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Introduction: The Gangdese Tectonic Belt was formed through the prolonged
subduction and collisional processes involving the Neo-Tethys Ocean and the
Indian and Asian continental plates, preserving tectonic evolutionary imprints of
both oceanic subduction and continental collision. However, the geodynamic
mechanisms controlling Late Cretaceous magmatism in the Gangdese Tectonic
Belt remain debated, necessitating further investigation into its magmatic
evolution and geodynamic processes.

Methods: This study employs zircon U-Pb geochronology and geochemical
analysis (including major, trace element, and Sr-Nd isotope data) on the
Xietongmen granite and Longger granite from the Gangdese Tectonic Belt.

Results: The Xietongmen granite formed at 96 Ma, while the Longger granite
formed slightly later at 80 Ma. The Xietongmen granite can be classified as
a high-K calc-alkaline and weakly peraluminous granite. Geochemically, it is
enriched in Sr, depleted in Y, and exhibits high Sr/Y and (La/Yb)N ratios, displaying
geochemical signatures comparable to adakite-like rocks. The Longger granite
is a metaluminous granitoid of the high-K calc-alkaline series. Furthermore,
the negative correlation of P2O5 with SiO2 and the presence of hornblende
and biotite indicate that it belongs to the I-type granites. The Xietongmen and
Longger granites were probably derived from the partial melting of the lower
crust. The source of the Xietongmen granite may contain residual garnet and
hornblende, while the Longger granite likely underwent plagioclase fractional
crystallization. The initial (87Sr/86Sr)i ratios and εNd(t) values (2.78–3.76) of the
Xietongmen granite may suggest derivation from a juvenile crustal source.

Discussion: Integrating the data of this study with previous research, the
Xietongmen granite was likely formed due to Neo-Tethyan oceanic ridge
subduction. In contrast, the Longger granite was formed during the slab rollback
phase following ridge subduction.
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1 Introduction

Situated in the southwestern region of China, the Tibetan
Plateau represents the highest and youngest plateau on the planet,
often referred to as the “Roof of the World” (Yin and Harrison,
2000; Chung et al., 2003; Chung et al., 2005; Hou et al., 2013;
Hou et al., 2015; Kapp et al., 2005; Kapp et al., 2007; Ji et al.,
2009; Ji et al., 2014; Lee et al., 2012; Xu et al., 2015; Zhu et al.,
2013; Ding et al., 2014; Wang et al., 2014; Gibbons et al.,
2015). It records the sequential opening and closure of multiple
oceanic basins within the Tethyan tectonic domain during the
Phanerozoic, preserving intricate geological records of multi-stage
subduction, collision, and orogenic processes (Zhang et al., 2012;
Ingalls et al., 2016; Webb et al., 2017; van Hinsbergen et al., 2019;
Qasim et al., 2018; Baral et al., 2019; Rowley, 2019; Tang et al., 2023;
Zhu et al., 2023).

The Gangdese Tectonic Belt (GTB) in the southern Tibetan
Plateau is one of the most intensely deformed orogenic belts
due to complex tectonic-magmatic interactions and crust-mantle
processes. Its formation records the evolutionary history of the Neo-
Tethys Ocean (Zhu et al., 2013; Ding et al., 2014; Wang et al.,
2014; Wang et al., 2016; Ma et al., 2019), preserving extensive
geological evidence of the subduction and closure of the Neo-
Tethyan Ocean, the continental collision between the Indian and
Eurasian plates, and post-collisional magmatic activities (Wen et al.,
2008a; Wen et al., 2008b; Ji et al., 2009; 2014; Zhu et al., 2011;
Zhu et al., 2018; Xu et al., 2020). Therefore, investigations of the
magmatic rocks within the Gangdese Tectonic Belt provide critical
constraints for deciphering the formation and evolution of the Neo-
Tethys Ocean and the underlying geodynamic mechanisms driving
plateau uplift.

The GTB predominantly comprises magmatic rocks formed
since the Late Cretaceous (Wen et al., 2008a; Wen et al., 2008b;
Ji et al., 2009; Ji et al., 2014). Studies indicate that the Late
Cretaceous represents a critical period for transforming subduction
mechanisms in the Neo-Tethyan Ocean. This tectonic process
induced regional large-scale magmatic activity, leading to the
widespread outcropping of Late Cretaceous magmatic rocks in
the Gangdese tectonic belt. Magmatic rocks of this period are
predominantly intrusive and dominated by diorite and granodiorite
(Ji et al., 2009; Ji et al., 2014; Ma et al., 2013a; Ma et al.,
2013b; Zhang S et al., 2014; Xu et al., 2015). However, the deep
dynamic mechanisms for the genesis of Late Cretaceous rocks in
the Gangdese tectonic belt remain controversial, with three main
models proposed: (1) flat-slab subduction of theNeo-TethyanOcean
(Wen et al., 2008a; Wen et al., 2008b); (2) slab rollback of the Neo-
Tethyan Ocean (Ma et al., 2013b); and (3) subduction of the Neo-
Tethyan mid-ocean ridge (Zhang et al., 2010; Zheng et al., 2014).
Each model has a certain degree of validity but requires further
geological evidence for validation. Therefore, the complexity of
the formation mechanisms of Late Cretaceous magmatic rocks in
the Gangdese tectonic belt warrants more in-depth investigation
and discussion.

To advance our understanding of the current debate, this study
presents zircon U-Pb geochronological data, whole-rock major and
trace element compositions, and Sr-Nd isotope data for the Late
Cretaceous granites in the central and western segments of the
GTB, Tibetan Plateau. Combined with previous research results, we

systematically discuss the petrogenesis of these granites and their
tectonic settings. The results provide new petrological insights into
the formation and evolution of the Neo-Tethys Ocean during the
Late Cretaceous in the GTB.

2 Geological setting

Tectonically, the Tibetan Plateau is composed of four major
blocks arranged from south to north: the Himalayan block, the
Lhasa block, the Qiangtang block, and the Songpan-Ganzi block,
with their boundaries delineated by the Indus-Yarlung Zangbo
Suture Zone (IYZSZ), the Bangong-Nujiang Suture Zone (BNSZ),
and the Jinsha River Suture Zone (JSSZ) (Schärer et al., 1984;
Yin and Harrison, 2000; Chu et al., 2006; Guo et al., 2011;
Zhu et al., 2011; Zhu et al., 2013). The Gangdese Tectonic
Belt, corresponding to the Lhasa terrane, is situated between the
BNSZ and the IYZSZ, extending east-west (Yin and Harrison,
2000; Zhu et al., 2011). This belt is characterized by extensive
magmatic activity (Figure 1A), forming a vast tectonic-magmatic
belt. Throughout its evolution, the GTB has preserved geological
records associated with its formation and evolutionary history
(Ji et al., 2009; Ran et al., 2019; Zhu et al., 2017; Collins et al., 2020;
DePaolo et al., 2019;Ducea et al., 2021). As such, it serves as a natural
laboratory for investigating the subduction and collisional dynamics
of the Neo-Tethys Ocean.

