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The development of a high-precision displacement prediction model for
landslide geological hazards is crucial for the early warning of such disasters.
Landslide deformation typically exhibits a step-like curve pattern with implicit
periodicity. Therefore, taking the Xintan landslide in the Baishui River of the Three
Gorges Reservoir Area as a case study, this study proposes a novel displacement
prediction approach that integrates the Adaptive Particle Swarm Optimization
(APSO), Support Vector Regression (SVR), and Long Short-Term Memory (LSTM)
network. The APSO is employed to optimize the hyperparameters of the SVR
model, ensuring an optimal parameter combination. Subsequently, the Grey
Wolf Optimizer is utilized to assign weights to the APSO-SVR and LSTM models,
establishing an optimal hybrid model with an optimal weight ratio. Using
the Baishui River landslide as the research object, cumulative displacement,
rainfall, and reservoir water level are selected as influencing factors of periodic
displacement for model training and validation. The results demonstrate that, in
predicting the periodic displacement of the Baishui River landslide, the proposed
APSO-SVR-LSTM hybrid model outperforms individual models in terms of both
prediction accuracy and stability.

KEYWORDS
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1 Introduction

Landslide geological hazards represent one of the most severe forms of geological
disasters, causing significant economic losses and impeding societal development and
progress (Cheng et al., 2018; Cui et al., 2019). Consequently, landslide disasters
pose not only a global challenge but also a key research focus and difficulty
within the academic domain of geological hazard studies. The destructive impact
of landslides extends beyond the immediate threat to human life, encompassing
substantial economic losses and infrastructure damage (Gbanie et al., 2018; Abd Majid
and Rainis, 2019; Althuwaynee and Pradhan, 2017). However, such disasters are not
entirely unavoidable. Effective monitoring and analysis of landslide displacement serve
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as crucial prerequisites for landslide disaster prevention and
mitigation (Aristizábal and Sánchez, 2020).

As a dynamic evolutionary system, landslide deformation is
influenced not only by its intrinsic geological structure but also
by various natural and anthropogenic factors (Zhang et al., 2023;
Kamal et al., 2023). To better characterize landslide evolution,
researchers have developed models that decompose cumulative
displacement into trend displacement and periodic displacement.
Trend displacement exhibits apparent monotonicity, prompting
researchers to employ mathematical functions such as quadratic,
logarithmic, and exponential functions for predictive analysis. In
contrast, periodic displacement is characterized by stochasticity and
fluctuations, making it a central focus of landslide displacement
prediction research (Batista et al., 2019; De Silva et al., 2017; Froude
and Petley, 2018; Fu et al., 2020). Deng et al. extracted periodic
displacement based on ensemble empirical mode decomposition
of time series and applied a Particle Swarm Optimization (PSO)-
optimized Support Vector Regression (SVR) model to enhance
prediction accuracy. As research has progressed, Chen employed
time series analysis techniques to capture the dynamic evolution
of landslide displacement, successfully forecasting displacement
trends. Similarly, Yang et al. addressed the limitations of SVR in
periodic displacement prediction by introducing a Long Short-Term
Memory (LSTM) neural network model. Compared with SVR, the
dynamic LSTM model demonstrated superior predictive accuracy
in periodic displacement forecasting (Görüm and Fidan, 2021;
Kirschbaum et al., 2015; Klose et al., 2016). However, due to limited
data availability and an extensive set of training parameters, LSTM
models often suffer from prolonged training times and instability in
output results.

The optimization of SVR model parameters and the application
of deep learning algorithms in time-series analysis remain research
hotspots. However, the SVR model fails to account for the
long-term dependencies inherent in time series data, leading to
reduced prediction accuracy for future periodic displacement trends
(Lin and Wang, 2018). While deep learning algorithms such as
LSTM offer high predictive accuracy, they are computationally
intensive and have complex model architectures, resulting in
extended training durations. In contrast, hybrid models overcome
the limitations of individual models by reducing the impact
of random fluctuations, thereby enhancing prediction accuracy,
stability, and model generalization (Roy and Kshirsagar, 2020).
Given the respective strengths of SVR and LSTM in periodic
displacement forecasting, this study proposes a weighted ensemble
model that integrates an Adaptive Particle Swarm Optimization
(APSO)-optimized SVR model with an LSTM model for landslide
periodic displacement prediction (Strouth and McDougall, 2020).

