on the same dataset for the sample data: (Equation
9) Log Min-Max Normalization, (Equation 11) Early Apparent
Resistivity∗Time Normalization, and (Equation 12) Early Apparent
Resistivity∗Time + Log Min-Max Normalization. The effects are
shown in Figure 4. Log Min-Max Normalization resulted in an
excessive scaling range, losing the feature information of the sample
data, which led to neuron inactivation in the neural network and
caused the model to lose its predictive ability. The Early Apparent
Resistivity∗Time Normalization model converged well and did not
exhibit severe overfitting. The Early Apparent Resistivity∗Time +
LogMin-Max Normalization method’s loss function also eventually
converged, but overfitting occurred in the middle stages.

xnorm =
xlog −min(xlog)

max(xlog) −min(xlog)
(9)

ρs =
2πr3Ex
Idl

(10)

ρs × t =
2πr3Ext
Idl

(11)

ρs =
ρslog − ρs logmin

ρs logmax
− ρs logmin

(12)

where ρs is the early-time apparent resistivity (Equation 10), r is the
source-receiver distance, Ex is the electric field response, I is the
transmitting current, and dl is the length of the transmitting source.

Subsequently, to avoid excessive initial loss values, we also
normalize the label data. To prevent the normalization amplitude
from being too large and causing the differences between different
label data to become too small, we scale both the resistivity and
anisotropy coefficientswithin the range of 0–1,000.Then,we take the
logarithmwith base 10, so that the normalized label data for vertical
resistivity and anisotropy coefficients are finally distributed within
the range of (0, 3]. This helps the loss function converge effectively.
After applying the above normalization strategy, the loss function
decrease is shown in Figure 5.

2.3 Convolutional neural network model
construction and training

2.3.1 Model construction
The classic convolutional neural network (CNN) structure

typically includes an input layer, convolutional layers, activation
functions, pooling layers, fully connected layers, and an output
layer. The core idea is to extract features from the data using
the convolutional layers, enhance the model’s non-linearity with
activation functions, reduce dimensionality with pooling layers, and
synthesize the features in the fully connected layers to complete
classification or regression tasks. In the transient electromagnetic
inversion process, unlike the two-dimensional CNN used for
image processing, the one-dimensional CNN is more suitable for
extracting features from time-series signals, and its computational

Frontiers in Earth Science 07 frontiersin.org

https://doi.org/10.3389/feart.2025.1594649
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Aohuai et al. 10.3389/feart.2025.1594649

FIGURE 7
Inversion Results for Different Models. (a1–a3) are comparisons between the true values and predicted values of the vertical resistivity ρ for the target
layer under different models. (b1–b3) are comparisons between the true values and predicted values of the anisotropy coefficient λ for the target layer
under different models. (c1–c3) are comparisons of the forward modeling response curves for model parameters and predicted parameters. (d1–d3)
are error absolute value curves comparing the forward modeling response of model parameters with the predicted parameter’s forward modeling
response. The inversion results show that the predicted parameters closely match the true values, and the forward modeling responses based on
predicted parameters exhibit high consistency with those from the true models, indicating the effectiveness of the proposed method.

TABLE 3 Average Relative Inversion Error of the Test Set in Noise-Free Synthetic Data.

Dataset - sample size Average relative error - ρ Average relative error - λ

high-resistivity target layer- 5,000 3.35% 3.18%

low-resistivity target layer - 5,000 2.13% 2.47%

general target layer - 10,000 1.78% 1.82%

total - 20,000 2.26% 2.32%

Statistical analysis of the inversion results of three model types across the entire test set shows that, under noise-free conditions, the average relative error of all models is less than 4%. This
result demonstrates that the method performs remarkably well when dealing with synthetic data without noise interference.

scale is also much smaller than that of the two-dimensional CNN
used for image processing (Chen et al., 2025). Therefore, we
choose to adopt the one-dimensional convolutional neural network
structure shown in Figure 6. The normalized response data d is
used as input, and the normalized target layer resistivity and
anisotropy coefficientsm are used as the network’s output. Here, d =
[d1,d2,…,d24,d25]