Notable volcanic sequences exposed within the Gangdese
tectono-magmatic belt include the Early to Middle Jurassic Yeba
Group volcanic rocks (Zhu et al., 2008), the Late Jurassic
to Early Cretaceous Sangri Group volcanic rocks (Zhu et al.,
2009a; Kang et al., 2014), and the Early Cretaceous Zenong
and Duoni Group volcanic rocks (Figure 1B). Intrusive rocks
within the Gangdese tectonic belt include minor gabbro, dolerite,
monzodiorite, and abundant granodiorite and granite (Ji et al., 2009;
Ji et al., 2014;Ma et al., 2013a;Ma et al., 2013b), with Late Cretaceous
plutonic rocks exhibiting the greatest lithological diversity and the
most extensive exposure.

3 Petrography

The Xietongmen granite is grayish-white, exhibiting a
porphyaceous texture and massive structure. The dominant
phenocrysts include quartz and plagioclase, while the matrix
consists of microcrystalline plagioclase and quartz (Figures 2A–C).
The quartz phenocrysts are primarily euhedral to subhedral, with
grain sizes varying between 5 and 7 mm, constituting 30%–35%
of the total composition. The plagioclase phenocrysts exhibit
moderate alteration, undergoing sericitization, constituting roughly
25%–30% of the rock. The groundmass constitutes 25%–30% of the
rock, with minor amounts of strongly altered biotite, constituting
approximately 5%.

The Longger granite is also grayish-white, displaying a
medium-to-fine-grained structure with a homogeneous texture
(Figures 2D–F). Its primary mineral constituents include
microperthite (30%–35%), plagioclase (30%–35%), quartz
(15%–20%), biotite (∼5%), and a minor proportion of hornblende
(∼5%). Common accessory minerals include zircon, apatite, and
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FIGURE 1
(A) Tectonic structure of the Tibetan Plateau. (B) Spatial distribution of the Gangdese magmatic belt with sample locations. [(A,B)
modified after Zhu et al., 2011].

iron-rich opaque phases such as magnetite. Microperthite occurs
as subhedral to anhedral columnar grains, exhibiting distinct grid
twinning. Plagioclase appears as euhedral to subhedral columnar
grains, showing well-developed polysynthetic twinning. Quartz is
smoky gray, predominantly subhedral to anhedral, having a grain
size ranging from 0.2 to 0.5 mm. Biotite forms anhedral flakes,
commonly distributed along the margins of other minerals, with
evident chloritization. Hornblende is brown, euhedral to subhedral,
and is characterized by two sets of inclined cleavages forming an
angle of approximately 56°.

4 Analytical methods

Nanjing Hongchuang Geological Exploration Technology
Service Co., Ltd. Conducted zircon selection, target preparation, and
whole-rock Sr-Nd isotopic analysis. U-Pb isotopic dating of zircons
and major and trace element analyses of whole-rock samples were
performed at the Key Laboratory of Mineral Resources in Western
China, Lanzhou University.

4.1 Zircon U-Pb dating

Initially, the rock samples underwent crushing andwashing, and
then electromagnetic and heavy liquid separation were applied to
concentrate zircon grains. Using a binocular microscope, a selection
of well-shaped, larger zircon grains was made and then set in
epoxy resin, followed by polishing to prepare analytical mounts. For

these polished zircon grains, the most suitable candidates—those
exhibiting clear internal zoning without noticeable cracks or
bubbles—were selected based on cathodoluminescence (CL),
transmission, and reflection imaging. These zircons were then
analyzed using laser ablation inductively coupled plasma mass
spectrometry (LA-ICP-MS) on an Agilent 7500a ICP-MS system,
using a 30 μm laser spot diameter with He as the carrier
gas. The reference standards NIST 91500 and NIST 610 were
employed for instrumental calibration. Finally, data processing
and plotting were conducted using the Glitter and Isoplot software
packages.

4.2 Whole-rock geochemical analysis

Major element concentrations were determined using a Leeman
Prodigy inductively coupled plasma optical emission spectrometer
(ICP-OES). Before analysis, the samples were cleaned, dried, and
powdered, then subjected to high-temperature ignition at 1,000°C
for 2 h in a crucible. The mass difference before and after heating
was recorded to calculate the loss on ignition (LOI). The samples
were subsequently fused with lithium metaborate (LiBO2), and the
resulting solutions were transferred into volumetric flasks, diluted to
a predetermined volume, and weighed for subsequent analysis. For
trace element analysis, a high-temperature and high-pressure closed
digestionmethodwas employed for sample preparation, followed by
analysis using an Agilent 7,700X inductively coupled plasma mass
spectrometer (ICP-MS). Whole-rock Sr-Nd isotopic measurements
were performed using a Nu Instruments Nu Plasma IIMC–ICP–MS
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FIGURE 2
Field outcrops, hand-specimen photographs, and microphotographs of Late Cretaceous magmatic rocks from the Xietongmen area (A–C) and the
Longger area (D–F). Abbreviation: Qtz, Quartz; Pl, plagioclase; Kfs, K-feldspar; Mic, microperthite; Hbl, hornblende; Bt, biotite.

device. BCR-2 and AGV-2 were used as external standards, while
GSB was employed to monitor Nd isotope measurements.

5 Results

5.1 Zircon U-Pb ages

The zircon U-Pb dating results for the samples from the
Xietongmen and Longger granites are presented in Table 1.

The zircon grains extracted from the Xietongmen granite are
highly euhedral and predominantly prismatic, with grain sizes
ranging from 30 to 150 μm and aspect ratios of 1:1 to 3:1. They show
clear magmatic oscillatory zoning in the Cathodoluminescence
(CL) images (Figure 3A). The Th/U ratios range from 0.67 to 1.27,
aligning with the characteristics of magmatic zircons (Hoskin and
Ireland, 2000). Among the 20 zircon spots analyzed for U-Pb
isotopes, spots 3 (103 ± 1 Ma) and 8 (107 ± 1 Ma) yielded older ages,
suggesting that they are inherited zircons. The remaining 18 zircon
spots exhibit a relatively concentrated age distribution on the U-Pb
concordia diagram (Figure 4A). The weighted mean 206Pb/238U age
of these zircons is 95.9 ± 0.6 Ma (MSWD = 1.3), representing the
crystallization age of the Xietongmen granite formed in the Late
Cretaceous.

Similar to the Xietongmen granite, the Longger granite contains
highly euhedral zircon grains, mostly prismatic, with grain sizes
ranging from 50 to 150 μm and aspect ratios of 1:1 to 3:1. Their
CL images display clear magmatic oscillatory zoning (Figure 3B).
The Th/U ratios range from 0.36 to 2.34, consistent with the
characteristics of magmatic zircons (Hoskin and Ireland, 2000).

Among the 30 zircon spots analyzed, spots 1, 7, 19, and 22
yielded older ages, suggesting that they are inherited zircons. The
remaining 26 spots exhibit a relatively concentrated age distribution
on the U-Pb concordia diagram (Figure 4B). The weighted mean
206Pb/238U age of these zircons is 79.5 ± 0.4 Ma (MSWD =
1.04), representing the crystallization age of the Late Cretaceous
Longger granite.

5.2 Major and trace elements

Whole-rock major and trace-element compositions of the
Xietongmen and Longger granites are presented in Table 2.