To validate the proposed model, monitoring data from ZG118
station at the Baishui River landslide in the Three Gorges region
were analyzed. Following the principles of the additive time series
model, the moving average method was employed to extract
periodic displacement components. To mitigate the instability
associated with individual predictive models, a hybrid modeling
approach was adopted.The core concept involves assigning different
weight coefficients to different models, effectively integrating
their predictive capabilities. By leveraging the complementary
strengths of multiple models, the proposed ensemble approach
enhances prediction accuracy and generalization capacity,

contributing to improved landslide early warning and disaster
mitigation strategies.

2 Methodology

2.1 Research area

The Baishui River landslide is located on the southern bank of
the Yangtze River, extending 600 m in the north-south direction
and 700 m in the east-west direction, with an average landslide
thickness of 30 m and a total volume of approximately 1.26 ×
107 m3. The elevation at the rear edge of the landslide is 410 m,
with the boundary defined at the interface between soil and bedrock
(Figure 1). The landslide front extends below the Yangtze River
to an elevation of 135 m, while its eastern and western flanks
are constrained by bedrock ridges. The overall slope inclination
is approximately 30°. The sliding zone is primarily composed of
silty clay containing gravels or breccia. Since the impoundment
of the Three Gorges Project in 2003, the landslide mass has
exhibited deformation due to the combined influences of seasonal
rainfall and reservoir water level fluctuations. In 2004, based
on the observed deformation characteristics, a landslide early
warning zone was delineated. Landslide Early Warning Zone refers
to a high-risk area for potential disasters, delineated based on
geological conditions, hydro-meteorological data, and historical
landslide activity. Its boundaries are determined by the extent
of the landslide mass, rainfall-water level response relationships,
and geotechnical stability. Taking the Baishuihe landslide as an
example, the warning zone encompasses the main sliding body
and downstream areas potentially affected by river blockage, while
also accounting for the possibility of secondary landslides induced
by rainfall infiltration. Key technical alert criteria include: Rainfall
thresholds (Yellow alert triggered by ≥ 80 mm in 24 h; Red alert
triggered by≥150 mm in 72 h combinedwith awater level rise rate of
≥0.5 m/h); Water level-displacement linkage indicators (Secondary
alert triggered by a water level rise of ≥2 m and slope displacement
of ≥5 mm/day); Integrated monitoring (Emergency response
initiated when InSAR and tiltmeter data detect crack propagation
≥10 mm/12 h, per the National Geological Hazard Prevention
Manual, 2022). Threshold settings should be locally calibrated in
accordance with “GB/T 38221-2019 Technical Specifications for
Geological Hazard Warning” (Thapa et al., 2023; Salee et al., 2022).
The eastern boundary of this zone is marked by the Loess Gully,
while the western boundary is defined by the Goat Gully on the
western side of the sliding mass. The rear boundary is set at an
elevation of 297 m, and the shear outlet at the front extends below
the Three Gorges Reservoir water level at 145 m. The early warning
zone measures approximately 500 m in length (north-south) and
430 m in width (east-west), covering an area of 21.5 × 104 m2. The
landslide body has an average thickness of 30 m and a total volume
of 6.45 × 106 m3.The primary sliding direction is approximately 20°,
classifying it as a deep-seated, large-scale soil landslide.

Since 2003, the Baishui River landslide has undergone five
significant deformation events, with the most severe occurring
between June and September 2007. Based on the characteristics and
extent of this deformation, an early warning zone was delineated
(Lu et al., 2024). At present, deformation is primarily concentrated
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FIGURE 1
Location map of the baishui river landslide.

in the front section of the warning zone, while displacement at
monitoring points in the rear section remains relatively stable. The
overall deformation pattern of the landslide exhibits characteristics
of a traction type failure. Currently, a total of 11 GPS displacement
monitoring points have been installed on theBaishui River landslide,
as illustrated in Figure 2.

