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Fourier coefficients-based
stepwise Bayesian inversion for
elastic and fracture parameters
using azimuthal seismic data
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1Department of Geophysics, Research Institute of Petroleum Exploration and Development,
PetroChina, Beijing, China, 2Department of Geophysics, School of Geoscience and Info-Physics,
Central South University, Changsha, China

The inversion of elastic and fracture parameters from azimuthal seismic data
plays a critical role in charactering naturally fractured reservoirs. We propose
a Fourier coefficients-based stepwise Bayesian inversion method to estimate
these reservoir parameters with improved accuracy. Utilizing the relationship
between the azimuthal PP-wave reflection coefficient and Fourier series
expansion, we first derive the Fourier coefficient equation for horizontally
transverse isotropic (HTI) media. We then conduct a sensitivity analysis of
azimuthal Fourier coefficients with respect to P- and S-wave velocities, density,
and fracture weaknesses. The results indicate that the zeroth-order Fourier
coefficient exhibits greater sensitivity to P- and S-wave velocities and density
compared to normal and tangential fracture weaknesses, whereas the second-
order Fourier coefficient is more responsive to fracture weaknesses than the
fourth-order Fourier coefficient. Based on these sensitivity observations, we
develop a stepwise Bayesian inversion approach that involves (1) computing
the cosine and sine components of the Fourier coefficients for the azimuthal
seismic data, (2) estimating normal and tangential fracture weaknesses using
use the second-order Fourier coefficient within a Bayesian framework, and
(3) recovering background P- and S-wave velocities and density using the
zeroth-order Fourier coefficient along with the previously estimated fracture
weaknesses. Both synthetic and field data applications confirm the robustness
and effectiveness of the proposed Fourier coefficients-based stepwise Bayesian
inversion method for estimating elastic and fracture parameters in naturally
fractured reservoirs.

KEYWORDS

naturally fractured reservoirs, Fourier coefficient, stepwise Bayesian inversion, fracture
weaknesses, azimuthal seismic data

Introduction

Natural fractures, prevalent geological features within subsurface rock formations,
play a crucial role in controlling reservoir permeability and influencing fluid
migration pathways during hydrocarbon production (Sayers and Dean, 2001;
den Boer and Sayers, 2018; Pan et al., 2021; Pan and Liu, 2024; Cao et al., 2025).
In this context, amplitude variation with offset and azimuth (AVOAz) inversion
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has emerged as a key technique for quantitatively predicting fracture
parameters due to its superior vertical resolution. AVOAz inversion
establishes a mapping relationship between seismic data acquired at
varying azimuths and the anisotropic medium’s response, enabling
the extraction of essential fracture parameters such as fracture
density, normal weakness, and tangential weakness—critical
for effective reservoir characterization (Mallick et al., 1988;
Bachrach et al., 2009; Pan et al., 2020; Ma et al., 2022; Liu et al.,
2023; Xie et al., 2024; Li et al., 2025).

Fracture development induces seismic anisotropy, which
significantly alters wave propagation characteristics (Schoenberg,
1980;Hudson, 1981; Pan et al., 2017). Traditional isotropic reflection
coefficient equations fail to accurately model wavefield response
in anisotropic media, prompting the development of various
anisotropic AVOAz inversion frameworks. Pšenčik and Martins
(2001) formulated a linearized AVOAz relationship for complex
anisotropicmedia, though its inherent nonlinearity poses challenges
in practical applications. Shaw and Sen (2006) introduced a joint
AVOAz inversion approach, simultaneously estimating fracture
weakness parameters and fluid indicators, offering new insights into
multiparameter coupled inversion. Bachrach (2015) addressed the
uncertainties and non-uniqueness issues in orthorhombic AVOAz
inversion, laying the foundation for subsequent regularization
techniques. Narhari et al. (2015) successfully predicted fracture
density in deep carbonate reservoirs using pre-stack orthorhombic
anisotropic AVOAz inversion. Pan et al. (2018) proposed a Bayesian
AVOAz inversion framework incorporating prior constraints,
significantly improving the estimation accuracy of fracture
weakness. Luo et al. (2019) demonstrated the applicability of
orthorhombic anisotropic parameter inversion in the Longmaxi
Formation shale reservoir, though the process remains unstable
due to the high number of parameters involved Isotropic elastic
parameters contribute more significantly to reflection coefficients
than fracture weakness parameters, and strong nonlinear
interactions between anisotropic and elastic parameters lead to
substantial parameter coupling effects, complicating the inversion
process (Downton and Gray, 2006; Bachrach, 2015; Li et al., 2020;
Zhang et al., 2020).