T,m = [p,λ]T.
In this paper, we train the data using mini-batch gradient

descent. In each iteration, a mini-batch of training data of size
“batchsize” is used to calculate the gradient and update the model
parameters.This method combines the advantages of batch gradient
descent and stochastic gradient descent, offering high computational

efficiency and good stability. The data flow during the training
process is shown in Figure 6. First, the input data has the shape
of (batchsize,1,25), where “batchsize” is the size of the mini-batch,
one represents a single channel (indicating one-dimensional signal
data), and 25 represents the number of time channels. The input
data passes through three convolutional layers for feature extraction.
The first convolutional layer uses 16 convolutional kernels, eachwith
a size of 5; the second convolutional layer uses 30 convolutional
kernels, each with a size of 5; the third convolutional layer also
uses 30 convolutional kernels, each with a size of 3. After these
three convolutional layers, the data shape becomes (batchsize,30,25),
where 30 represents the number of feature channels and 25 is
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TABLE 4 Inversion Results of Test Samples with Added Noise in Dataset D1.

Noise ratio Average relative error - ρ Average relative error - λ

0% 3.35% 3.18%

2% 6.41% 5.98%

5% 13.43% 9.03%

8% 40.28% 36.57%

12% 125.92% 78.62%

The results show that when the noise level is within 5%, the neural network inversion exhibits good generalization ability. As the noise level increases, the inversion performance of the network
decreases accordingly.

FIGURE 8
The Impact of Noise on Inversion Results. (a1,a2) show the effect of different levels of noise on the resistivity and anisotropy coefficient of the
high-resistivity target layer. (b1,b2) show the effect of different levels of noise on the resistivity and anisotropy coefficient of the low-resistivity target
layer. (c1,c2) show the effect of different levels of noise on the resistivity and anisotropy coefficient of the typical target layer. The results show that
when the noise level is within 5%, the neural network inversion exhibits good generalization ability. As the noise level increases, the inversion
performance of the network decreases accordingly.

the number of time channels. To increase the network’s non-
linear expressive power, the ReLU activation function is used in
all layers. Additionally, to reduce data loss, zero-padding is used
in the convolutional operations, and pooling layers are omitted
to retain more spatial information. Then, the data processed by
the convolutions is flattened into 30 × 25 features and passed
into the fully connected layer. The fully connected layer contains
three hidden layers. The first hidden layer has 325 neurons, the
second hidden layer has 64 neurons, and the third hidden layer
has 12 neurons. After the successive compression of the data, the
final output is obtained, where the data shape is (batchsize,2,1),
with 2 representing the number of predicted parameters and one
indicating a single output feature.

2.3.2 Loss function
The network training process essentially involves

minimizing the mathematical expectation of the loss function
derived in Equation 4 to achieve optimal predictive performance
of the model. During this process of minimizing the mathematical
expectation of the loss function, the network obtains the model’s
predicted output through forward propagation and compares it
with the actual label values. Then, the backpropagation algorithm
calculates the gradients of the error with respect to the network
parameters (such as neuron weights and biases) and adjusts these
parameters based on these gradients to optimize the loss function.

The mean squared error (MSE) loss function is one of the
most commonly used loss functions in regression tasks. It is
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FIGURE 9
Schematic Diagram of Field Survey Line Design and the Relative Position of the Horizontal Well. The measured data were selected from the
measurement points along 9 survey lines.

FIGURE 10
Early Apparent Resistivity Curves Before and After Fracturing and the Absolute and Relative Changes. This change in values can be effectively captured
by the neural network.

defined as (Equation 13):

MSE = 1
N

N

∑
i=1
 (y′i − yi)

2 (13)

Where N is the number of samples, yi represents the true label
values, and y′i  represents the predicted values from the model.

2.3.3 Learning rate
In deep learning, the learning rate is also a crucial

hyperparameter. It represents the step size at which the model
parameters are updated during each iteration. If the learning rate
is too high, meaning the step size is too large, it may hinder the
model’s convergence. On the other hand, if the learning rate is too
low, meaning the step size is too small, it may cause the convergence

to be too slow. Therefore, a reasonable learning rate schedule is
essential for effective neural network training. After multiple tests,
this paper finally adopts a learning rate adjustment strategy that
changes with the number of iterations and the decrease in the loss
function, which is represented by Equation 14:

R = R0 × 0.75α−1 (14)

where R0 is the initial learning rate, set to 0.01 in this study, and
α represents the number of decay steps. Each time a specified
condition is triggered during training, the learning rate is reduced
to three-quarters of its previous value. The condition we set is that
if the validation error does not decrease for 5 consecutive times,
the decay step α is increased by 1. This method allows the model
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FIGURE 11
Electrical Property Parameters of the Target Layer Before and After Fracturing and Their Changes. (a1) Vertical resistivity distribution of the target layer
before fracturing, (a2) Vertical resistivity distribution of the target layer after fracturing, (a3) Changes in vertical resistivity, (b1) Anisotropy coefficient
distribution before fracturing, (b2) Anisotropy coefficient distribution after fracturing, (b3) Changes in anisotropy coefficient. Overall, after fracturing,
both the resistivity and the anisotropy coefficient have generally decreased.

FIGURE 12
Changes in Average Resistivity and Average Anisotropy Coefficient of the Stratum. After fracturing of the target layer, the average value of vertical
resistivity decreased from 11.49 Ω m to 7.27 Ω m, with a decrease of 36.7%; the average value of the anisotropy coefficient decreased from 3.21 to 1.58,
representing a reduction of 50.8%.
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to dynamically reduce the learning rate during training, avoiding
the drawbacks of a manually set learning rate that might be too
high or too low. It significantly enhances the model’s performance
and convergence speed, making it easier for the model to reach its
optimal state.

2.3.4 Model training
In this paper, a one-dimensional inversion neural network

model for transient electromagnetic is built based on the PyTorch
framework, and the network training and prediction are carried out
in the GPU mode. The hardware configuration used is as follows:
Intel(R) Xeon(R) Platinum 8352S CPU @ 2.20 GHz 3.40 GHz,
NVIDIA GeForce RTX 4090 (24 GB) GPU, and the RAM is
256 GB (256 GB available). Under this hardware setup, the training
efficiency of the model is reflected in a time consumption of 1.8 s
per epoch. the complete hyperparameter settings for training the
convolutional neural network model are shown in Table 2. The
dataset is randomly split into training, validation, and test sets in
an 8:1:1 ratio to ensure that after the network training is completed,
the test set contains a sufficient number of unseen data to evaluate
the inversion performance of the network model. Additionally,
the ReLU activation function is used, and the Adam optimizer is
employed for training. Apart from the aforementioned learning rate
decay strategy, an “early stopping” strategy is also implemented.
Training is halted early if the validation error does not decrease for
50 consecutive iterations, effectively preventing overfitting.

3 Results and testing

3.1 Inversion of synthetic data without
noise

As shown in Figure 7, the inversion results of three models
selected from the test samples (named a1b1, a2b2, and a3b3) under
noiseless conditions are presented. From top to bottom, the first
and second columns show the comparison between the true values
and the predicted (inverted) values of the vertical resistivity and
anisotropy coefficients of the target layer. The third column shows
the forward modeling response fitting curves of the true geoelectric
model and the inverted geoelectric model. The fourth column
displays the absolute error curves of the forward response of the
true model and the inverted model. For the high-resistivity target
layer model a1b1, with layer thicknesses of 200, 400, and 5,000 m,
vertical resistivities of 30.0, 280.17, and 30.0 Ω m, and anisotropy
coefficients of 1.0, 5.62, and 1.0, the inversion results show that
the second layer’s vertical resistivity is 297.05 Ω m, with a relative
error of 6.02%, and the anisotropy coefficient is 5.51, with a relative
error of 1.97%. For the low-resistivity target layer model a2b2, with
layer thicknesses of 400, 200, and 5,000 m, vertical resistivities of
300, 60.65, and 300 Ω m, and anisotropy coefficients of 1.0, 1.66,
and 1.0, the inversion results show that the second layer’s vertical
resistivity is 64.23 Ω m, with a relative error of 5.94%, and the
anisotropy coefficient is 1.55, with a relative error of 6.38%. For
the general target layer model a3b3, with the target layer at the
ninth layer and the settings of the underground 10 layers being
consistent with Figure 3, the vertical resistivity of the target layer is
85.68 Ω m, and the anisotropy coefficient is 7.9.The inversion results

show that the vertical resistivity of the ninth layer is 91.46 Ω m, with
a relative error of 6.75%, and the anisotropy coefficient is 7.68, with
a relative error of 2.78%.