Since June 2003, the Baishui River landslide has been subjected
to professional monitoring, with numerous monitoring stations
established. Among these, the ZG118 station is located in the central
part of the landslide body, providing a comprehensive reflection of
the entire evolution process of the landslide. Additionally, the ZG118
station possesses relatively complete monitoring data, facilitating
data-based modeling. Based on these two factors, the monitoring
data from the ZG118 stationwere used to verify the effectiveness and
superiority of the method proposed in this study. Figure 3 illustrates
the cumulative displacement, reservoir water level, and rainfall
data curves monitored at the ZG118 station from January 2007 to
December 2012. It is evident that rapid displacement occurred at the
onset of the rainy season (from May to September each year) and
at the end of the reservoir water level drop (in June and July). The
Baishuihe landslide area exhibits a pronounced positive correlation
between precipitation and water level variations. Intense short-term
rainfall or sustained precipitation events trigger rapid increases in
surface runoff and subsurface infiltration, resulting in sharp water
level rises throughout the watershed. Statistical analyses indicate a
characteristic 1-3 h lag between rainfall peaks and corresponding
water level responses, with channel water levels demonstrating
nonlinear growth relative to rainfall intensity when cumulative
precipitation exceeds 50 mm. This interdependent relationship
stems from two primary mechanisms: direct rainfall recharge
into channel systems, and reduced shear strength in soil masses

due to saturation-induced pore water pressure, which promotes
slope displacement and subsequent channel constriction. Historical
records reveal that when 24-h rainfall accumulation reaches the
100 mm warning threshold, water level rise rates accelerate by
more than 40%, corresponding to substantially elevated landslide
risks.These coupled hydrologic-geotechnical dynamics establish the
rainfall-water level interaction as a critical predictive parameter for
landslide early warning systems in this region. Furthermore, the
period of rapid displacement concluded before the end of the rainy
season. Clearly, the fluctuations in the reservoir water level and
rainfall have a profound impact on the cumulative displacement of
the landslide, indicating that rainfall and reservoir water levels are
the primary factors influencing the deformation and failure of the
Baishui River landslide.

This study employs the Double Exponential Smoothing
(DES) method to decompose displacement into trend
displacement and periodic displacement components. Through
multiple trials, an optimal exponential decay factor α of
0.4 was identified, effectively separating these displacement
characteristics. The trend displacement component can therefore
be expressed as:

t1 = c1 (1)

ti = 0.4ci−1 + 0.6ti−1 (2)

ti+1 = 0.4ci + 0.24ci−1 + 0.36ti−1 (3)

The landslide's cumulative displacement was decomposed into
trend displacement and periodic displacement using the Double
Exponential Smoothing (DES) method, as illustrated in Figure 4.
The results demonstrate that the trend displacement obtained
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FIGURE 2
Displacement monitoring arrangement of the baishui river landslide.

FIGURE 3
Monitoring curves of cumulative displacement, reservoir water level (a), and rainfall (b).
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FIGURE 4
Time series decomposition results of cumulative displacement.

TABLE 1 SVR combination parameter.

Monitoring point Cbest γbest

ZG118 5.428 0.216

TABLE 2 Weight distribution of combined models.

Monitoring point LSTM APSO-SVR

ω′1 ω′2

ZG118 0.368 0.526

through DES effectively captures the evolutionary pattern of the
landslide's cumulative displacement. The periodic displacement
component is primarily influenced by cyclical rainfall patterns
and reservoir water level fluctuations. Consequently, prior to
developing a predictive model for periodic displacement, it is
necessary to extract the key factors governing the landslide's
periodic displacement behavior.

2.2 APSO-SVR-LSTM displacement
prediction model

2.2.1 APSO algorithm
The traditional Particle Swarm Optimization (PSO) algorithm

suffers from issues such as premature convergence, low search
accuracy, and inefficient late-stage iterations (Kennedy and
Eberhart, 1995). To address these shortcomings, this study
introduces an adaptive weight adjustment method and an
asynchronous optimization approach for the learning factors,
resulting in the Adaptive Particle Swarm Optimization (APSO)
algorithm for parameter optimization. This modification allows the

FIGURE 5
Structure of LSTM.

TABLE 3 Prediction accuracy analysis of three models of monitoring
point ZG118.