To address these challenges, recent research has focused
on differential seismic feature extraction. Downton and Russell
(2011) introduced an azimuthal P-wave reflection coefficient
reconstruction method based on Fourier decomposition, enabling
fracture orientation identification by isolating anisotropic
gradient features. Downton and Roure (2015) interpreting
the azimuthal Fourier coefficients for anisotropic and fracture
parameters in HTI and orthorhombic anisotropic media. Barone
and Sen (2018) applied a Fourier-based azimuthal amplitude
variation model to the joint inversion of fracture density and
orientation in the Haynesville shale reservoir. Building on these
advancements, this study integrates the Fourier-form P-wave
reflection coefficient equation proposed by Downton and Russell
(2011) with the HTI medium P-wave reflection coefficient equation
developed by Pan et al. (2018). This integration leads to a fracture
weakness inversion method based on reflection amplitude Fourier
coefficients, improving the accuracy and robustness of parameter
estimation by separately inverting isotropic and fracture weakness
parameters.

Our findings demonstrate that combining Fourier
decomposition with AVOAz inversion enables high-resolution
estimation of normal and tangential fracture weaknesses—key
parameters for reservoir characterization and resource
management. The proposed method enhances understanding
of fracture behavior in subsurface formations and provides a
practical tool for optimizing exploration and production strategies
in fractured reservoirs. Validation with synthetic and field data
confirms the method’s effectiveness and feasibility, paving the way
for broader applications across diverse geological settings.

Theory and method

Azimuthal Fourier coefficients
characterized by fracture weaknesses in
HTI media

For a single set of vertical, parallel fractures embedded in
an isotropic background rock, the fractured medium exhibits
horizontally transverse isotropic (HTI) symmetry, with the
horizontal axis of symmetry perpendicular to the fracture
orientation (Bakulin et al., 2000). The linear-slip model
(Schoenberg and Sayers, 1995) is commonly used to describe
the fracture-induced anisotropy, where the fracture properties are
characterized by the dimensionless normal and tangential fracture
weaknesses:

δN =
(λ+ 2μ)KN

1+ (λ+ 2μ)KN
(1)

δT =
μKT

1+ μKT
(2)

where λ and μ are the first and second Lamé constants of the
isotropic background rock, KN and KT denote the normal and
tangential compliances induced by the fractures, while δN and
δT denote the normal and tangential fracture weaknesses. These
fracture weaknesses range between 0 and 1, reflecting the impact
of fractures on seismic wave propagation (Schoenberg and Douma,
1988). According to Hudson’s aligned penny-shaped crack model
(Hudson, 1981), the normal and tangential fracture weaknesses can
be further expressed as:

δN =
4ρ f

3g(1− g) + 3α(K′ + 4/3μ′)/(πμ)
(3)

δT =
16ρ f

3(3− 2g) + 12αμ′/(πμ)
(4)

where g = V2
P/V

2
S represents the ratio of the square of S-to-P wave

velocity for the host rocks, α = b/a≪ 1 represents the aspect ratio
of fractures, in which a and b are the semimajor and semiminor
axis of the penny-shaped cracks with the form of oblate spheroid,
respectively, and ρ f = ν⟨a

3⟩ represents the fracture density, in which
ν and ⟨·⟩ are the number of fractures per unit volume and the volume
averaging, respectively (Hudson, 1980).

Characterized by the fracture weaknesses, the PP-
wave reflection coefficient in an HTI medium can be
expressed as (Pan et al., 2018):
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FIGURE 1
Sensitivity analysis of zeroth-order Fourier coefficients, where (a) only
changes RVP

, (b) only changes RVS
, (c) only changes Rρ, (d) only

changes RδN and (e) only changes RδT.

FIGURE 2
Sensitivity analysis of second-order Fourier coefficients, where (a) only
changes RδN and (b) only changes RδT.

FIGURE 3
Sensitivity analysis of fourth-order Fourier coefficients, where (a) only
changes RδN and (b) only changes RδT.

