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The integrity of submarine pipelines and cables is crucial for safeguardingmarine
oil, gas, and information transmission, as well as ecological security. Employing
automated identification of side-scan sonar (SSS) images can enhance marine
geophysical survey efficiency, enabling high-frequency assessment of seabed
anthropogenic footprints. However, there is a notable gap in research regarding
the comparative performance of different models and the impact of data
expansion. This study presents an in-depth comparison of various convolutional
neural network (CNN) models-specifically, AlexNet, GoogleNet, and VGG-
16-focusing on their prediction accuracy and computational efficiency in
analyzing SSS datasets. Our findings reveal that GoogleNet outperforms the
others, offering superior prediction accuracy with balanced computational
demands. While AlexNet is less accurate, it is beneficial for scenarios with
limited computational resources. Conversely, VGG-16 shows comparatively
weaker performance, making it less suitable for SSS image analysis. Notably, data
expansion significantly influences model accuracy, although its impact varies
across different models. This research contributes critical insights into model
selection for marine geological applications, demonstrating the potential of
intelligent interpretation systems in modern marine geology.

KEYWORDS

marine geophysical monitoring, seabed anthropogenic features, intelligent earth
observation, sonar image interpretation, coastal zone management

1 Introduction

Marine infrastructure, particularly submarine pipelines and cables, is essential for
exploiting oceanic oil and natural gas resources, playing a critical role in maintaining
economic and ecological stability.These anthropogenic structures also interact dynamically
with marine sedimentary systems, potentially altering local seabed geomorphology
through scouring effects and sediment redistribution processes. However, these structures
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are vulnerable to damage from sediment erosion and movement,
potentially causing significant economic and environmental
harm. Such pipeline failures may trigger localized geohazards,
including seabed subsidence and slope instability, underscoring
the importance of high-resolution monitoring in coastal geological
surveys. The study focuses on the Yellow River subaqueous delta, an
area known for high sediment discharge and rapid morphological
change. Wave action significantly influences seabed dynamics,
driving erosion and redistribution processes (Liu et al., 2020).
These conditions foster seabed instability, including documented
sediment failures linked to liquefaction (Zhang et al., 2023) and
storm-wave-induced deformation (Wang et al., 2018). Geohazards
such as submarine landslides, for which susceptibility modeling
exists (Meng et al., 2024), present risks to subsea infrastructure.
Notably, seabed slides can exert significant lateral forces on buried
pipelines (Guo et al., 2023). Therefore, reliable monitoring of
pipeline integrity in this dynamic environment is essential but
challenging using traditional methods. Thus, accurate detection
of submarine pipelines is crucial. Traditional detection methods
primarily use side-scan sonar imaging, which, while producing
high-resolution seabed images, requires labor-intensive and error-
prone manual interpretation. This bottleneck limits the temporal
resolution of geomorphological change detection in dynamic
marine environments.This highlights the need for more automated,
efficient approaches.

In the field of earth sciences, Artificial Intelligence (AI) hasmade
breakthrough progress, covering aspects such as remote sensing
(Ji et al., 2020; Pouyan et al., 2021; Xu et al., 2022; Casagli et al.,
2023; Li et al., 2024; Kamal Basha and Nambiar, 2025; Yang et al.,
2025), prediction of geological disasters (Choubin et al., 2019;
Mousavi et al., 2020; Stanley et al., 2020; Jones et al., 2021; Ma
and Mei, 2021; Zennaro et al., 2021), exploration (Fuentes et al.,
2020; Fan et al., 2022; Jin et al., 2022; Liu et al., 2024), and energy
development (Kim and Ji, 2022; Li et al., 2022). Recent advances
in intelligent earth observation have demonstrated the potential of
deep learning in quantifying seabed sediment transport patterns
and mapping submarine anthropogenic footprints. However, the
applicability and effectiveness of these technologies in the specific
field of Pipeline or Cable (POC) detection have not been thoroughly
explored, particularly in the context of integrated coastal zone
management andmarine geological risk assessment within dynamic
settings like the Yellow River Delta. In particular, Convolutional
Neural Networks (CNN) have shown great potential in processing
underwater data, suggesting the possibility of using CNNs to
address complex POC detection tasks (Gašparović et al., 2022).
Although preliminary applications of CNNs in underwater data
processing have covered areas like fish identification and seabed
mapping (Jin et al., 2019; Huo et al., 2020; Ge et al., 2021),
these domains possess much lower data complexity compared to
POC detection. Notably, the discrimination of linear anthropogenic
features fromnatural geomorphic structures remains a key challenge
in marine geophysical image interpretation. With technological
advancements, researchers are beginning to apply CNNs to more
complex scenarios such as detection of sunken ships (Du et al.,
2023b), real-time processing of side-scan sonar data (Yan et al., 2020;
Li et al., 2023), and developing novel SSS image recognition models
like U-Net (Dong et al., 2022) and VIT (Sun et al., 2022). While
initial studies have attempted POC recognition by establishing