All samples from the Xietongmen granite exhibit comparatively
low LOIs (0.92–2.09 wt%). They are characterized by high
SiO2 (68.16–74.17 wt%), Al2O3 (12.84–16.24 wt%), K2O
(2.83–4.65 wt%), Na2O (2.77–4.33 wt%) contents, and low CaO
(1.79–2.65 wt%), TiO2 (0.45–0.60 wt%), P2O5 (0.08–0.15 wt%),
MgO (0.76–1.34 wt%) contents. The total alkali (Na2O + K2O)
contents vary between 7.08 wt% and 8.40 wt%, and the Rittmann
indices (σ = 1.69–2.73) remain below 3.3.

Longger granite samples have low LOIs (0.23–0.80 wt%),
high SiO2 (66.29–72.58 wt%), K2O (3.36–6.49 wt%), Na2O
(3.23–4.85 wt%), Al2O3 (14.64–16.27 wt%) contents, and low
Fe2O3

T (0.58–2.88 wt%),MgO (0.17–1.07 wt%,Mg# = 27.88–47.42)
contents. Total alkali contents range from 8.00 to 10.37 wt%, and
Rittmann indices vary between 2.49 and 4.11.

In the K2O + Na2O versus SiO2 diagram (Figure 5A), all
Xietongmen granite samples plot within the granite field, and
most Longger granite samples fall into the quartz monzonite field.
In the K2O versus SiO2 diagram (Figure 5B), most Xietongmen
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TABLE 1 LA-ICP-MS zircon U-Pb analytical date of Xietongmen granite and Longer granite.

Granite type Point no Th/U Isotope ratio Age (Ma)

207Pb
206Pb

±1σ
207Pb
235U

±1σ
206Pb
238U

±1σ
207Pb
235U

±1σ
206Pb
238U

±1σ

Xietongmen

XTM-01 0.85 0.05345 0.00156 0.09902 0.00300 0.01499 0.00020 96 3 96 1

XTM-02 0.84 0.04114 0.00124 0.09632 0.00303 0.01532 0.00020 93 3 98 1

XTM-03 0.70 0.06409 0.00172 0.14076 0.00398 0.01615 0.00020 134 4 103 1

XTM-04 0.71 0.05270 0.00102 0.10730 0.00225 0.01536 0.00020 103 2 98 1

XTM-05 0.83 0.04028 0.00082 0.08355 0.00183 0.01485 0.00019 81 2 95 1

XTM-06 1.00 0.04907 0.0008 0.10495 0.00203 0.01504 0.00020 101 2 96 1

XTM-07 0.78 0.04637 0.00199 0.09654 0.00394 0.01510 0.00020 94 4 97 1

XTM-08 0.87 0.07369 0.00132 0.17037 0.00339 0.01669 0.00022 160 3 107 1

XTM-09 1.27 0.04715 0.00071 0.09968 0.00170 0.01490 0.00019 96 2 95 1

XTM-10 0.74 0.04812 0.00143 0.10302 0.00320 0.01506 0.00020 100 3 96 1

XTM-11 1.08 0.05982 0.00089 0.12320 0.00210 0.01499 0.00019 102 2 96 1

XTM-12 0.75 0.05549 0.00249 0.11218 0.00479 0.01466 0.00020 108 4 94 1

XTM-13 0.88 0.05733 0.00121 0.11479 0.00262 0.01509 0.00020 110 2 97 1

XTM-14 1.06 0.04925 0.00082 0.09607 0.00179 0.01470 0.00019 93 2 94 1

XTM-15 0.96 0.06109 0.00308 0.12450 0.00601 0.01478 0.00022 109 5 95 1

XTM-16 1.05 0.04727 0.00248 0.09686 0.00489 0.01486 0.00021 94 5 95 1

XTM-17 0.78 0.05940 0.00150 0.12234 0.00329 0.01514 0.00020 107 3 97 1

XTM-18 0.86 0.03838 0.00142 0.07911 0.00301 0.01496 0.00020 77 3 96 1

XTM-19 0.75 0.06235 0.00265 0.12850 0.00516 0.01495 0.00021 123 5 96 1

XTM-20 0.72 0.05403 0.00084 0.11393 0.00202 0.01505 0.00020 110 2 96 1

Longger

LGR-01 1.02 0.05271 0.00208 0.08666 0.00351 0.01352 0.00019 84 3 87 1

LGR-02 1.21 0.05227 0.00166 0.08094 0.00264 0.01238 0.00016 79 2 79 1

LGR-03 1.12 0.04727 0.00183 0.08010 0.00315 0.01274 0.00016 78 3 82 1

LGR-04 1.03 0.05268 0.00065 0.08365 0.00111 0.01218 0.00014 82 1 78 0.9

LGR-05 0.86 0.04725 0.00239 0.08086 0.00395 0.01241 0.00016 79 4 80 1

LGR-06 1.27 0.05602 0.0012 0.09003 0.00200 0.01266 0.00015 88 2 81.1 1

LGR-07 1.59 0.05117 0.00106 0.20523 0.00462 0.02927 0.00036 190 4 186 2

LGR-08 2.34 0.05699 0.00128 0.09071 0.00211 0.01261 0.00016 88 2 81 1

LGR-09 1.21 0.04713 0.00077 0.07585 0.00129 0.01240 0.00015 74 1 79.4 1

LGR-10 1.10 0.05436 0.00101 0.08534 0.00164 0.01253 0.00015 83 2 80.3 1

LGR-11 1.37 0.05665 0.00136 0.08535 0.00210 0.01234 0.00015 83 2 79.1 1

(Continued on the following page)
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TABLE 1 (Continued) LA-ICP-MS zircon U-Pb analytical date of Xietongmen granite and Longer granite.

Granite type Point no Th/U Isotope ratio Age (Ma)

207Pb
206Pb

±1σ
207Pb
235U

±1σ
206Pb
238U

±1σ
207Pb
235U

±1σ
206Pb
238U

±1σ

LGR-12 1.33 0.05265 0.00073 0.08464 0.00124 0.01244 0.00015 82 1 79.7 1

LGR-13 1.35 0.04963 0.00109 0.07829 0.00176 0.01226 0.00015 77 2 78.6 1

LGR-14 2.01 0.05007 0.00102 0.08300 0.00175 0.0126 0.00016 81 2 81 1

LGR-15 1.94 0.04915 0.00133 0.08098 0.00225 0.01228 0.00016 79 2 79 1

LGR-16 0.80 0.04816 0.00143 0.08029 0.00244 0.01227 0.00016 78 2 79 1

LGR-17 1.01 0.05569 0.00092 0.08483 0.00145 0.01263 0.00015 83 1 80.9 1

LGR-18 1.46 0.05154 0.00117 0.08044 0.00187 0.01226 0.00015 79 2 78.6 1

LGR-19 1.00 0.05635 0.00089 0.14954 0.00248 0.02252 0.00027 142 2 144 2

LGR-20 1.46 0.05387 0.00137 0.08062 0.00209 0.01235 0.00016 79 2 79 1

LGR-21 2.09 0.05236 0.00116 0.07999 0.00182 0.01231 0.00015 78 2 78.9 1

LGR-22 0.36 0.05513 0.00072 0.12197 0.00166 0.01836 0.00022 117 2 117 1

LGR-23 2.02 0.06008 0.00116 0.08183 0.00162 0.01230 0.00015 80 2 78.8 1

LGR-24 1.11 0.05507 0.00107 0.07949 0.00159 0.01243 0.00015 78 1 79.6 1

LGR-25 1.21 0.06125 0.0012 0.08188 0.00164 0.01234 0.00015 80 2 79.1 1

LGR-26 1.07 0.06258 0.00237 0.08314 0.00321 0.01254 0.00018 81 3 80 1

LGR-27 1.28 0.05094 0.00134 0.07841 0.00211 0.01223 0.00016 77 2 78 1

LGR-28 1.22 0.05588 0.00129 0.08303 0.00196 0.01245 0.00016 81 2 80 1

LGR-29 1.38 0.05691 0.00126 0.08182 0.00185 0.01228 0.00016 80 2 79 1

LGR-30 1.22 0.05094 0.00116 0.08289 0.00193 0.01240 0.00016 81 2 79 1

and Longger granites plot within the high-K calc-alkaline
field. In the A/NK versus A/CNK diagram (Figure 5C), most
Xietongmen samples fall into the weakly peraluminous field,
whereas Longger samples are predominantly metaluminous. Thus,
the Xietongmen granite exhibits high-K calc-alkaline and weakly
peraluminous geochemical characteristics, while the Longger
granite is characterized by high-K calc-alkaline and metaluminous
characteristics.