Model MAPE% RMSE/mm

ZG118 ZG118

LSTM 20.16 13.97

APSO-SVR 18.57 11.73

APSO-SVR-LSTM 13.09 6.84

algorithm to balance both global and local optimization, effectively
mitigating premature convergence (Rizvi et al., 2021). In the PSO
algorithm, the weight factor is a critical parameter for balancing the
global and local search capabilities of the algorithm. Therefore, an
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FIGURE 6
Displacement prediction curve of periodic term at monitoring point ZG118 (in 2012 years).

FIGURE 7
Displacement prediction of period term of monitoring point XD02 (in 2009 years).

adaptive inertia weight adjustment method is introduced, with the
following formula:

ω =
{{{
{{{
{

ωmin +
(ωmax −ωmin)( f − fmin)

favg − fmin
, f ≤ favg

ωmax, f > favg

(4)

In the equation: ωmin, minimum weight value; ωmax maximum
weight value; f, fitness value of the particle at any given time; fmin,
minimum fitness value in the particle swarm; favg , average fitness
value in the particle swarm.

The learning factors c1 and c2 primarily influence the
optimization accuracy of the algorithm. A larger c1 increases
the iteration time, whereas a larger c2 may lead to premature
convergence of particles to local optima, resulting in early
stagnation of the algorithm. Therefore, adaptively adjusting these

two learning factors according to the number of iterations during
the optimization process is beneficial for achieving global optimal
convergence. The formula for the adaptive asynchronous learning
factors is introduced as follows:

c1 = c1,ini +
c1, fin − c1,ini

kmax
· k (5)

c2 = c2,ini +
c2, fin − c2,ini

kmax
· k (6)

In the equation: c1.ini, The initial value of c1; c2.ini, The initial
value of c2; c1.fin, The final value of c1; c2.fin, The final value of c2;
k, Number of Iterations.

2.2.2 APSO-SVR algorithm
The Support Vector Regression (SVR) model (Szostek et al.,

2024) employs a regression function yi = f(xi) = ω
∗
φ(xi) + b to fit
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FIGURE 8
Displacement prediction of period term of monitoring point ZG93 (in 2009 years).

the sample points in the training set {xi,yi}, i = 1,2, ...,n, xi ∈ Rm.
Here, φ(xi) represents the feature vector of the mapped influencing
factors of periodic displacement; yi ∈ Rm denotes the periodic
displacement value; ω

∗  is the dimensional weight vector of m; and
b is the bias term. Based on the fundamental principles of SVR, the
fitting process is ultimately transformed into a convex optimization
problem, which is formulated as follows:

min1
2
(ω∗,ω∗) +C

n

∑
i=1
(ζi + ζ∗i ) (7)

{{{{
{{{{
{

f(xi) − yi ≤ ε+ ζi
yi − f(xi) ≤ ε+ ζ

∗
i

ζi,ζ∗i ≥ 0, i = 1,2, ...,m

(8)

In the equation: C is the penalty coefficient, which balances
model accuracy and complexity; ξ i and ξ∗i are slack variables used
to prevent overfitting; ϵ is the insensitive loss function, representing
the deviation between the predicted and actual displacement
values.By introducing Lagrange multipliers, the original problem is
transformed into its dual form, ultimately yielding the regression
model for SVR as follows:

f(x) =
m

∑
i=1
(αi − α∗i )k(x,xi) + b (9)

k(x,xi) = exp(−
‖x− xi‖

2

2σ2
) (10)

In the equation: αi and αi
∗ are Lagrange multipliers; The kernel

function k (xi,xj) represents the inner product of xi and xj mapped
into the feature space, which replaces complex computations within
the feature space.

This study employs theRadial Basis Function (RBF) as the kernel
function, requiring the determination of two key parameters: the
penalty parameter C and the RBF kernel parameter γ (function
center). The parameter optimization process follows these steps:

Step 1: Initialize Particle Swarm Optimization (PSO) parameters.
Define the search ranges for SVR model parameters

(C and γ), set population size, and specify maximum
iteration count.

Step 2: Generate initial population. Randomly create the first
generation of particles with positions and velocities
represented as vectors (C, γ).