single models (Du et al., 2023a), comprehensive comparisons across
multiple models and exploration of model differences remain
insufficiently explored.

Despite these developments, comprehensivemodel comparisons
and explorations of model differences in POC detection remain
limited. Deep learning has shown promise in predicting side-
scan sonar images, but challenges in data acquisition and the
limitations of existing datasets are pressing issues. Research typically
focuses on algorithm comparison using single public datasets, while
demonstrating CNN potential in POC detection (Du et al., 2023a),
do not fully tackle fundamental dataset challenges. Acquiring
sufficient marine data is difficult, and the narrow applicability
of existing datasets restricts their utility across different regions.
Hence, investigating effective data expansion methods and model
performance under these conditions is vital for developing optimal
predictive models from limited data.

Our study builds on existing work by employing classic
CNN models, including AlexNet, GoogleNet, and VGG-16,
for seabed pipeline SSS image recognition within the Yellow
River Delta. We extend previous engineering-focused analyses
by incorporating geophysical interpretability metrics, evaluating
model performance against known sediment disturbance patterns.
We aim to evaluate the effectiveness of these CNN methods
by comparing predictive accuracy, accuracy variation post data
expansion, and computational efficiency. This research not only
advances AI application in marine engineering geology but
also establishes a benchmark for intelligent interpretation of
anthropogenic features in geophysical surveys. Through this
comprehensive model comparison, we aspire to contribute new
perspectives and methodologies to marine geoscientific monitoring
and infrastructure impact assessment.

2 Data and method

2.1 Data description

The study focuses on SSS datasets acquired from the Yellow
River Estuary, a typical high-sediment-load coastal environment
characterized by rapid bedform migration and complex
hydrodynamic conditions. The Yellow River Estuary is a sediment-
dominated delta with highly dynamic geomorphology, where
submarine pipelines are vulnerable to burial or exposure due to rapid
sediment transport. We used the Marine-PULSE dataset (Du et al.,
2023a) for model training. This dataset assembled using
sophisticated instruments like the EdgeTech4200FS, Benthos SIS-
1624, EdgeTech4200 MP, Klein-2000, and Klein-3000, provides
a comprehensive view of underwater engineering structures. It
introduces a classification system encompassing four distinct
categories of objects found in marine geology. The dataset was
enhanced with seabed surface imagery for a more comprehensive
scope. Named Marine-PULSE, it contains 323 images of pipelines
or cables (POCs), 134 of underwater residual mounds (URMs), 180
of the seabed surface (SS), and 82 of engineering platforms (EPs),
aptly capturing the variety of data that side-scan sonar technology
can uncover in marine environments.

Figure 1 presents a sample from the Marine-PULSE dataset,
exhibiting the varied morphologies detected in SSS images. The
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FIGURE 1
Samples from the Marine-PULSE dataset (Du et al., 2023a). Samples in rows (a–d) are pipelines or cables, underwater residual mounds, seabed surface,
and engineering platforms legs, respectively.

assortment stems from several elements such as the object’s inherent
characteristics, the sonar’s angle and distance to the object, the type
of instrument, its settings, and the prevailing marine conditions.

In SSS imagery, submarine pipelines or cables (POCs) typically
manifest as prominent linear patterns, though determining their
diameters can be intricate. Underwater residual mounds, which
are formations from sediment with greater strength than the
surrounding matrix, exhibit unique morphological structures due
to erosion. The seabed surface depicts variations from flat to
rugged terrains, adding to the morphological diversity observed
in SSS images. Engineering platforms, characterized by multiple
piles, disrupt acoustic signals, creating an absence of linear signals
in a band pattern, which adds to the morphological variety in
SSS images.