Regarding trace elements, the total rare earth element (∑REE)
concentrations of the Xietongmen granite samples range from
16.76 ppm to 128.20 ppm, indicating a low concentration. The
light REE to heavy REE (∑LREE/∑HREE) ratios vary from 2.43
to 13.88, while the chondrite-normalized (La/Yb)N ratios range
from 2.10 to 16.90, indicating significant enrichment of LREE
relative to HREE and notable fractionation between the two rare
earth groups.

The Longger granite samples show ∑REE concentrations
between 141.72 ppm and 296.98 ppm. The LREE/HREE ratios vary
between 5.53 and 27.72, and the (La/Yb)N values vary between

5.60 and 58.29, showing strong LREE enrichment and fractionation
between LREE and HREE.

Both the Xietongmen granite and Longger granite exhibit
similar chondrite-normalized rare earth element (REE) patterns
(Figures 6A,C), characterized by significant enrichment in LREEs
and strong depletion in HREEs, with a rightward-sloping
trend in the chondrite-normalized REE pattern. The primitive
mantle-normalized multi-element spider (Figures 6B,D) diagram
demonstrates that the Xietongmen and Longger granite samples
exhibit enrichment in K, Rb, Th, U, and Pb, while showing depletion
in Nb, Ta, Ti, and P.

5.3 Sr-Nd isotope systems

Whole-rock Sr–Nd isotopic compositions for the Xietongmen
granite samples are listed in Table 3. Based on the granite’s
crystallization age of 96 Ma, the 87Sr/86Sr ratios range from
0.706045 to 0.706255, and initial 87Sr/86Sr ratios [(87Sr/86Sr)i]
vary between 0.7042 and 0.7044. The 143Nd/144Nd values range
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FIGURE 3
Cathodoluminescence (CL) images and U-Pb age (Ma) analysis of representative zircon grains for the Xietongmen granite (A) and Longer granite (B).

FIGURE 4
Zircon U-Pb concordia diagrams and weighted ages for the Xietongmen granite (A) and Longer granite (B).

from 0.512744 to 0.512781, and initial 143Nd/144Nd ratios
[(143Nd/144Nd)i] range from 0.512657 to 0.512707. The εNd (t
= 96 Ma) values vary between +2.78 and +3.76, and all of the
samples have relatively young two-stage Nd model ages (TDM2)
that vary between 591 and 670 Ma. The five granite samples
analyzed exhibit positive εNd(t) values, with a narrow range of
variation (within one ε unit), indicating a relatively homogeneous
magma source.

6 Discussion

6.1 Petrogenesis of the xietongmen adakite

The Xietongmen granite samples are characterized by
high SiO2 (68.16–74.17 wt%), Al2O3 (12.82–16.24 wt%), Sr
(226–364 ppm), low MgO (0.76–1.34 wt%), Y (2.93–12.28 ppm),
and Yb (0.40–1.47 ppm) contents, and corresponding high Sr/Y
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TABLE 2 Whole-rock geochemical data of granites from Xietongmen and Longer regions (major elements: wt%; trace elements: ppm).

Elements Xietongmen granite Longer granite

Sample XTM-1 XTM-2 XTM-3 XTM-4 XTM-5 XTM-6 LGR-4 LGR-5 LGR-6 LGR-7 LGR-8

SiO2 69.20 70.57 68.84 68.16 74.17 72.59 72.58 67.93 68.77 66.29 69.16

TiO2 0.57 0.53 0.60 0.60 0.45 0.56 0.12 0.54 0.37 0.57 0.18

Al2O3 16.23 14.38 16.24 15.45 12.84 15.04 14.64 15.79 15.80 16.27 16.07

Fe2O3
T 1.42 2.57 1.56 3.27 0.82 0.87 0.58 2.23 2.35 2.88 1.21

MnO 0.18 0.25 0.26 0.33 0.13 0.11 0.16 0.33 0.46 0.55 0.28

MgO 1.34 0.85 1.24 1.00 0.76 0.79 0.17 0.69 1.07 0.97 0.24

CaO 2.65 2.29 2.21 2.11 1.79 2.41 1.21 2.94 2.80 3.25 1.82

Na2O 3.88 3.76 2.77 3.86 4.33 4.25 4.14 4.83 3.23 4.85 3.88

K2O 3.51 3.86 4.65 4.42 4.07 2.83 6.04 4.16 4.77 3.36 6.49

P2O5 0.14 0.15 0.14 0.15 0.10 0.08 0.03 0.11 0.06 0.28 0.03

Major contituents (wt%)

LOI 1.62 1.19 1.48 0.92 2.09 1.25 0.52 0.40 0.38 0.23 0.80

total 100.75 100.39 99.99 100.27 101.54 100.78 100.19 99.95 100.06 99.50 100.16

Mg# 65.20 39.50 61.19 37.74 64.83 64.32 36.82 38.01 47.42 40.14 27.88

A/NK 1.59 1.39 1.69 1.39 1.11 1.50 1.10 1.27 1.51 1.40 1.20

A/CNK 1.08 0.99 1.19 1.03 0.87 1.04 0.94 0.89 1.01 0.93 0.96

Na2O/K2O 1.11 0.97 0.60 0.87 1.06 1.50 0.69 1.16 0.68 1.44 0.60

Na2O +
K2O

7.39 7.62 7.42 8.28 8.40 7.08 10.18 8.99 8.00 8.21 10.37

Rittman
indices

2.08 2.10 2.13 2.73 2.26 1.69 3.50 3.24 2.49 2.89 4.11

Trace elements (ppm)

Sc 5.88 5.46 5.63 6.16 3.97 4.22 5.85 2.53 6.33 3.94 3.91

V 52.91 51.90 55.75 60.26 35.04 36.17 2.88 36.29 42.94 43.16 4.84

Cr 19.09 19.32 20.58 21.16 13.17 16.85 0.95 6.87 14.92 8.55 1.85

Mn 158 210 226 291 109 90.67 125 271 352 446 203

Co 92.14 84.28 104 102 62.03 87.13 127 95.29 97.48 114 85.76

Ni 10.01 7.03 11.22 11.55 5.88 5.53 0.60 3.92 6.79 5.29 0.74

Cu 2.98 1.21 3.27 34.91 1.40 5.49 791.70 1.52 1.08 0.71 5.16

Zn 43.24 35.43 46.54 52.96 42.07 18.22 7.24 45.21 28.82 62.80 13.35

Ga 17.23 18.18 17.40 19.37 11.00 13.31 20.96 29.32 17.87 27.66 20.94

Rb 137 149 177 166 125 130 323 98.42 233 120 253

(Continued on the following page)
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TABLE 2 (Continued) Whole-rock geochemical data of granites from Xietongmen and Longer regions (major elements: wt%; trace elements: ppm).