RHTI
PP (θ,φ) = aVP

(θ)RVP
+ aVS
(θ)RVS
+ aρ(θ)Rρ + aδN(θ,φ)RδN + aδT(θ,φ)RδT

(5)

where
aVP
(θ) = sec2 θ (6)

aVS
(θ) = −8g sin2 θ (7)

aρ(θ) = 1− 4g sin2 θ (8)

aδN(θ,φ) = −
1
2
sec2 θ[1− 2g(sin2 θ sin2φ+ cos2 θ)]2 (9)

aδT(θ,φ) = 2g sin
2 θcos2φ(1− tan2 θ sin2φ) (10)

and RVP
= ΔVP/2VP, RVS

= ΔVS/2VS, Rρ = Δρ/2ρ, RδN =
(δN2 − δN1)/2, and RδT = (δT2 − δT1)/2. Here θ and φ = φobs −φ f
denote the angle of incidence and the azimuth angle between the
observed azimuth φobs and the azimuth of fracture symmetry axis
φ f , respectively; RδN and RδT represents the differences of normal
and tangential fracture weaknesses between the upper and lower
layers, respectively.

Downton and Russell (2011) formulated the azimuthal PP-wave
reflection coefficient in terms of a Fourier series expansion so
Equation 5 can be rewritten as

RHTI
PP (θ,φ) = R0(θ) +

∞

∑
ξ=1

Rξ(θ)cos(ξ(φ−φξ(θ))) (11)

where Rξ(θ) represents Fourier coefficients varying with the angle
of incidence, including the magnitude Rξ(θ) and the phase φξ(θ).
Therefore, the azimuthal reflectivity at a specified incidence angle θ
can be expressed as a linear superposition of sinusoidal components,
and Each nth order component is characterized by three defining
parameters: amplitude modulation governed by coefficient Rξ,
spatial periodicity scaled by integer index ξ, and phase retardation
controlled by term φξ. Only the n = 0, 2, and 4 magnitude weighting
terms are nonzero (Downton andRoure, 2015), and Equation 11 can
be thus simplified to

RHTI
PP (θ,φ) = R0(θ) +R2(θ)cos(2(φ−φ2(θ))) +R4(θ)cos(4(φ−φ4(θ)))

(12)
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FIGURE 4
Synthetic seismic record without noise, where (a) azimuth angle is 10°, (b) azimuth angle is 50°, (c) azimuth angle is 90°, (d) azimuth angle is 130°, and
(e) azimuth angle is 170°.

FIGURE 5
Synthetic seismic record with SNR of 10, where (a) azimuth angle is 10°, (b) azimuth angle is 50°, (c) azimuth angle is 90°, (d) azimuth angle is 130°, and
(e) azimuth angle is 170°.

FIGURE 6
Synthetic seismic record with SNR of 5, where (a) azimuth angle is 10°, (b) azimuth angle is 50°, (c) azimuth angle is 90°, (d) azimuth angle is 130°, and
(e) azimuth angle is 170°.

with magnitudes

R0(θ) = aVP
(θ)RVP
+ aVS
(θ)RVS
+ aρ(θ)Rρ + aδN0(θ)RδN + aδT0(θ)RδT

(13)

R2(θ) = aδN2(θ)RδN + aδT2(θ)RδT (14)

R4(θ) = aδN4(θ)RδN + aδT4(θ)RδT (15)

where

aδN0(θ) = −
1
2
sec2 θ+ 2g[1− g+ 1

2
sin2 θ+(1

2
− 3
8
g) sin2 θ tan2 θ]

(16)

aδT0(θ) = g sin
2 θ(1− 1

4
tan2 θ) (17)

aδN2(θ) = g sin
2 θ[2g− 1+ (g− 1) tan2 θ] (18)
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FIGURE 7
Inversion results without noise, where (a) shows the inverted P- and
S-wave velocities and density, (b) shows the inverted normal and
tangential fracture weaknesses.

aδT2(θ) = g sin
2 θ (19)

aδN4(θ) = −
1
4
g2 sin2 θ tan2 θ (20)

aδT4(θ) =
1
4
g sin2 θ tan2 θ (21)

To calculate the Fourier coefficients in Equation 12, the form
of a Fourier series can be written as the sum of trigonometric
functions, i.e.,

RHTI
PP (θ,φ) =

∞

∑
ξ=0
[αξ(θ)cos ξφ+ βξ(θ) sin ξφ]