The principal objective of this investigation was the automated
detection of submarine pipelines or cables in SSS imagery. Hence,

we categorized the dataset into “POC” for images of pipelines or
cables, and “Non-POC,” which encompasses the remaining image
types from the collection.

2.2 Applied CNN models

In this study, we employ three types of Convolutional Neural
Networks (CNN) (Rumelhart et al., 1986) to model and recognize
SSS image types: AlexNet, Vgg-16, and GoogleNet. These classic
models were selected as well-established benchmarks representing
varied architectural complexities, providing a suitable basis for
foundational comparative analysis on SSS data. Investigation of
other architectures likeU-Net or ViT is considered beyond the scope
of this initial comparison and is left for futurework.Here, we provide
a brief introduction to the three CNN models.
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2.2.1 AlexNet
In 2012, Alex Krizhevsky introduced Krizhevsky. (2012), a

groundbreaking deep learning architecture that clinched the top
spot in that year’s ILSVRC challenge. This network boasted
a complexity unprecedented for its time, consisting of five
convolutional layers followed by three fully connected layers. It
processed input images resized to 227 × 227 pixels, learning to
classify them through its vast network comprising 630 million
connections, 60 million parameters, and 650,000 neurons. AlexNet
distinguished itself by being the first to apply the Rectified Linear
Unit (ReLU) activation function after convolutional and fully-
connected layers, incorporating Dropout regularization (typically
0.5 probability) before the first two fully connected layers to curb
overfitting, and utilizing CUDA to hasten training - collectively
enhancing its processing power and precision, thereby accelerating
deep learning development.

AlexNet’s revolutionary entry into deep learning was marked
by its intricacy and depth, which allowed it to process high-
resolution images effectively.The convolutional layers utilized filters
of varying sizes (11 × 11 in the first layer, 5 × 5 in the second,
and 3 × 3 in subsequent layers), followed by overlapping max-
pooling layers after the first, second, and fifth convolutional layers.
One of the notable features of AlexNet is its introduction of the
ReLU activation function, which helped it to solve the vanishing
gradient problem common in deep networks, leading to faster
convergence. The network also mitigated overfitting through the
use of Dropout, a technique that randomly deactivates neurons
during training to prevent complex co-adaptations on training data.
Additionally, the use of CUDA for accelerating training processes
allowed AlexNet to train much larger networks in a reasonable
time. However, its large number of parameters necessitated
significant computational resources, and the network’s size made it
prone to overfitting without the proper regularization techniques
like Dropout.

2.3 VGG

The VGG model, developed by the Visual Geometry Group
from Oxford, emerged during the ILSVRC in 2014 (Simonyan and
Zisserman, 2015). It underscored the network depth’s influence
on performance. Renowned for its depth, the model, particularly
the VGG-16 variant used in this study, became a benchmark in
CNN designs, featuring 13 convolutional layers complemented by
three fully connected layers. Despite its large number of parameters
(approximately 138 million) making it challenging to train, VGG’s
depth, achieved by consistently using small 3 × 3 convolutional
filters stacked multiple times (two or three layers deep) between
pooling operations, enhanced its computational prowess compared
to its predecessor AlexNet. Max-pooling layers (2 × 2 with stride 2)
followed blocks of convolutional layers.

VGG, known for its simplicity and depth, leverages a
homogeneous architecture that uses only 3 × 3 convolutional layers
throughout the network, which helps in reducing the complexity
of hyperparameter tuning. The model is particularly noted for
showing that depth is a crucial component for the successful
training of neural networks. VGG’s uniform structure also makes
it easy to understand and implement, which has contributed to

its widespread use in the computer vision community. However,
the model is quite heavy, with a significant number of parameters,
resulting in high memory usage and computational costs. Training
VGG from scratch requires extensive computational resources, and
it is also relatively slow in inference compared to more modern
architectures.