Elements Xietongmen granite Longer granite

Sample XTM-1 XTM-2 XTM-3 XTM-4 XTM-5 XTM-6 LGR-4 LGR-5 LGR-6 LGR-7 LGR-8

Sr 333 302 360 364 226 311 55.83 1,031 146 624 116

Y 6.18 12.28 7.92 11.89 2.93 9.81 42.87 12.16 20.48 10.51 32.25

Zr 96.28 72.70 50.64 61.36 107 53.65 80.84 49.95 85.87 123 111

Nb 9.19 7.96 9.87 9.17 5.57 9.74 21.68 10.73 10.76 8.28 10.45

Mo 0.89 0.34 7.93 0.46 0.50 0.15 0.14 0.24 0.27 0.13 0.21

Cs 10.01 11.58 12.36 10.65 8.17 7.90 3.35 1.67 6.52 3.45 3.12

Ba 446 439 587 531 511 274 158 989 280 391 501

La 7.86 34.65 15.85 26.91 4.10 3.51 34.66 78.20 33.59 47.40 48.38

Ce 12.61 56.99 26.59 44.71 6.81 6.21 64.71 140.23 62.97 91.99 90.19

Pr 1.35 5.64 2.61 4.48 0.69 0.73 6.47 14.23 6.38 9.69 9.20

Nd 4.90 18.57 8.97 14.93 2.49 2.90 21.52 46.32 21.03 33.07 30.90

Sm 0.89 2.99 1.61 2.79 0.48 0.95 4.84 6.33 3.88 4.92 5.79

Eu 0.47 0.74 0.51 0.85 0.25 0.55 0.39 1.33 0.59 0.95 0.78

Gd 0.97 2.44 1.37 2.58 0.47 1.24 5.27 4.31 3.48 3.33 5.86

Tb 0.16 0.37 0.21 0.37 0.08 0.23 0.98 0.52 0.53 0.41 0.94

Dy 0.93 2.12 1.26 2.24 0.46 1.63 6.35 2.60 3.31 2.09 5.55

Ho 0.21 0.45 0.26 0.44 0.10 0.35 1.39 0.46 0.70 0.37 1.12

Er 0.63 1.33 0.77 1.28 0.32 1.12 4.26 1.20 2.15 1.04 3.33

Tm 0.09 0.21 0.12 0.20 0.04 0.17 0.65 0.16 0.33 0.16 0.48

Yb 0.70 1.47 0.78 1.34 0.40 1.20 4.44 0.96 2.40 1.02 3.01

Lu 0.12 0.23 0.12 0.20 0.06 0.17 0.63 0.12 0.36 0.15 0.45

Hf 3.34 2.37 2.02 2.22 3.40 2.11 3.82 1.48 3.32 3.69 4.17

Ta 1.17 1.03 1.20 1.18 0.36 1.17 4.29 0.97 1.84 1.05 0.98

Pb 12.98 6.67 13.80 13.67 8.97 5.01 48.39 20.77 33.09 23.57 47.33

Th 23.04 19.38 38.18 21.12 14.98 18.25 48.99 16.96 39.12 23.72 46.02

U 4.35 4.53 5.24 5.34 2.66 4.03 21.73 1.51 3.93 2.66 4.46

∑REE 31.90 128.20 61.03 103.31 16.76 20.96 156.56 296.98 141.72 196.60 205.99

∑LREE 28.09 119.58 56.15 94.67 14.82 14.84 132.59 286.64 128.44 188.02 185.24

∑HREE 3.81 8.62 4.88 8.64 1.94 6.12 23.98 10.34 13.28 8.58 20.75

LREE/HREE 7.37 13.88 11.50 10.96 7.65 2.43 5.53 27.72 9.67 21.90 8.93

(Continued on the following page)
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TABLE 2 (Continued) Whole-rock geochemical data of granites from Xietongmen and Longer regions (major elements: wt%; trace elements: ppm).

Elements Xietongmen granite Longer granite

Sample XTM-1 XTM-2 XTM-3 XTM-4 XTM-5 XTM-6 LGR-4 LGR-5 LGR-6 LGR-7 LGR-8

δEu 1.55 0.84 1.06 0.97 1.60 1.55 0.23 0.78 0.49 0.72 0.41

(La/Yb)N 8.11 16.90 14.55 14.42 7.43 2.10 5.60 58.29 10.04 33.20 11.51

(Gd/Yb)N 1.16 1.37 1.45 1.60 0.98 0.86 0.98 3.71 1.20 2.69 1.61

(La/Sm)N 5.70 7.48 6.34 6.23 5.48 2.39 4.63 7.98 5.59 6.22 5.40

A/CNK = Al2O3/(K2O + Na2O + CaO) (mole ratio), Mg# = 100 × Mg/(Mg + Fe), Fe2O3
T–total iron reported as Fe2O3, δEu = 2EuN/(Sm × Gd)N, N denotes chondrite-normalized values,

with normalization values based on (Sun and McDonough, 1989).

FIGURE 5
Geochemical diagrams of granites in Xietongmen and Longer area (A) Total alkali (Na2O + K2O) versus silica (SiO2) diagram (Middlemost, 1994); (B) K2O
versus SiO2 diagram (Rickwood, 1989); (C) A/NK versus A/CNK diagram (Maniar and Piccoli, 1989).
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FIGURE 6
The chondrite-normalized rare earth element (REE) patterns (A,C) and primitive mantle-normalized trace element spider diagrams (B,D) for granites
from the Xietongmen and Longger areas, respectively. The normalization values for chondrite and primitive mantle are from Sun and
McDonough (1989).

(24.59–77.13) and La/Yb (2.10–16.90) ratios. All samples display
LREE enrichment and depletion in HREEs and HFSEs (such as Nb
and Ta), with slightly positive Eu anomalies. These geochemical
features are comparable to those of adakitic rocks (Defant and
Drummond, 1990; Castillo, 2006), which are generally defined
by Al2O3 ≥ 15 wt%, MgO ≤3 wt% (rarely exceeding 6 wt%), Y <
18 ppm,Yb≤ 1.9 ppm, Sr > 400 ppm, Sr/Y> 20, with slightly positive
Eu anomalies (Defant and Drummond, 1990; Castillo, 2006).In the
Sr/Y versus Y (Figure 7A) and (La/Yb)N versus YbN (Figure 7B)
diagrams, the Xietongmen granite samples are positioned within
the adakite field, showing that they have an adakitic geochemical
signature.

Adakite was initially regarded as derived from the partial
melting of a young subducted oceanic slab (Defant and
Drummond, 1990). However, recent studies propose several
possible formation mechanisms for adakite, as follows: (1)
partial melting of subducted oceanic crust (Rapp et al., 1999;
Zhu et al., 2009b); (2) partial melting of thickened lower
continental crust (Atherton and Petford, 1993; Hou et al., 2013);
(3) partial melting of subducted continental crust (Wang et al.,
2008); (4) fractional crystallization of primary basaltic magma
(Macpherson et al., 2006).