Step 3: Evaluate fitness function. Use mean squared error (MSE)
of prediction results as the fitness criterion. Each particle's
position (C, γ) is input into the SVR regression model to
calculate its fitness value.Thepositionwithminimumfitness
becomes the particle's personal best (pbest), while the global
best (gbest) is identified by comparing all particles' optimal
positions.

Step 4: Iterative updating. Update particle velocities and positions
according to Equations, then recalculate fitness values for
the new population. Update both pbest and gbest values for
the current iteration.

Step 5: Termination and output. Upon reaching maximum
iterations, the algorithm terminates and outputs the global
best parameters (C, γ), which are then used to configure the
final SVR model for prediction.

In the formula, the selection of the penalty coefficient C and
the kernel function parameter γ(γ = 1/2σ2) significantly affects
the performance of the SVR model. Therefore, the APSO-SVR
prediction model, constructed based on APSO, not only optimizes
parameter selection during the prediction process—avoiding blind
trial calculations—but also enhances the predictive accuracy of the
SVR model. First, the influencing factors of landslide displacement
are used as inputs, and the relevant parameters of the particle swarm
are initialized. The initial search ranges for C and γ are set, and
the mean squared error (MSE) of the SVR model's prediction is
used as the objective function to iteratively compute and identify the
global optimum.

2.2.3 Long short-term memory network (LSTM)
LSTM (Long Short-Term Memory) utilizes three gates to

protect and control the information within the memory cells,
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which is achieved through the element-wise multiplication
of an activation function. A series of parameters are trained
using gradient descent to regulate the state of each gate
(Huang et al., 2024).

Each gate in an LSTM has a specific and unique function.
The forget gate ( f ) determines which information to discard from
the previous state (ht-1). The input gates (xt and ht-1) undergo an
update gate (u) operation, and together with the modified forget
gate ( f ), decide how much weight the candidate state (ht) should
contribute to the updated state. To generate the output ( yt), the
current state is first filtered using a non-linear function ( g2), and
then, after an operation with the output gate (o), the result ( yt) is
produced. A portion of the state ( yt) is returned as the next input
( yt-1). Each gate depends on the current external input (xt) and the
previous output ( yt-1). Figure 4 provides a detailed illustration of the
structural principles of LSTM. The update state equation of LSTM
is given by Equation 8.

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

forgetgate: ft = σ(W fxt +R fyt−1 + b f)

candidate state: ̃ht = g1(W fxt +R fyt−1 + b f)

update state:ut = σ(Wuxt +Ruyt−1 + bu)

cell state:ht = ut ⊗ ̃ht + ft ⊗ ht−1
outputgate:οt = σ(Wοxt +Rοyt−1 + bο)

output:yt = οt ⊗ g2(ht)

(11)

In the equation: xt represents the input vector at time step
t; W f , Wh, Wu, and Wo are weight matrices associated with the
input units; Rf , Rh, Ru, and Ro are weight matrices for hidden layer
connections; bf , bh, bu, and bo denote bias vectors; the activation
function σ is either a sigmoid function or another specified non-
linear function; g1 and g2 represent non-linear activation functions;
⊗ denotes element-wise multiplication.

2.2.4 Establishing a hybrid model based on the
grey wolf optimizer (GWO)

The Grey Wolf Optimization (GWO) algorithm is an effective
approach for obtaining numerical solutions to optimization
the problems (Balogun et al., 2020). This intelligent algorithm is
inspired by the hierarchical structure and hunting behavior of
grey wolves in nature. Compared with other swarm intelligence
algorithms, GWO offers advantages such as conceptual simplicity,
ease of implementation, and strong global search capability, leading
to improved convergence speed and accuracy. At time step t, the
Long Short-Term Memory (LSTM) model predicts displacement
as L(t), while the Support Vector Regression (SVR) model predicts
displacement as S(t). The hybrid model APSO-SVR-LSTM, which
integrates LSTM with the Adaptive Particle Swarm Optimization
(APSO)-optimized SVR, predicts displacement as M(t) at the
same time step.

M(t) = ω′1L(t) +ω
′
2S(t), t = 1,2,3...,N (12)

In the equation: ω1' and ω2' represent the weight coefficients of
the LSTMmodel and the APSO-SVR model, respectively.