= α0(θ) + α2(θ)cos 2φ+ β2(θ) sin 2φ

+α4(θ)cos 4φ+ β4(θ) sin 4φ

(22)

with coefficients
α0(θ) = aVP

(θ)RVP
+ aVS
(θ)RVS
+ aρ(θ)Rρ + aδN0(θ)RδN + aδT0(θ)RδT

(23)

α2(θ) = aδN2(θ)cos 2φ fRδN + aδT2(θ)cos 2φ fRδT (24)

FIGURE 8
Inversion results with SNR of 10, where (a) shows the inverted P- and
S-wave velocities and density, (b) shows the inverted normal and
tangential fracture weaknesses.

β2(θ) = aδN2(θ) sin 2φ fRδN + aδT2(θ) sin 2φ fRδT (25)

α4(θ) = aδN4(θ)cos 4φ fRδN + aδT4(θ)cos 4φ fRδT (26)

β4(θ) = aδN4(θ) sin 4φ fRδN + aδT4(θ) sin 4φ fRδT (27)

and the coefficients αξ(θ) and βξ(θ) in front of the cosine
and sine functions with K-samples azimuthal seismic data are
defined as follows:

αξ(θ) =
1
π

K

∑
k=1

Rk(θ,φ)cos ξφdφ (28)

βξ(θ) =
1
π

K

∑
k=1

Rξ(θ,φ) sin ξφdφ (29)

The above parameters can be transformed to magnitude
and phase as

Rξ(θ) = √α2ξ(θ) + β
2
ξ(θ) (30)
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FIGURE 9
Inversion results with SNR of 5, where (a) shows the inverted P- and
S-wave velocities and density, (b) shows the inverted normal and
tangential fracture weaknesses.

φξ(θ) =
1
ξ
arctan(

βξ(θ)
αξ(θ)
) (31)

We then analyze the sensitivity of azimuthal Fourier coefficients
to variations in P- and S-wave velocities, density, and fracture
weaknesses. Figure 1 illustrates the effect of P- and S-wave
velocities, density, and fracture weaknesses on the zeroth-order
Fourier coefficient, while Figures 2, 3 depict the effects of normal
and tangential fracture weaknesses on the second- and fourth-
order Fourier coefficients, respectively. The sensitivity analysis is
conducted by varying five key parameters RVP

, RVS
, Rρ, RδN , and

RδT within the range of −0.3 to 0.3 in increments of 0.1. Results
demonstrate that the zeroth-order Fourier coefficient exhibits higher
sensitivity to P- and S-wave velocities and density than to normal
and tangential fracture weaknesses. Conversely, the second-order
Fourier coefficient demonstrates greater sensitivity to fracture
weaknesses compared to the fourth-order coefficient.These findings

suggest that the zeroth-order Fourier coefficient is primarily useful
for estimating P-wave and S-wave velocities and density, while
both the second- and fourth-order Fourier coefficients provide
valuable information for characterizing normal and tangential
fracture weaknesses. Of course, the second-order Fourier coefficient
is more effective than the fourth-order coefficient for inverting
fracture weaknesses.

Stepwise Bayesian inversion for elastic and
fracture parameters using azimuthal
seismic data

From the sensitivity analysis of azimuthal Fourier coefficients,
we propose a stepwise Bayesian inversion for elastic and fracture
parameters using the azimuthal seismic data.

Firstly, we calculate the cosine and sine components of
the Fourier coefficients for the azimuthal seismic data. The
azimuthal seismic data vector d(θ,φ) can be obtained via the
convolutionmodel (Pan andZhang, 2019) and the estimated seismic
wavelets as

d(θ,φ) = RHTI
PP (θ,φ) ·W(θ,φ) (32)

whereW(θ,φ) represents the azimuthal seismic wavelet matrix. For
seismic data with five azimuths and three angles of incidence, the
cosine and sine components of the Fourier coefficients of each order
including the influence of the wavelet can be obtained according to
the discrete Fourier transform:

Aξ(θ) =
1
π

5

∑
k=1

dk(θ,φ)cos ξφdφ,ξ = 0,2,4 (33)

Bξ(θ) =
1
π

5

∑
k=1

dk(θ,φ) sin ξφdφ,ξ = 0,2,4 (34)

where Aξ(θ) and Bξ(θ) represent the cosine and sine components
of the Fourier coefficients for the kth-azimuth seismic
data dk(θ,φ).