From the three models and their inversion results, it can be
seen that for the inversion of noise-free synthetic data, the vertical
resistivity and anisotropy coefficient of the target layer can be well
restored. The fitting error of the forward response curve is at least
two orders of magnitude lower than the data itself. In terms of
the prediction performance for special models, the inversion results
are satisfactory, and the inversion time after network training is
within 1 s, which is significantly shorter than the time required
for traditional iterative inversion, perfectly meeting the real-time
inversion requirements in practical scenarios. In addition, to verify
the generalization performance of the model, all unseen data from
the test set, which was not involved in model training, was used
for inversion, and the relative error of the inversion parameters
was calculated. The test results, as shown in Table 3, indicate that
the average relative error is less than 5%, demonstrating that even
for unfamiliar forward response curves, the convolutional neural
network can effectively extract complex electromagnetic response
features and accurately restore the vertical resistivity and anisotropy
coefficient of the target layer.

3.2 Inversion of synthetic data with noise

In this study, to evaluate the noise resistance of the convolutional
neural network (CNN) inversionmethod under realistic conditions,
Gaussianwhite noise—one of themost common types of noise—was
introduced as the disturbance source. Gaussian white noise is
characterized by a zero mean, flat power spectral density, and
statistical independence, making it an effective representation of
random disturbances encountered in practical electromagnetic
measurements, such as instrument noise, atmospheric interference,
and geological background noise. By introducing Gaussian noise,
the complexity of real-world electromagnetic data can be more
accurately simulated, enabling a more objective assessment of
the CNN model’s robustness and generalization capability under
varying noise levels.

We calculated the average relative error of the inversion results
for 5,000 noisy test samples from the D1 dataset without changing
any other parameters, as shown in Table 4. This demonstrates
that the convolutional neural network can still effectively capture
data features when the noise level is not too severe. Subsequently,
different levels of Gaussian noise (2%, 5%, 8%, and 12%) were added
to the three sets of test samples used earlier, and the inversion
was performed again. The results were compared with the true
model and the noise-free inversion results, as shown in Figure 8.
Specifically, e1, e2, and e3 represent the inversion results of the
vertical resistivity of the target layer under different noise levels,
while f1, f2, and f3 show the inversion results of the anisotropy
coefficient. The results indicate that when the noise ratio is within
5%, the neural network inversion exhibits good generalization
ability, and the error of the inversion parameters remains within
an acceptable range. However, it is important to note that as the
noise ratio increases, the inversion performance of the network
deteriorates accordingly. Therefore, when applying this method to
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practical scenarios, it is still necessary to perform data cleaning and
denoising in advance to ensure better inversion performance.

3.3 Inversion comparison of field data
before and after hydraulic fracturing

The method proposed in this paper focuses on the inversion of
vertical resistivity and anisotropy coefficient of the target layer by
fixing the electrical parameters of non-target layers. This strategy
is often limited in conventional transient electromagnetic inversion,
where complex unknown stratified structures require simultaneous
inversion of multiple formation parameters, significantly increasing
data dimensionality and computational complexity. However, in the
context of hydraulic fracturing monitoring in shale reservoirs, this
“parameter simplification” design becomes a unique advantage.

Firstly, prior to fracturing, an initial geoelectric model can be
constructed using well-logging curves, 3D seismic interpretation,
and magnetotelluric (MT) surveys, providing a reliable basis
for fixing background layer parameters. Secondly, the resistivity
anomalies caused by hydraulic fracturing are spatially constrained,
mainly within the target reservoir around the horizontal wellbore
(typically within a 200–300 m radius), while the electrical properties
of non-target layers, such as the caprock and basement, remain
relatively stable before and after fracturing. This physical constraint
allows the proposed method to efficiently capture the dynamic
changes in vertical resistivity and anisotropy of the target layer
through inversion in a reduced parameter space, reducing the neural
network training data by 2-3 orders of magnitude and meeting the
computational efficiency required for fracturing monitoring.

This study is based on field data from a shale gas well in
Zhongxian, Chongqing, using the ultra-long grounded source
transient electromagnetic system. The transmission source has a
total length of 4064m, with a peak current of 103.686A, and uses
a TD50 bipolar trapezoidal waveform with a sampling rate of
1000 Hz. The field survey line layout relative to the horizontal
well is shown in Figure 9. Based on well-logging interpretation,
3D seismic data, and MT inversion, a four-layer “low-high-low-
high” resistivity structure model was constructed (target layer
depth <2600 m), eight observation points were set along the main
fracturing direction, and corresponding datasets were generated for
the different coordinates of the eight observation points.