In the process of constructing the ensemble model, the weight
coefficients are typically determined by minimizing the sum of
squared fitting errors. Let mt denote the prediction error of the
ensemble model at time step t, and Mt represent the predicted

displacement of the ensemble model at time step t. The actual
displacement at time step t in the validation dataset is denoted as
A(t).

mt = A(t) −Mt = ω
′
1m1t +ω

′
2m2t (13)

In the equation:m1t , the periodic displacement prediction error
of the LSTM model at time step t; m2t , the periodic displacement
prediction error of the APSO-SVR model at time step t; the
weighting coefficients of the LSTM model ω1' and the APSO-SVR
model ω2' satisfy the condition ω1'+ω2' = 1, with both ω1' and ω2'
being greater than zero.

Let K represent the sum of squared errors of the ensemble
model, and N denote the total training duration of the model. The
corresponding formulation is established as follows:

K =
2

∑
i=1
|m2

t | =
N

∑
t=1
|
2

∑
i=1

ω′im
2
it| (14)

By transforming the problem into an optimization problem
based on the criterion of minimizing the sum of squared errors, it
can be expressed as:

minK =
N

∑
t=1
|
2

∑
i=1

ω′im
2
it| (15)

In the equation: ω1'+ω2' = 1, with both ω1' and ω2' being
greater than zero.

For the solution of Equation 12, the Lagrange multiplier
λ is introduced to construct the objective function. Partial
derivatives of the objective function are then computed to
formulate a system of linear equations. By solving this system,
the optimal weight coefficients of the model are obtained, and
the combined model with the optimal weight ratio is trained and
fitted accordingly.

2.2.5 Data normalization processing and model
evaluation criteria

To evaluate the prediction accuracy of the model, the Root
Mean Square Error (RMSE) and the Mean Absolute Percentage
Error (MAPE) were selected as performance evaluation criteria. To
enhance the prediction accuracy of the model, factors influencing
periodic displacement, as mentioned in the literature, were selected
as model inputs. These include the cumulative rainfall for the
current month, cumulative rainfall for the previous month,
cumulative rainfall for the two preceding months, current month's
reservoir water level, monthly water level change, water level
change over the past 2 months, cumulative displacement for the
current month, cumulative displacement for the past 2 months,
and cumulative displacement for the past 3 months. Due to
the differing data types, all monitoring data were normalized
to the range [0, 1] to eliminate the influence of dimensional
differences between the variables. The formula for normalization
is as follows:

y =
(xi − ximin)
(ximax − ximin)

(16)

In the equation: ximax, the maximum value of variable i; ximin,
the minimum value of the variable i; xi, the original value; y, the
normalized value.
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3 Results and discussion

In this study, a dataset consisting of 144 monitoring data
points from the ZG118 monitoring stations at the Baishui River
landslide, spanning from January 2007 to December 2012, was
selected. This dataset includes reservoir water levels, rainfall,
and displacement values, with rainfall and displacement values
representing cumulative values for the respective months, and water
level values representing the monthly averages. 80% of the data were
used as the fitting dataset, while 20% of the data were reserved as
the validation dataset to assess the model's prediction performance.
The displacement monitoring data from the first 58 months is used
as the training set, and the data from the last 14 months is used as
the testing set.

After normalizing the data, it was used as the input parameters
for the APSO-SVR-LSTM model. To verify its effectiveness,
comparative experiments were conducted with the APSO-SVR
model and the LSTMmodel. After continuous iterative calculations,
for random displacement prediction, the number of hidden layer
neurons is 22, the training times are 200, and the initial learning rate
is 0.0001. Then, train the model and output the predicted values.
First, the APSO algorithm was employed to optimize the penalty
coefficient (C) and the RBF kernel function parameter in the SVR
model. After multiple trials, the optimal parameter combination
was obtained, as shown in Table 1. The weights of the hybrid
model, calculated using the Grey Wolf Optimizer, are presented
in Table 2. The prediction results of each model, validated using
the test dataset, are illustrated in Figure 5, while the evaluation
of the predictive performance of the three models is summarized
in Table 3.