Next, we use the second-order Fourier coefficient to estimate
the normal and tangential fracture weaknesses in a Bayesian
framework.

Due to the sensitivity of second-order Fourier coefficient to the
fracture weaknesses characterized by Equation 14, the coefficients
αξ(θ) and βξ(θ) in front of the cosine and sine functions are also
sensitive to the fracture weaknesses expressed by Equations 24 and
25. Incorporating Equations 33 and 34, the forwardmodeling can be
expressed in the matrix form as

d1 = G1m1 (35)

where
d1 = [A2(θ1) B2(θ1) L A2(θ3) B2(θ3)]

T (36)

G1 =
[[[[

[

W(θ1)aδN2(θ1)cos 2φ f W(θ1)aδN2(θ1) sin 2φ f L W(θ3)aδN2(θ3)cos 2φ f
W(θ3)aδN2(θ3) sin 2φ f
W(θ1)aδT2(θ1)cos 2φ f W(θ1)aδT2(θ1) sin 2φ f L W(θ3)aδT2(θ3)cos 2φ f
W(θ3)aδT2(θ3) sin 2φ f

]]]]

]

T

(37)

m1 = [RδN RδT]
T (38)
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TABLE 1 Correlation coefficients of inversion results under different noise conditions.

Correlation coefficients VP VS ρ δN δT

Noise free 97.56% 98.27% 95.11% 97.85% 97.93%

SNR = 10 97.47% 98.13% 83.64% 84.88% 85.17%

SNR = 5 97.13% 96.86% 81.12% 73.71% 74.16%

FIGURE 10
Error analysis for inversion results of normal and tangential fracture
weaknesses in different SNRs.

and
A2(θj) = [A2(θj, t1) L A2(θj, tM)]

T, j = 1,2,3 (39)

B2(θj) = [B2(θj, t1) L B2(θj, tM)]
T, j = 1,2,3 (40)

aδN2(θj) = diag[aδN2(θj, t1) L aδN2(θj, tM)] (41)

aδT2(θj) = diag[aδT2(θj, t1) L aδT2(θj, tM)] (42)

RδN = [RδN(t1) L RδN(tM)]
T (43)

RδT = [RδT(t1) L RδT(tM)]
T (44)

in which M represents the number of samples for the
azimuthal seismic data, and the symbol T represents the
transposition of matrix.

We use the Bayesian theory to estimate the normal and
tangential fracture weaknesses, in which the posterior probability
distribution function (PDF) of the fractureweaknesses p(m1|d1 ) can
be written as a joint PDF of the prior PDF p(m1) and the likelihood
function p(d1|m1 ):

p(m1|d1 ) ∝ p(m1) · p(d1|m1 ) (45)

where p(·) represents the PDF. Following Pan et al. (2018),
the Cauchy PDF can be used as the prior PDF (Alemie
and Sacchi, 2011), and the Gaussian PDF used as the
likelihood function, thus the posterior PDF can be also
expressed as

p(m1|d1 ) ∝
2M

∏
i=1
( 1
1+m2

1/σ
2
m1

) · exp(−
‖G1m1 − d1‖2

2σ2d1
) (46)

where σ2d1 and σ
2
m1

represent the variances of seismic data andmodel
parameters, respectively, and the symbol ‖·‖2 represents the square
of the 2-norm.

Combining the smoothing-model regularization (Pan and
Zhang, 2018), the maximum posterior solution can be derived by
maximizing the posterior PDF as

J(m1) = ‖G1m1 − d1‖2 + 2σ2d1

2M

∑
i=1

ln(1+m2
1/σ

2
m1
) +

2

∑
i=1

τi‖χi −Pim1i‖
2

(47)

where τi represents the regularization coefficients of normal

and tangential fracture weaknesses, Pi =
ti
∫
t1

·dt represents

the integral operator, and χi =
1
2
ln( m1i

m1i0
), in which

m1i0 represents the initial smoothing model of fracture
weaknesses.

Minimizing the objective function of Equation 47 yields
ψ = Γm1, (48)

where

Γ = GT
1G1 +

2σ2d1
σ2m1

CCauchy +
2

∑
i=1

τiPT
i Pi (49)

ψ = GT
1d1 +

2

∑
i=1

τiPT
i χi (50)

where CCauchy represents the Cauchy sparse matrix (Sacchi and
Ulrych, 1995).