Adakite derived from the fractional crystallization of primary
basaltic magma typically leads to a distinct negative Eu anomaly
and positive correlations between Sr/Y, Dy/Yb, La/Yb, and SiO2
(Macpherson et al., 2006). However, the Xietongmen adakitic rock
has no such characteristics. In the La versus La/Yb plot (Figure 7C),
its geochemical signature is more consistent with partial melting
than fractional crystallization. Therefore, the formation of the
Xietongmen adakitic rock cannot be attributed to fractional
crystallization.

Adakitic rocks formed by partial melting of subducted
continental crust typically exhibit higher Th/Ba and Rb/Ba
ratios, and negative εNd(t) values (Lai and Qin, 2013). However,
Xietongmen adakitic rock samples have low Th/Ba (0.03–0.07),
Rb/Ba (0.24–0.48) ratios, and positive εNd(t) values (2.78–3.76).
Moreover, the Xietongmen adakitic rock formed at 95.9 Ma during
the northward subduction of the Neo-Tethyan oceanic lithosphere
beneath the Eurasian continent, rather than during the subduction
of continental crust. Therefore, this interpretation is also ruled out.

Adakitic rocks derived from partial melting of a subducted
oceanic slab typically have low K2O content (Defant and
Drummond, 1990). The samples of Xietongmen adakitic rock
have comparatively high K2O (2.83–4.65 wt%), similar to the
K2O contents (2.9–4.1 wt%) of adakitic rocks derived from lower
crustal melting (Defant and Drummond, 1990). Their Nb/Ta
ratios (7.71–15.43) are also close to those of continental crust
(11–14) (Taylor and McLennan, 1995). Furthermore, all samples
of the Xietongmen adakitic rock have low MgO (0.76–1.34 wt%),
Cr (13.17–21.16 ppm), and Ni (5.53–11.55 ppm) contents. In
the Ni versus Cr (Figure 7D), the Cr versus SiO2 (Figure 7E),
and MgO versus SiO2 (Figure 7F) diagrams, most samples fall
within the lower crust partial melting field. In the εNd(t) versus
87Sr/86Sr plot (Figure 8), the specimens fall within the adakitic
field associated with the thickened magnesian lower crust of
southern Tibet.

The Xietongmen adakite samples exhibit enrichment in LILEs
and LREEs, showing depletion in HFSEs. These samples exhibit
relatively low initial 87Sr/86Sr isotopic values (0.7042–0.7044) and
positive εNd(t) values (+2.78 to +3.76), with two-stage Nd model
ages of 591–670 Ma, indicating that the pluton likely derived from
the partial melting of a juvenile lower crust. Additionally, Y/Yb
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ratios (7.42–10.14; ≈10) and (Ho/Yb)N ratios (0.73–0.93; ≈1) suggest
that amphibole was the principal residual phase in the magma
source, with some residual garnet also present (Hu et al., 2014).
The high Ba and Sr contents and the slightly positive Eu anomalies
suggest that plagioclase did not remain as a residual phase in
the source region. The relatively high Mg# values (> 40) of some
samples suggest minor involvement of mantle-derived material
during magma evolution. The specimens plot within the crust
and mantle field in the (La/Yb) N versus δEu diagram (Figure 9).
Therefore, the magma evolution of the Xietongmen adakitic rock
was primarily controlled by partial melting, with a residual mineral
assemblage dominated by amphibole and garnet, and lacking
plagioclase. The geochemical features suggest that the Xietongmen
adakite was likely generated through the partial melting of a juvenile
thickened lower crust, with a slight input from mantle-sourced
components.

6.2 Petrogenesis of the Longger granite

Granites can be categorized into I-, S-, A-, andM-type according
to their origin and geological setting (Champion and Chappell,
1992; Chappell and White, 1992). M-type granites formed by
fractional crystallization of mantle-derived magma and typically
exhibit geochemical characteristics of high Mg# (50–60) values and
low SiO2 (<65 wt%) contents (Bowden et al., 1979), whereas the
Longger granite displays properties of high SiO2 (66.29–72.58 wt%)
contents and low Mg# (27.88–47.42) values, thus excluding its
classification as an M-type granite. The samples exhibit Zr + Nb
+ Ce + Y concentrations ranging from 180 ppm to 245 ppm and
an alkalinity index (AI) of 0.50–0.70, which do not correspond
to A-type granites (typically Zr + Nb + Ce + Y ≥ 350 ppm, AI
> 0.85) (Whalen et al., 1987; Eby, 1990), thus excluding an A-
type granite classification. In the (Na2O + K2O)/CaO versus (Zr
+ Nb + Ce + Y) (Figure 10A) and the Fe2O3

T/Mg versus (Zr +
Nb + Ce + Y) (Figure 10B) diagrams, the Longger granite plots
within the OTG (undifferentiated I, S, M-type granites) granite
fields, suggesting that it could be either I-type or S-type granite.
The Longger granite is also metaluminous, with an A/CNK ratio of
0.89–1.01. This ratio is below the threshold of 1.1 that distinguishes
S-type granite (A/CNK >1.1) and is more consistent with I-type
granite (Whalen et al., 1987; Chappell and White, 1992).

Previous research has indicated that P2O5, Th, Y, Rb, and other
major and trace elements can effectively differentiate I-type and S-
type granites (Whalen et al., 1987;Wolf andLondon, 1994). In S-type
granites, P2O5 content increases or remains constant with increasing
SiO2 (Whalen et al., 1987; Wolf and London, 1994), whereas in
I-type granites, it decreases as SiO2 increases. Furthermore, I-
type granites typically exhibit high concentrations of Th and Y,
with Th showing a positive correlation with Rb (Chappell, 1999).
The Longger granite samples exhibit a clear negative correlation
in the P2O5 versus SiO2 scatter plot, indicating an evolutionary
trend characteristic of I-type granites (Figure 10C). Petrographic
analysis shows that hornblende, a characteristic mineral of I-type
granite, is also present in these samples. The Longger granite is
classified as an I-type granite based on these geochemical and
mineralogical features.
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FIGURE 7
(A) Sr/Y vs. Y diagram (Defant and Drummond, 1990); (B) (La/Yb)N vs. YbN diagram (Martin, 1999); (C) La vs. La/Yb diagram (Furman and Graham, 1999);
(D) Ni vs. Cr diagram (Wang et al., 2006); (E) Cr vs. SiO2 diagram (Wang et al., 2006); (F) MgO vs. SiO2 diagram (Wang et al., 2006).
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FIGURE 8
εNd (t) vs. 87Sr/86Sr diagram of the Xietongmen granite (Xu et al., 2020).

FIGURE 9
(La/Yb)N vs. δEu diagram (Zhang Z et al., 2014).

I-type granite has been widely regarded as formed through
three genetic processes: (1) fractional crystallization of mantle-
derived basaltic magma (Cawthorn and Brown, 1976; Wyborn et al.,
1987); (2) fractional crystallization of crust-mantle hybrid magma
(Turpin et al., 1990; Barbarin, 1996; Chappell et al., 2012); (3) partial
melting of the lower crust heated by mantle magma underplating
(Castro et al., 1991). I-type granites formed by the first way typically
exhibit large-scale coeval basic rocks in their vicinity. However,
no extensive basic rocks have been found in the study area. In
the La-La/Yb diagram (Figure 7C), the Longger granite exhibits a
partial melting trend rather than a fractional crystallization trend.