As shown in Table 3, the mean absolute percentage error
(MAPE) of the ensemble model for periodic displacement
prediction is reduced by 7% and 5% at monitoring point ZG118
compared to the LSTM and APSO-SVR models, respectively.
Similarly, the root mean square error (RMSE) is reduced by 7.1 mm
and 4.9 mm, respectively. These results indicate that, under the
same training dataset, the ensemble model demonstrates superior
stability and higher predictive accuracy compared to the individual
models. As illustrated in Table 2 and Figure 5, the predictive
accuracy of the LSTM and APSO-SVR models influences their
weight distribution in the ensemble model. Given that the APSO-
SVR model performs better overall at monitoring point ZG118, it
holds a higher weight proportion in the ensemble model, thereby
enhancing its predictive accuracy.

To further validate the superiority of the ensemble model, all
three models were applied to two additional monitoring points,
XD02 and ZG93, on the Baishuiihe landslide. The monitoring
points XD02 and ZG93 exhibited the maximum cumulative
deformation, with their displacement directions being essentially
consistent. In contrast, the deformation directions of the remaining
monitoring points showed certain angular deviations, indicating
asynchronous displacement patterns (Pang et al., 2024). The
objective was to predict the periodic displacement trends for
these points in 2009, with the results presented in Figures 6, 7.
The findings indicate that the ensemble model outperforms the
two individual models in forecasting the periodic displacement
of step-like landslides, demonstrating the robustness of the
proposed approach.

When performing periodic displacement predictions based on
the same training dataset, the static SVR model exhibits higher
predictive accuracy than the LSTMmodel.This is primarily because
the SVRmodel demonstrates superior predictive performance when
trained on small sample datasets. However, the SVRmodel can only
learn information at the current time step, neglecting the fact that
landslide displacement is a dynamic process that evolves over time.
Due to the lagging effect of displacement-influencing factors, the
accuracy of predictions deteriorates as the forecasting time extends,
as long-term historical data introduces temporal dependencies that
interfere with the results. Although some researchers have attempted
to address the issue of data timeliness by improving the SVR
predictive model, these methods still lack an effective quantitative
evaluation criterion.

Given that recurrent neural networks (RNNs) can capture
interdependencies in data and address data validity issues, this
study integrates the dynamic LSTM model with the static SVR
model to propose a novel predictive framework. This hybrid
model fully leverages the LSTM model's capability to extract
temporal dependencies from sequential data while maintaining the
strong predictive performance of SVR in limited-sample scenarios.
The results indicate that the ensemble model achieves RMSE
values below 9 mm across all four monitoring points, with an
average reduction of approximately 6% in MAPE compared to
the two individual models. These findings highlight the high
applicability of the propo3sedmodel in predicting periodic landslide
displacements.

The experiments primarily focus on step-like landslides,
with precipitation and water level fluctuations considered as
the dominant influencing factors. However, geological structures
vary across different landslides, and practical applications should
first identify the key factors governing periodic displacement
variations for each specific landslide to enhance the adaptability and
generalization of the model.

4 Conclusion

Based on monitoring data of precipitation, water levels, and
GPS displacement from the Baishuiihe landslide monitoring points,
this study establishes a hybrid periodic displacement prediction
model (APSO-SVR-LSTM) based on linear combination theory.The
analysis of experimental results leads to the following conclusions:

(1) By integrating an adaptive inertia weight adjustment
method with an asynchronous learning factor strategy, the
adaptive particle swarm optimization (APSO) algorithm
effectively balances global exploration and local exploitation,
facilitating the rapid convergence of particles to the
global optimum.

(2) Compared with traditional standalone models, the proposed
APSO-SVR-LSTM model, developed based on the minimum
variance criterion to determine optimal weight allocation,
enhances predictive accuracy. The final prediction results
demonstrate superior performance, indicating significant
engineering application value.

(3) Landslides are highly complex systems with intricate
internal structures. With the continuous advancement
of information technology, deep displacement
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monitoring data can providemore comprehensive insights into
internal landslide dynamics.Therefore, integrating surface and
deep displacement measurements into predictive modeling
represents a crucial direction for future research.
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