2.4 GoogleNet

Google’s Christian Szegedy introduced GoogleNet
(Szegedy et al., 2014), which incorporated the first inception
architecture. This innovation streamlined deep neural networks by
altering the traditional sequential CNN layout into a parallel internal
connection through the inception module, as depicted in Figure 2.
Data traverses four distinct pathways concurrently within each
module: branches with 1 × 1, 3 × 3, and 5 × 5 convolutional filters,
plus a 3 × 3 max-pooling branch. The outputs of these branches
are then concatenated depth-wise. The inception’s hallmark is its
dual benefit: multi-scale convolution captures diverse-scale features
enhancing classification accuracy, while strategic use of 1 × 1
convolutions before the 3 × 3 and 5 × 5 convolutions and after the
pooling layer serves as dimensionality reduction, cutting down on
computational load. With 22 layers (including pooling layers when
counting layers with parameters), GoogleNet surpasses AlexNet’s
and VGGNet’s depths but achieves superior accuracy with only
about 6.8 million parameters–significantly fewer than both AlexNet
and VGG-16.

GoogleNet, with its inception architecture, represents a shift
towards more efficient designs in network architectures. Its
inceptionmodules perform convolutions atmultiple scales, allowing
the network to capture complex features at various resolutions.
This multi-scale processing capability is one of its standout
features, providing significant improvements in accuracy. The 1 ×
1 convolutions used for dimensionality reduction not only preserve
important features but also reduce the computational burden,
making GoogleNet efficient and faster in terms of computation.
The network also reduces the number of parameters dramatically
compared to its predecessors, which helps prevent overfitting to
some extent.

2.5 Utilization of established CNN models

The overall process is illustrated in Figure 3, where we utilize
AlexNet, GoogleNet, and VGG-16 to construct recognition models
for SSS images of underwater pipelines, aimed at investigating
the accuracy of different models in identifying subsea pipelines.
The modeling process is broadly divided into several stages: data
preprocessing, data expansion, model establishment, and model
evaluation.

2.5.1 Data preprocessing
Data preprocessing primarily consists of two parts: dataset

partitioning and normalization. For the Marine-PULSE dataset,
which comprises 719 images, we randomly divided it into a training
set with 431 images, and validation and test sets, each containing 144
images, following a 60%:20%:20% split ratio.
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FIGURE 2
Structure of Inception module.

FIGURE 3
Flowchart of CNN model establishment.

Normalization was applied to equalize the pixel intensity levels
across the three channels of the SSS imagery, scaling the values
to fit within a [−1, 1] interval. This step ensures uniform data
distribution, which is crucial for consistent training performance,
as large variations could lead to less than optimal neural network
training results.

Following this initial data handling, the SSS images were
primed for the deep learning phase. The preparation set the stage
for in-depth learning and interpretation of the pipeline or cable
(POC) visuals contained in the data collection. Once labeled and
normalized, the images were ready to enter the convolutional neural
network (CNN) training process, laying the groundwork for the
detailed evaluation of subaquatic infrastructure.

2.5.2 Data expansion
Alongside the preprocessing measures previously described, we

expanded the original training dataset from 431 to 1500 images
through data expansion methods such as rotations, flips, and
contrast adjustments. Unlike traditional data expansion, where
transformations are applied randomly during training without
altering the dataset size, this approach involved saving the altered
images, thus physically enlarging the training set. This technique,
validated by prior research (Du et al., 2023a), has been shown to
enhance model accuracy.

In each training cycle, the images were systematically modified
using these data expansion strategies, introducing a broader
spectrum of variation and complexity to the dataset. These
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controlled modifications bolstered the dataset, aiding the neural
networks in acquiring more generalized and invariant feature
recognition capabilities. By incorporating altered perspectives and
varied orientations of the input data, the networks developed
resilience to overfitting and an improved ability to decipher complex
real-world scenarios.

This data expansion not only bolstered the volume and
heterogeneity of the training pool but also fortified the model’s
proficiency in navigating actual environmental fluctuations.
Consequently, these strategies were instrumental in refining the
model’s feature discernment, significantly elevating the precision
and dependability of the resultant model.

2.5.3 Model establishment
Upon dataset preparation, the training commenced using

established CNN architectures. This study utilized AlexNet, VGG-
16, and GoogleNet for model training. Additionally, we employed
transfer learning, leveraging pre-trained parameters from the
ImageNet dataset to refine our models. Both the original dataset
of 431 images and the augmented set of 1500 images were used
to train the AlexNet, GoogleNet, and VGG-16 models, assessing
the impact of dataset size on model performance. The models’
predictive accuracies were then verified using a separate validation
set containing 144 images.The overarching goal was to compare the
performance of the various CNN architectures, with a specific focus
on the influence of dataset size and model depth on the accuracy of
subsea pipeline detection.