We solve Equation 48 by using the iteratively re-weighted least-
square (IRLS) algorithm (Sacchi and Ulrych, 1995; Pan et al.,
2018) obtain the normal and tangential fracture weaknesses
via the second-order Fourier coefficient. We then integrate the
reflectivities of normal and tangential fracture weaknesses to
recover the fracture parameters based on the smoothing-model data
as follows:

δN(ti) = δN(t1) +
ti−1
∑
t1

RδN(τ) (51)

δT(ti) = δT(t1) +
ti−1
∑
t1

RδT(τ) (52)
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FIGURE 11
(Continued).

We finally estimate the background P- and S-wave
velocities and density using the zeroth-order Fourier coefficient
and the estimated fracture weaknesses in a Bayesian
framework.

Due to the sensitivity of zeroth-order Fourier coefficient to the P-
and S-wave velocities and density characterized by Equations 13 and
23, we use Equation 23 to express the forwardmodeling in thematrix
form as
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FIGURE 11
(Continued). Seismic records for different azimuth angles, where (a) shows the azimuth angle of 10°, (b) shows the azimuth angle of 50°, (c) shows the
azimuth angle of 90°, (d) shows the azimuth angle of 130°, and (e) shows the azimuth angle of 170° (the black curve represents the P-wave velocity log).

d2 = G2m2 (53)

where
d2 = [A0(θ1) L A0(θ3)]

T (54)

G2 =

[[[[[[[[[[

[

W(θ1)aVP
(θ1) L W(θ3)aVP

(θ3)

W(θ1)aVS
(θ1) L W(θ3)aVS

(θ3)

W(θ1)aρ(θ1) L W(θ3)aρ(θ3)

W(θ1)aδN0(θ1) L W(θ3)aδN0(θ3)

W(θ1)aδT0(θ1) L W(θ3)aδT0(θ3)

]]]]]]]]]]

]

T

(55)

m2 = [RVP
RVS

Rρ RδN RδT]
T (56)

and
A0(θj) = [A0(θj, t1) L A0(θj, tM)]

T, j = 1,2,3 (57)

aVP
(θj) = diag[aVP

(θj, t1) L aVP
(θj, tM)] (58)

aVS
(θj) = diag[aVS

(θj, t1) L aVS
(θj, tM)] (59)

aρ(θj) = diag[aρ(θj, t1) L aρ(θj, tM)] (60)

aδN0(θj) = diag[aδN0(θj, t1) L aδN0(θj, tM)] (61)

aδT0(θj) = diag[aδT0(θj, t1) L aδT0(θj, tM)] (62)

RVP
= [RVP
(t1) L RVP

(tM)]T (63)

RVS
= [RVS
(t1) L RVS

(tM)]T (64)

Rρ = [Rρ(t1) L Rρ(tM)]T (65)

We then use the Bayesian theory to estimate the P-
and S-wave velocities and density using the estimated
normal and tangential fracture weaknesses, and details about
the Bayesian inversion for P- and S-wave velocities and
density are the same as the inversion method of normal
and tangential fracture weaknesses mentioned above. The
final estimated P- and S-wave velocities and density can be
expressed as

VP(ti) = VP(t1)exp[2
ti
∑
t1

RVP
(τ)] (66)

VS(ti) = VS(t1)exp[2
ti
∑
t1

RVS
(τ)] (67)

ρ(ti) = ρ(t1)exp[2
ti
∑
t1

Rρ(τ)] (68)
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FIGURE 12
Inversion results of parameter profiles, where (a) shows the inverted
P-wave velocity profile, (b) shows the inverted S-wave velocity profile,
and (c) shows the inverted density profile (the red curves represent the
corresponding logging curves).