Therefore, the Longger granite was not likely formed by the first
one. For the second process, granites formed by crust-mantlemixing
typically contain mafic microgranular enclaves, whereas no such
dark enclaves have been found in the Longger granite (Turpin et al.,
1990; Barbarin, 1996; Chappell et al., 2012). Additionally, the Mg#

values of the Longger granite samples range from 27.88% to 47.42%
(mean 38.05%), which do not exhibit the high Mg# values indicative
of interaction with the mantle (Rapp et al., 1999; Hu et al., 2012).
Therefore, the Longger granite was not formed in the second way.

The Longger granite samples exhibit high SiO2
(66.29%–72.58 wt%) and Al2O3 (14.64 wt.%–16.27 wt%) contents.
They are enriched in K, Rb,Th,U, and Pb, while displaying depletion
in Nb, Ta, Ti, and P, indicating a dominantly continental crustal
source (Hu et al., 2017). The Th/U ratios (2.3–11.2, mean 8.5) are
comparable to those of the lower crust (6.0) (Rudnick and Gao,
2003). As two high-field-strength elements (HFSEs) with similar
incompatibility, Nb and Ta remain relatively stable duringmagmatic
evolution, making them effective indicators of magmatic source
characteristics and plutonic evolution (Pfänder et al., 2007). All
samples of the Longger granite Nb/Ta ratios (5.06–11.06) are lower
than those of the depleted mantle (∼17) but comparable to those
of the continental lower crust (∼11) (Pfänder et al., 2007). In the
(La/Yb)N versus δEu diagram (Figure 9), most rock specimens
fall within the crustal-type granite region, further supporting
a lower crustal origin (Rapp and Watson, 1995; Rudnick and
Fountain, 1995). Additionally, the La versus La/Yb (Figure 7C)
diagram indicates a distinct partial melting trend, and the Ni
versus Cr (Figure 7D), Ni versus SiO2 (Figure 7E), and MgO versus
SiO2 (Figure 7F) diagrams suggest derivation from lower crustal
partial melting. The granite exhibits negative Eu anomalies (δEu =
0.23–0.78) and Ba, Sr depletion characteristics, indicating that it
may have undergone plagioclase fractional crystallization (Chappell
and White, 1992). In summary, the Longger granite was formed by
partial melting of the lower crust. During its magmatic evolution
and pluton emplacement, it underwent plagioclase fractional
crystallization.

6.3 Tectonic setting and significance

Further insights into the tectonic setting can be derived using
granite tectonic classification diagrams (Pearce et al., 1984). In the
Fe2O3

T/(Fe2O3
T + MgO) versus SiO2 diagram (Figure 11A), the

specimens plot in the island arc granite, continental arc granite, and
collisional granite fields.TheRb versus Y +Nb diagram (Figure 11B)
places all specimens in the volcanic arc granite field, while theNb/Zr
versus Zr diagram (Figure 11C) indicates a subduction-related
setting. Additionally,most samples plot within the active continental
margin field in the Th/Yb versus Ta/Yb diagram (Figure 11D).
Combining these geochemical characteristics with geochronological
data and the contemporaneous tectonic background of Late
Cretaceous magmatism, it is evident that both the Xietongmen
and Longger granites were emplaced in a subduction-related
environment, likely linked to the northward subduction of the Neo-
Tethyan oceanic plate beneath the Eurasian continent.

The Late Cretaceous igneous rocks within the Gangdese
Tectonic Belt are interpreted as the result of large-scale magmatic
activity triggered by the subduction of the Neo-Tethyan oceanic
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FIGURE 10
(A) (Na2O + K2O)/CaO vs. (Zr + Nb + Ce + Y) diagram (Whalen et al., 1987); (B) Fe2O3

T/Mg vs. (Zr + Nb + Ce + Y) diagram (Whalen et al., 1987); (C) P2O5

vs. SiO2 diagram. Abbreviations: FG, highly fractionated I-type granites; OTG, undifferentiated I, S, M-type granites.

plate beneath the Lhasa Block (Murphy, 2019; Tassara et al., 2020;
van Hinsbergen et al., 2021; Moyen et al., 2021; Luffi and Ducea,
2022). However, the specific subduction dynamics of the Neo-
Tethyan Ocean during this period remain debated, with three
prevailing models: (1) flat-slab subduction of the Neo-Tethyan
Ocean (Coulon et al., 1986; Wen et al., 2008a; Wen et al., 2008b;
Zheng et al., 2014); (2) slab rollback of the Neo-Tethyan oceanic
lithosphere (Chung et al., 2005; Ma et al., 2013a; Ma et al.,
2013b); (3) ridge subduction of theNeo-Tethyan oceanic lithosphere
(Zhang et al., 2010; Zhu et al., 2013).

Wen et al. (2008a), Wen et al. (2008b) collected 25 samples from
different regions of the Gangdese tectonic belt, including diorite,
granodiorite, gabbro, and granite. Samples emplaced between 103
and 80 Ma were selected for systematic geochemical analysis, and
data previously published byQuidellieur et al. (1997)were compiled.
The results show that most Late Cretaceous samples exhibit adakitic
geochemical characteristics. However, adakitic magmatism likely
had a short duration, occurring only over a limited period in
a specific tectonic domain. This indicates that the Neo-Tethyan
Ocean underwent flat-slab subduction during the Late Cretaceous,
followed by slab rollback. In general, flat subduction leads to the
expulsion of mantle wedgematerials due to compressive forces from
the subducting slab, resulting in reduced mantle wedge materials in
the subduction zone and thereby inhibiting the formation ofmantle-
derived mafic magmas. This mechanism is inconsistent with the
widespread mafic magmatism reported in the early Late Cretaceous
(Gutscher and Peacock, 2003; Kapp et al., 2005; Kapp et al., 2007;
Kay et al., 2005; Xu et al., 2015; Zhu et al., 2018).

Ma et al. (2013a), Ma et al. (2014) discovered norites and
hypersthene-bearing hornblendites emplaced at ∼93 Ma in the
Milin area of the southern Gangdese tectonic belt. Geochemical
and isotopic data for both rock types indicate that their parental
magmas were likely derived from the interaction between upwelling
asthenospheric mantle and metasomatized lithospheric mantle
(Ma et al., 2013a; Ma et al., 2014). Therefore, they proposed that
the early Late Cretaceous magmatic “flare-up” event was triggered
by asthenospheric mantle upwelling caused by rollback of the

subductedNeo-Tethyan oceanic slab. If the slab rollbackmechanism
is valid, the oceanic plate should retreat in the direction opposite
to subduction. Consequently, magmatic rocks formed during this
period should exhibit a progressively younger age trend from north
to south. However, such a trend is not observed in the Gangdese
Tectonic Belt (Zhu et al., 2009b; Zhu et al., 2018; Zheng et al., 2014).