2.5.4 Evaluation methods
To evaluate the effectiveness of the implemented CNN

models (AlexNet, GoogleNet, and VGG-16) in the autonomous
identification of underwater pipeline entities within SSS imagery,
four evaluative metrics were utilized: accuracy (Equation 1),
precision (Equation 2), recall (Equation 3), and the F1 score
(Equation 4). The overall accuracy represents the model’s
correctness by reflecting the ratio of accurately identified items.
Precision is the measure of the model’s exactness in classifying
positive instances, calculated by the fraction of true positives
among all positive predictions. Recall, on the other hand,
gauges the model’s efficiency in identifying all positive instances,
expressed as the proportion of true positives to the entire count
of actual positives. The F1 score synthesizes precision and recall
into a singular metric, offering a harmonious evaluation that
considers both elements. Together, these parameters furnish
a thorough appraisal of the model’s performance in detecting
underwater pipeline entities in SSS imagery. The computation
of these evaluative metrics is encapsulated in the subsequent
formulas (Table 1):

Accuracy = (TP+TN)/ (TP+TN+ FP+ FN) (1)

Precision = TP/(TP+ FP) (2)

Recall = TP/(TP+ FN) (3)

F1score = 2× (Precision×Recall)/ (Precision+Recall) (4)

Here, a true positive (TP) denotes a POC correctly identified
as such, while a true negative (TN) corresponds to a non-POC
accurately recognized. Conversely, a false positive (FP) indicates a
non-POC erroneously classified as POC, and a false negative (FN)
represents a POC incorrectly labeled as non-POC.

In addition to accuracy, the total training and prediction time
for each model on an identical dataset were tallied, along with the
number of model parameters, to provide a holistic evaluation of the
computational efficiency and resource expenditure across different
CNN architectures.

2.5.5 Experimental settings
This research is structured to meticulously evaluate the

performance of convolutional neural networks (CNNs) in the
context of subsea pipeline identification from SSS images. The
core aim is to discern the efficacy of CNN models under varying
training conditions and to understand the influence of data
volume and pre-training on model accuracy and computational
efficiency.

In the first set of experiments (Table 2), we embark on a
comparative analysis using the original training dataset comprising
413 images. The objective is to train the AlexNet, GoogleNet,
and VGG-16 models from scratch, utilizing their distinctive
architectural strengths to identify subsea pipelines. By comparing
the results, we aim to pinpoint which model most accurately
classifies the SSS images. This experiment will shed light on the
inherent capabilities of each CNN structure when dealing with
unamplified datasets.

The second experiment aims to measure the impact of data
expansion on model performance. By training the same CNN
models on an augmented dataset expanded to 1500 images, we
examine whether the increased data volume translates into higher
prediction accuracy. The experiment will compare each model’s
performance with the original and expanded datasets, providing
insight into the value of data expansion in deep learning for
underwater image analysis.

Lastly, the third experiment focuses on evaluating the
computational aspects of the CNN models. By analyzing
the training and prediction times of models trained on the
expanded dataset, we assess which architecture delivers not
just the highest accuracy but also operates with optimal
computational efficiency. This approach ensures that the models
are not only powerful in terms of performance but also
practical for real-world application where resources and time are
often limited.

2.5.6 Implementation
For the training process, we utilized the Adam optimizer with

an initial learning rate of 0.0001 and a batch size of 32 for
all three CNN models to ensure a consistent comparison basis.
The cutting-edge models were developed leveraging PyTorch, an
esteemed deep learning platform known for its comprehensive suite
of libraries and tools that facilitate the creation of neural networks.
These models were computed on a high-performance Dell 3660
workstation, which is equipped with an i9-12900k CPU, 128 GB of
RAM, and anRTX4090GPU, ensuring swift and efficient processing
capabilities.
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TABLE 1 Confusion matrix for binary classification of model POCs and non-POCs.

Predict label/True label Positive sample (POC) Negative sample (non-Poc)

Positive Sample (POC) TP FN

Negative Sample (non-POC) FP TNa

aReferencing Table 1, a confusion matrix aids in binary classification, designating POC as positive samples and non-POC as negative ones.

TABLE 2 Experimental design overview.