Results

Synthetic examples

The feasibility of the proposed method was validated through
numerical experiments using well log data from a single borehole,
incorporating P-wave velocity, S-wave velocity, density, normal and
tangential fracture weakness parameters derived from rock physics
modeling. Synthetic seismic records were generated for five azimuths
(10°, 50°, 90°,130°, and 170°) using a 35 Hz Ricker wavelet and
Equation 22, as showninFigure 4.Toevaluate themethod’s robustness
in realistic noise conditions, Gaussian noise with signal-to-noise

FIGURE 13
Inversion results of parameter profiles, where (a) shows the inverted
normal fracture weakness profile, and (b) shows the inverted
tangential fracture weakness profile (the red curves represent the
corresponding logging curves).

ratios (SNRs) of 10 and 5 was introduced to the seismic records, as
demonstrated in Figures 5, 6.The inversion results for noise-free, SNR
= 10, and SNR = 5 cases are illustrated in Figures 7–9, respectively.
Comparative analysis indicates strong consistency between the
inversion results of the noisy and noise-free cases. As summarized
in Table 1, the correlation coefficients for P- and S-wave velocity
inversion results remain stable across different noise levels. Although
the correlation of density and normal/tangential fracture weaknesses
slightly decreases under SNR = 10 and SNR = 5 conditions, it still
maintains a good agreement with the reference, demonstrating the
noise robustness and algorithmic stability of the proposed inversion
approach. Figure 10 demonstrates the noise susceptibility of inverted
normalweakness (upperpanel) and tangentialweakness (lowerpanel)
through box-and-whisker plots comparing error distributions at SNR
= 10 and SNR = 5. For the normal weakness parameter, median
errors increase by 66.7% (1.5→2.5 × 10−5) with SNR reduction,
accompanied by interquartile range expansion from 0.8 × 10−5 to
1.6 × 10−5, indicating doubled dispersion. The tangential weakness
parameter exhibits more pronounced sensitivity: median errors
escalate 150% (2→5 × 10−5) while interquartile range triples (1→3
× 10−5), revealing non-linear instability growth. The error growth
rates quantify parameter-specific noise amplification, establishing the
tangential weakness parameter as the critical constraint for system
robustness. This differential response necessitates SNR-dependent
weighting strategies in joint inversion frameworks, particularly below
the identified reliability thresholds.
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Field data example

To further validate the feasibility of the proposed method, we
applied it to actual data from a research area in southwestern
China. This study area is characterized by deep gas reservoirs, high
formation pressures, and fractures primarily associated with fault
zones, making it suitable for modeling as an HTI medium. Initially,
we conducted denoising and amplitude-preserving processing on
the prestack seismic data. The processed data were then stacked by
angle, resulting in seismic profiles for azimuth angles of 10°, 50°,
90°, 130°, and 170°, with three incident angles of 18°, 22°, and 26°.
This produced a total of 15 azimuth-specific seismic profiles, with
the corresponding shear-wave velocity logs included in Figure 11.
We then extracted the zeroth- and second-order Fourier coefficients
(both cosine and sine components) from the processed seismic
data. The second-order Fourier coefficients were used to estimate
the normal and tangential fracture weaknesses. Using the zeroth-
order Fourier coefficients, we further inverted for the normal and
tangential fractureweaknesses, aswell as the P- and S-wave velocities
and density.The inversion results are shown in Figures 12, 13, where
the profiles for P-wave and S-wave velocities, density, and normal
and tangential fracture intensities demonstrate good continuity and
alignment with the logging curves. This strong correlation between
the inversion results and well log data confirms the feasibility and
stability of the proposed method in real-world applications.

Conclusion

This study introduced a Fourier coefficients-based stepwise
Bayesian inversion method for estimating elastic and fracture
parameters in fractured reservoirs using azimuthal seismic data. By
analyzing the sensitivity of Fourier coefficients to key subsurface
properties, we established that the zeroth-order Fourier coefficient
is predominantly sensitive to P- and S-wave velocities and density,
while the second-order Fourier coefficient is more responsive
to fracture weaknesses. Building upon this sensitivity analysis,
we developed a stepwise Bayesian inversion approach, where
fracture weaknesses are first estimated using the second-order
Fourier coefficient, followed by the estimation of background elastic
parameters using the zeroth-order Fourier coefficient. Synthetic
experiments demonstrated the robustness of the proposed method,
with inversion results maintaining strong consistency with noise-
free reference data, even under SNR of 10 and 5. Furthermore,
application to field data from a research area in southwestern China
confirmed the method’s practical feasibility. The inversion results
for P-wave and S-wave velocities, density, and fracture intensities
exhibited excellent continuity and alignment with well log data,
highlighting the effectiveness and stability of the approach in
fractured reservoir characterization.
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