Taking the first observation point as an example (Figure 10),
the early apparent resistivity curve (0.02–1.02s) before and after
fracturing shows significant differences, with a maximum absolute
change of Δρ_max = 23.95 Ω m and a relative change rate of up
to 37.4%, far exceeding the system noise threshold (5%). This
demonstrates the CNN’s ability to effectively extract characteristic
signals from the fracturing process.

According to the laboratory rock physics study by Tong et al.
(2023), the replacement of original gas with conductive fluid
in fracture pores leads to a significant decrease in the average
resistivity of the formation, while the vertical resistivity decreases
more significantly, further reducing the anisotropy coefficient. The
inversion results for the entire survey line (Figures 11, 12) show
that after fracturing, the average vertical resistivity of the target
layer decreased from 11.49 Ω m to 7.27 Ω m (a 36.7% reduction),
while the anisotropy coefficient decreased from 3.21 to 1.58 (a

50.8% reduction).The simultaneous decline in electrical parameters
can be attributed to the formation of a conductive fluid network
caused by the injection of proppant and low-resistivity fracturing
fluid, which is consistent with the conclusions of laboratory core
fracturing experiments.

4 Conclusion

This study proposes a CNN-driven anisotropic time-domain
electromagnetic (TEM) inversion framework, which overcomes the
limitations of traditional iterative inversion methods, such as long
computation time and low efficiency. By leveraging an end-to-
end deep extraction-regression architecture, the proposed method
establishes a nonlinear mapping between multi-time window
electromagnetic decay characteristics and the target layer’s electrical
parameters (vertical resistivity ρ and anisotropy coefficient λ),
successfully reducing the single-point inversion time to within 1 s,
which is much lower than the 317 s used in the one-dimensional
iterative inversion by Wang, (2024).

In the synthetic data tests, a standardized dataset containing
200,000 samples of three target layer types—high-resistivity (ρ >
100 Ω m), low-resistivity (ρ < 50 Ω m), and conventional (10 Ω m ≤
ρ ≤ 1,000 Ω m)—was constructed.The results verified the feasibility
of the method, with an average relative error of less than 4% for
both vertical resistivity (ρ) and anisotropy coefficient (λ), and no
overfitting occurred (the loss between the validation set and the test
set was less than 2%).

In the noisy data tests, the results showed that theCNN inversion
maintained good generalization performance when the noise ratio
was within 2%–5%, with inversion errors remaining within an
acceptable range.However, as the noise level increased, the inversion
performance gradually deteriorated.

In field data applications, this method has demonstrated
remarkable practical potential. It successfully identified regions of
reduced resistivity caused by the injection of fracturing fluid, with
the average resistivity decreasing from 11.49 Ω m to 7.27 Ω m (a
reduction of 36.7%), and the average anisotropy coefficient dropping
from 3.21 to 1.58 (a reduction of 50.8%). The inversion time for a
single point is less than 1 s, enabling themethod to efficiently capture
resistivity and anisotropy changes induced by hydraulic fracturing.
This demonstrates that the integration of prior constraints and
deep learning can overcome the timeliness bottleneck of traditional
inversion, providingmore reliable support for fracturingmonitoring
and decision-making.

However, it should be noted that while the method presented
in this paper effectively reduces the size of the training dataset
through sufficient prior constraints, and based on our analysis
of field data, the trend of the inversion results is generally
consistent with the laboratory rock physics experiments, we believe
the prior information used is highly reliable. Nevertheless, due
to the complexity of subsurface electrical structures, it is often
difficult to fully match them with the prior model. If there is a
significant discrepancy between the prior information and the actual
subsurface electrical parameters, it may lead to substantial errors in
the inversion results. At present, we are unable to precisely quantify
the differences between the prior data and the true subsurface
parameters. Therefore, the focus of our future research will be to
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further improve the inversion method, such as exploring whether it
is possible to directly invert the changes in the electrical properties
of the target layer by using the residual signal of the response before
and after fracturing. This approach may help reduce the result bias
caused by inaccurate prior information.
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