NO. Train Models Validationa Test

1 Original train dataset (413) AlexNet Validation dataset (144) Test dataset (144)

2 Original train dataset (413) GoogleNet Validation dataset (144) Test dataset (144)

3 Original train dataset (413) Vgg-16 Validation dataset (144) Test dataset (144)

4 Expanded train dataset (1500) AlexNet Validation dataset (144) Test dataset (144)

5 Expanded train dataset (1500) GoogleNet Validation dataset (144) Test dataset (144)

6 Expanded train dataset (1500) Vgg-16 Validation dataset (144) Test dataset (144)

aThe number in parentheses indicates the number of images within the specified dataset (Validation dataset or Test dataset).

3 Results and discussions

3.1 Accuracy comparison of different
models

In our comprehensive comparison of CNN models-AlexNet,
GoogleNet, and VGG-16-we analyzed their performance over 100
epochs using train and validation datasets. GoogleNet emerged
as the superior model in several key aspects. As illustrated in
Figure 4a, GoogleNet’s accuracy on the training set rapidly ascended
from approximately 3.5%, and on the validation set, it dramatically
increased from near 0% to over 86%. This showcases its remarkable
learning efficiency and generalization capabilities. In contrast,
AlexNet exhibited a steady yet slower increase in accuracy for both
training and validation datasets, plateauing around 75% on the
validation set-significantly lower than GoogleNet’s 86%. VGG-16,
starting with an initial training set accuracy of around 50%, showed
a gradual increase to about 85%. However, its oscillating accuracy
on the validation set suggested a potential overfitting issue. The loss
trends across epochs for each model, depicted in Figure 4b, reveal
that GoogleNet experienced a swift decline in loss for both training
and validation sets, with a notably lower loss on the validation set,
underscoring its superior generalization. In comparison, AlexNet’s
training loss decreased steadily but at a slower rate than GoogleNet.
VGG-16’s loss trajectory was more erratic and decreased at a slower
pace compared to the other models.

Further analysis of the models’ predictive performance on the
test set, as detailed in Figure 5 and Table 3, reaffirmed GoogleNet’s
dominance. GoogleNet achieved an impressive accuracy of
88.19%, significantly outperforming AlexNet’s 81.25% and VGG-
16’s 79.17%. In terms of precision, GoogleNet led with 85.07%,
exceeding AlexNet’s 76.81% and VGG-16’s 72.97%. This suggests

that GoogleNet had a higher proportion of true positive predictions.
Regarding recall, GoogleNet attained 89.06%, surpassing AlexNet’s
82.81% and VGG-16’s 84.35%, indicating its higher efficiency in
identifying true positives among all positive samples. The F1 score,
a metric combining precision and recall, saw GoogleNet scoring
87.02%, eclipsing AlexNet’s 79.7% and VGG-16’s 78.26%.

These results conclusively demonstrate that GoogleNet excels
in accurately categorizing samples (accuracy), minimizing false
positives (precision), effectively identifying true positives (recall),
and achieving a balance between precision and recall (F1 score).
Conversely, although AlexNet displayed a commendable recall
rate, it lagged behind GoogleNet in other metrics. VGG-16,
comparable to AlexNet in recall, fell short in both accuracy
and precision. Therefore, in overall performance, GoogleNet
exhibits strong potential and practical applicability for SSS image
classification tasks.

3.2 Impact of data expansion on model
performance

To quantitatively assess the impact of data expansion, we
compared the performance of AlexNet, GoogleNet, and VGG-16
trained on the original dataset (431 images) versus the expanded
dataset (1500 images). The expanded dataset was generated using
techniques such as image flipping, rotation, and contrast adjustment.
Performance metrics, including accuracy, precision, recall, and F1
score, were evaluated on the independent test set (144 images) for
models trained with andwithout data expansion. Given the inherent
challenges of sonar images, such as high noise levels and occasionally
blurred target boundaries, data expansion aims to enhance the
models’ ability to discern complex features.
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FIGURE 4
Comparison of prediction accuracies of AlexNet, GoogleNet, and VGG-16. (a) is the accuracy of train and validation dataset for the AlexNet, GoogleNet,
and VGG-16 models with respect to the number of epochs; (b) is the loss of train and validation dataset for the three CNN models across epochs.

FIGURE 5
Test dataset prediction results illustration. (a–c) are confusion matrices for AlexNet, GoogleNet, and VGG-16. (d-f) are bar charts depicting the
statistical distribution of prediction results. In these charts, TP = True Positive, TN = True Negative, FP = False Positive, and FN = False Negative.