Zhang et al. (2010) reported high-temperature charnockites
formed at 86–90 Ma in the eastern Gangdese Tectonic Belt.
Combining coeval calc-alkaline magmatism with the crystallization
temperature (900°C) andpressure (1.0 GPa) of the high-temperature
adakitic charnockites, they proposed that these high-temperature
and low-H2O activity charnockites formed during the subduction of
the Neo-Tethyan mid-ocean ridge. Subsequent studies have further
supported this model, offering plausible explanations for various
geological observations (Zhu et al., 2013; Xu et al., 2015).

Guo et al. (2011), Guo et al. (2013) divided magmatic events
in the Gangdese Belt into five stages through zircon U-Pb dating,
among which the mid-ocean ridge subduction stage occurred at
89–80 Ma. Based on fieldwork in the Medog-Bomi area, Pan et al.
(2014) proposed that the subduction of the mid-ocean ridge
beneath the Lhasa Terrane occurred at ∼ 95–80 Ma. Zheng et al.
(2014) argued that the subduction of the Neo-Tethyan mid-
ocean ridge beneath the southern Lhasa Terrane occurred at
105–76 Ma, based on the presence of high-temperature granulite-
facies metamorphism and Late Cretaceous basalt basement in the
Langxian area, and the resultant heat accumulation caused melting
of the overlying crust, leading to a magmatic peak. Ma et al.
discovered hypersthene-bearing hornblendites formed at ∼93 Ma in
the Milin area, whose pressure-temperature (P-T) conditions are
consistent with the mid-ocean ridge subduction model. Therefore,
for the subductionmodel of the Neo-TethyanOcean during the Late
Cretaceous, it can be inferred that a northward mid-ocean ridge
subduction regime operated in the early Late Cretaceous.

Most of the above studies also support the southward retreat
of the subducting Neo-Tethyan slab beneath the southern Lhasa
Terrane during the late Late Cretaceous. However, discrepancies
remain regarding the timing of slab rollback, primarily whether it
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FIGURE 11
(A) Fe2O3

T/(Fe2O3
T + MgO) vs. SiO2 diagram (Rollinson H., 1993); (B) Rb vs. (Y + Nb) diagram (Pearce et al., 1984); (C) Nb/Zr vs. Zr diagram

(Pearce et al., 1984); (D) Th/Yb vs. Ta/Yb diagram(Schandl and Gorton, 2002). Abbreviations: IAG, Island Arc Granite; CAG, Continental Arc Granite;
CCG, Continental Collision Granite; RRG, Rift-Related Granite; CEUG, Continental Epeirogenic Uplift Granite; POG, Post-Collisional Granite;
Syn-COLG, Syn-Collisional Granite; VAG, Volcanic Arc Granite; WPG, Within-Plate Granite; ORG, Ocean Ridge Granite.

occurred before ∼70 Ma (Chung et al., 2005; Zhang et al., 2010;
Ma et al., 2013a; Ma et al., 2013c) or after 70 Ma (Lee et al.,
2009; Lee et al., 2012). Therefore, the approximate timing of
Neo-Tethyan slab retreat remains unclear (Zhu et al., 2009a;
Zhu et al., 2018; Zheng et al., 2014).

These studies show that during the mid-ocean ridge subduction
of the Neo-Tethyan Ocean, high-temperature asthenospheric
material upwelled through slab windows within the subducted
oceanic ridge. These thermal anomalies transferred heat to the
lithospheric mantle, raising its temperature. The heated lithospheric
mantle then transferred heat to the overlying thickened lower
crust, inducing partial melting and ultimately triggering large-scale

magmatism. The Xietongmen adakitic rock was likely generated as
a product of ridge subduction during this period (Figure 12A). It
originated through the partialmelting of a thickened lower crust and
did not experience significant fractional crystallization. Therefore,
its geochemical signatures can serve as an indicator for estimating
crustal thickness. According to the crustal thickness estimation
formula proposed by Chapman et al. (2015):

H = 1.11(Sr/Y) + 8.05 (1)

The Sr/Y values of the selected samples were used to estimate the
corresponding crustal thickness, adhering to the applicable range of
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FIGURE 12
Schematic diagrams of (A) Subduction of the Neo-Tethyan mid-ocean ridge subduction and (B) slab rollback models. (Schematic diagram modified
after Suo et al., 2019; Ma et al., 2021).

the formula and the data exclusion criteria.The results show that the
median Sr/Y value of the Xietongmen adakitic rock samples is 45.47,
yielding an estimated crustal thickness of 49.87 km. Additionally,
using the formula proposed by Hu et al. (2017):

H = 0.67(Sr/Y) + 28.21 (2)

The estimated crustal thickness is 54.10 km. The consistency
between these two estimates suggests that the crustal thickness
of the Gangdese Tectonic Belt reached approximately 50 km in
the early Late Cretaceous. This calculation result aligns with the
conclusion of Zhu et al. (2023) based on a comprehensive analysis of
petrological, geochemical, and geochronological data, which states
that “the Gangdese crust experienced local thickening at ∼90 Ma.”

Calculating with Equations 1, 2, the estimated crustal thickness
for forming the Longger I-type granite is 33.74 km and 43.86 km.

Both values are lower than those for the Xietongmen adakitic
rock, suggesting that the Longger I-type granite formed in a
relatively extensional setting with a thinner crust, in contrast
to the thickened crustal environment of the Xietongmen
adakitic rock.

Thus, the Xietongmen adakitic rock, developed in the early
Late Cretaceous of the Gangdese Belt, formed under a crustal
thickening regime, while the Longger I-type granite, emplaced
in the late Late Cretaceous, formed under conditions of crustal
thinning. Ridge subduction likely occurred in the initial phase
of the Late Cretaceous, followed by slab rollback in the late Late
Cretaceous. The slab rollback facilitated extensive asthenospheric
mantle upwelling and underplating, which thermally perturbed the
lithospheric mantle. The heated lithospheric mantle subsequently
transferred heat to the lower crust, causing partial melting and the
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formation of Longger I-type granite, which is primarily crustal-
derived (Figure 12B). This interpretation is consistent with previous
studies on crustal recycling in the Gangdese Belt (Chung et al., 2005;
Zhang et al., 2010;Ma et al., 2013a; 2013b). However, this hypothesis
requires further testing.

7 Conclusion

(1) ZirconU-Pb age analysis indicates that theXietongmen granite
and Longger granite in the Gangdese Tectonic belt have ages of
95.9 ± 0.6 Ma and 79.5 ± 0.4 Ma, respectively, suggesting that
both intrusions were emplaced during the Late Cretaceous.

(2) The Xietongmen granite belongs to the high-K calc-alkaline,
metaluminous granite series. Furthermore, the samples are
enriched in Sr and depleted in Y, with high Sr/Y and
(La/Yb)N ratios, exhibiting geochemical characteristics typical
of adakitic rocks. Petrogenetically, this granite originated from
the partial melting of the thickened lower crust.

(3) The Longger granite is a metaluminous granitoid of the
high-K calc-alkaline series. Geochemically, the pluton
exhibits enrichment in large ion lithophile elements (LILE)
and depletion in high field strength elements (HFSE),
and displays geochemical features of I-type granites.
Petrogenetically, it originated from the partial melting of the
lower crust.

(4) The Xietongmen granite was likely formed in the early
Late Cretaceous in a tectonic environment linked to the
subduction of the Neo-Tethyan oceanic ridge. In contrast, the
Longger I-type granite was likely emplaced in the late Late
Cretaceous, following ridge subduction and during the slab
rollback phase.
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