Figure 6 illustrates the positive impact of data expansion on the
training, validation, and test accuracies of AlexNet, GoogleNet, and
VGG-16. With the expanded dataset, the AlexNet model showed
an increase of 1.45% in training accuracy, 3.88% in validation
accuracy, and 5.13% in test accuracy. GoogleNet experienced

smaller yet notable improvements of 0.23%, 2.21%, and 3.95%
in these respective metrics. VGG-16 demonstrated the most
substantial gains in training (12.53%) and validation accuracies
(6.61%), but interestingly, a 3.51% decrease in test accuracy
was observed.
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TABLE 3 Statistical analysis of test dataset predictions by different CNNmodels.

Model/Metric Accuracy (%) Precision (%) Recall (%) F1 score (%)

AlexNet 81.25 76.81 82.81 79.7

GoogleNet 88.19 85.07 89.06 87.02

Vgg-16 79.17 72.97 84.35 78.26

FIGURE 6
The effect of data expand method on the prediction accuracy of different CNN models on train dataset. (a) AlexNet; (b) GoogleNet; (c) Vgg-16.

TABLE 4 Impact of data expansion on model performance (test set metrics).

CNN models Train
accuracy
differencea

(%)

Validate
accuracy

difference (%)

Test accuracy
difference (%)

Train
incrementb

(%)

Validate
increment (%)

Test
increment (%)

AlexNet 1.42 3.47 4.17 1.45 3.88 5.13

GoogleNet 0.23 2.08 3.48 0.23 2.21 3.95

Vgg-16 11.14 5.56 −2.78 12.53 6.61 −3.51

aTraining accuracy difference is the difference between the best accuracy before and after data expand method.
bTraining increment is the ratio of training accuracy difference to the training accuracy of the original CNN, model.

The unique characteristics of SSS images significantly
influenced the enhanced performance of these models. The diverse
disturbances and artifacts present in these images necessitate
robust feature representation learning by the models, thereby
improving their predictive capabilities in various real-world
scenarios. According to Table 4, both AlexNet and GoogleNet
exhibited increases in accuracy, particularly on the test dataset,
post data expansion, indicating improved adaptability to new data.
However, the decline in test accuracy for VGG-16 raises concerns,
suggesting that data expansion might need to be complemented
with other strategies to prevent overfitting.

In summary, while data expansion effectively increased accuracy
for AlexNet and GoogleNet in identifying seabed pipeline SSS
images, it resulted in decreased performance for VGG-16 due to
overfitting issues. This underscores that while data expansion can
positively impact the generalization abilities of deep learning models,

its effectiveness is contingent upon specific model architectures and
dataset characteristics. Beside, evaluating only one level of data
expansion (from 431 to 1500 images) provides initial insights but
may not fully capture the complex relationship between dataset size
and model performance for this specific task, particularly given the
varied responses observed across different architectures.

3.3 Calculation efficiency and difficulty

Computational efficiency and complexity are pivotal in
determining the practical utility of deep learning models,
encompassing aspects like computation time, number of layers,
parameters, and floating-point operations (FLOPs). We assessed
these elements for AlexNet, GoogleNet, and VGG-16, using the
seabed pipeline side-scan sonar (SSS) image dataset.
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TABLE 5 Comparison of the calculation efficiency of different CNNmodels.

CNN models Layers Number of parameters (M) FLOPsa (M) Test dataset
Accuracy (%)

Calculation time (s)

AlexNet 11 60 727 85.42 872

GoogleNet 87 6.8 2000 91.67 1071

VGG-16 16 138 16,000 76.39 2564

aFLOPs (Floating point Operations) represent a number of floating point calculations, reflecting the difficulty of the calculation.

Our analysis focused on key metrics of computational
difficulty (Table 5): layer count, parameter number, and FLOPs.
AlexNet, with 11 layers and 60 million parameters, requires 727
million FLOPs and achieved 85.42% accuracy on the test dataset
within 872 s. GoogleNet, comprising 87 layers, is more efficient
in terms of parameter count (6.8 million) and FLOPs (2 billion),
achieving 91.67% accuracy in 1071 s. VGG-16, with 16 layers and
the highest parameter count (138 million), demands a significant 16
billion FLOPs and reached only 76.39% accuracy in 2564 s.

GoogleNet’s Inception architecture, despite its higher layer
count, effectively reduces the number of parameters and enhances
information processing complexity. This design not only minimizes
memory and computational resource demands but also reduces
training time, making GoogleNet an efficient performer in
processing complex seabed pipeline SSS image datasets. Although
GoogleNet’s computation time slightly exceeds AlexNet’s, its
substantial accuracy improvement justifies this trade-off in practical
applications. VGG-16, while theoretically capturing more detailed
features, is constrained by its high parameter and FLOP demands,
leading to prolonged computation times and limited practicality in
resource-constrained scenarios.

In summary, GoogleNet’s structural optimization and
computational efficiency make it the preferred model for
seabed pipeline SSS image dataset processing. It exemplifies
balancing a high number of layers with controlled parameters
and computational resource use, offering insights for designing
deep learning models. Task-specific requirements and resource
availability should guide model selection, aiming for an optimal
balance between performance and efficiency.

4 Outlook

In this study, we employed three classic CNN models-AlexNet,
GoogleNet, and VGG-16-for seabed pipeline image recognition
using side-scan sonar, enhanced by data expansion techniques.
This approach provided accurate model recognition in complex
marine environments. We utilized a multi-model analysis approach,
focusing on GoogleNet, to deepen our understanding of submarine
pipeline identification challenges (Du et al., 2023a).Themethodology
demonstrates particular promise for monitoring sediment-pipeline
interaction processes critical to coastal geohazard assessment,
including scour development and pipeline free-span evolution.

However, our research, while leveraging established CNN
architectures, has not fully exploited the unique attributes of side-
scan sonar images, such as the characteristic acoustic shadows,

linear target geometries, and influence of seabed texture. Future
endeavors should aim to develop specialized network structures
tailored to SSS image characteristics. For instance, incorporating
attention mechanisms specifically designed to enhance linear
feature detection or developing custom convolutional kernels
that are sensitive to typical SSS textural patterns and acoustic
scattering effects could improve recognition accuracy. Furthermore,
integrating geophysical domain knowledge more directly, perhaps
by designing multi-modal architectures that fuse SSS imagery
with bathymetric data or sediment classifications, could lead to
more robust “geology-aware” models. This could be particularly
valuable for distinguishing pipelines from similar-looking natural
features (e.g., bedrock outcrops, sand ridges) and for quantitatively
analyzing sediment-pipeline interactions, thereby improving
predictive capabilities for geohazard assessment in dynamic
deltaic systems and potentially reducing computational resource
consumption.

This work not only progresses marine engineering geology
but also significantly advances deep learning model development
and optimization for complex image recognition tasks in
challenging environments like the ocean floor. The established
framework provides a novel pathway for integrating anthropogenic
infrastructure monitoring with coastal zone geological surveys,
particularly in assessing human-induced modifications to
submarine geomorphology.

5 Conclusion

This study establishes a deep learning framework for submarine
pipeline recognition in side-scan sonar (SSS) images, with critical
implications for coastal geological monitoring and infrastructure
risk assessment. Our comparative analysis of AlexNet, GoogleNet,
and VGG-16 models under varying training regimes yields four
principal findings:

(1) All three CNN models demonstrated the ability to accurately
predict SSS seabed pipeline images, with GoogleNet showing
the most outstanding performance in terms of accuracy
and learning efficiency. This highlights CNN’s capability
in resolving pipeline signatures within complex submarine
geological settings characterized by sediment interference and
bedform variations.

(2) Data expansion techniques significantly improved the
predictive accuracy of the models, though the extent of
improvement varied across different models. AlexNet and
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GoogleNet showed enhanced performance, while the accuracy
of VGG-16 decreased. This emphasizes the importance
of considering model-specific characteristics and data
compatibility when applying data expansion.

(3) GoogleNet is the optimal choice, offering a well-balanced
mix of high accuracy and computational efficiency. AlexNet,
while less accuracy, is suitable for achieving acceptable
accuracy with minimal computational demands. Conversely,
VGG-16’s performance in SSS image recognition is
suboptimal, leading us to recommend against its use for this
specific task.

(4) While GoogleNet holds an advantage in overall performance,
the performance of each model may vary in specific marine
environments. Future work should explore customized model
adjustments tailored to specific seabed characteristics or
introduce more marine-environment-related transformations
in data expansion strategies, to simulate the variable
conditions that might be encountered in real-world
applications.
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