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Underground hydrogen storage (UHS) in geological formations presents a
viable option for long-term, large-scale H2 storage. A physical coal model was
constructed based on experimental tests and a MD simulation was used to
investigate the potential of UHS in underground coal gasification (UCG) cavities.
We investigated H2 behavior under various conditions, including temperatures
ranging from 278.15 to 348.15 K, pressures in the range of 5–20 MPa, pore
sizes ranging from 1 to 20 nm, and varying water content. We also examined
the competitive adsorption dynamics of H2 in the presence of CH4 and CO2.
The findings indicate that the optimal UHS conditions for pure H2 involve low
temperatures and high pressures. We found that coal nanopores larger than
7.5 nm optimize H2 diffusion. Additionally, higher water content creates barriers
to hydrogen diffusion due to water molecule clusters on coal surfaces. The
preferential adsorption of CO2 and CH4 over H2 reduces H2-coal interactions.
This work provides a significant understanding of the microscopic behaviors
of hydrogen in coal nanopores at UCG cavity boundaries under various
environmental factors. It also confirms the feasibility of underground hydrogen
storage (UHS) in UCG cavities.

KEYWORDS

underground hydrogen storage, underground coal gasification, molecular dynamics
simulations, adsorption, diffusion

1 Introduction

The urgent need address climate change and reduce greenhouse gas emissions is driving
amajor shift in the global energy landscape (Welsby et al., 2021; IEA, 2023). Hydrogen (H2),
as a clean energy source with no carbon emission, is considered as an important component
in the future energy system (Heinemann et al., 2021; IEA, 2021). However, storage and
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transport of H2 has been one of the significant challenges
hindering its wide application (Heinemann et al., 2021; Aftab et al.,
2022). UHS in geological formations, including porous media
and caves, is currently being realized, and potential sites
include hydrocarbon reservoirs, salt caverns, or salt coal seams
(Zivar et al., 2021; Abreu et al., 2023; Muhammed et al.,
2023). Meanwhile, other options, such as using abandoned coal
mines and mining caves to store H2, are receiving increasing
attention (Keshavarz et al., 2022). These methods not only
offer the possibility of achieving large-scale H2 storage, but
also provide long-term safe storage options when geological
conditions are suitable (Epelle et al., 2022; Gabrielli et al., 2020;
Lord et al., 2014).

Current research focuses on UHS in depleted reservoirs, H2
storage in salt caverns, and the storage behavior of H2 in porous
media such as brine formations. Salt cavern UHS technology is
relatively mature and has been widely studied and applied due to
its high confinement and low permeability (Caglayan et al., 2020;
Shahabuddin and Alam, 2022). In contrast, UHS using cavities in
coal seams or coal underground after gasification is still in the
research stage, and despite its great potential, a series of technical
challenges still need to be overcome (Keshavarz et al., 2022; Liu and
Liu, 2023).

Underground coal gasification (UCG) represents an advanced
clean coal technology that transforms in situ coal into a synthesis gas
primarily composed of H2, CH4, CO2 and other gases. Compared to
conventional mining of coal, UCG significantly minimizes surface
disturbance (Perkins and Sahajwalla, 2008), releasing coal reserves
in a more environmentally friendly manner (Burton et al., 2019;
Liu and Liu, 2021; Shafirovich and Varma, 2009), and can be linked
to subsequent CO2 sequestration efforts (Durucan et al., 2014;
Roddy and Younger, 2010; Sheng et al., 2016; Yang et al., 2016).
UCG not only achieves efficient use of underground resources,
but more importantly, after the gasification process occurs, the
coal in the coal seam is consumed, creating a post-combustion
cavity with a certain degree of porosity and permeability, which
opens the possibility of UHS (Niu et al., 2014; Perkins, 2018;
Zhao et al., 2010).

The cavities formed after UCG can be considered as potential
gas storage sites due to their natural underground location and
relatively stable environment (Durucan et al., 2014; Yang et al.,
2016; Younger, 2011). Previously existing UCG construction
can also reduce the construction cost and environmental risk
of the UHS process. Jiang et al. (2019) demonstrated the
feasibility of CO2 sequestration in UCG cavities by numerical
simulation. The low-permeability sealing of the rock formation
would prevent gas loss due to the upward movement of the
gas, and most of the injected gas is expected to be retained
in the underground gasification cavities (Godec et al., 2014).
There is more experience underground CO2 and CH4 storage
(Korre et al., 2019; Zhang et al., 2020), which is indicative
of UHS. Dong et al. (2024) investigated the potential of H2
production during UCG through experiments and numerical
simulations and found that the porosity and permeability of the
cavities were significantly increased after combustion, which gave
them good UHS properties (Dong et al., 2024). However, H2
has different physical characteristics and properties compared
to CO2 or CH4 (Berta et al., 2018; Carden and Paterson, 1979;

Han et al., 2017). For example, storing the same mass of H2
requires greater more significant pressure due to its lower density.
And the importance of storage capacity in the UHS process is
self-evident (Zivar et al., 2021).

In recent years, with the development of computer technology,
molecular simulations have increasingly become a critical method
for exploring the micro-mechanical behaviors of gases at the
nanoscale (Kim and Devegowda, 2022; Koleini et al., 2019;
Ugwu et al., 2022). Extensive characterization has been conducted
on the interactionmechanisms between gases and various substrates
such as coal, shale, clay minerals, and quartz fractures under
different conditions (Collell et al., 2014; Liu et al., 2024; Sun et al.,
2023; Swai, 2020). Using Grand Canonical Monte Carlo (GCMC)
and Density Functional Theory (DFT), it has been found that
the type of coal and its moisture content significantly influence
adsorption capacity and diffusion behavior s (Zhou et al., 2019). Yin
et al. (2024) studied the adsorption of CH4, CO2, and flue gases
under different porosity constraints in high-rank coals, noting
that the self-diffusion coefficients of gas are significantly lower
under deep conditions than in shallower settings. Zhang et al.
(2024) utilized GCMC simulations to explore the adsorption
behaviors of pure H2 and H2 mixed with CH4/CO2 in kerogen
and montmorillonite nanopores within shale, finding stronger
adsorption of pure H2 to kerogen compared to montmorillonite.
Molecular dynamics (MD) simulations have also emerged as
powerful tool to interrogate H2 diffusion and adsorption behaviors
in confined environments. Bai and Piri (2022) employed MD
simulations to systematically analyze H2 storage in engineered
nanoporous materials (e.g., metal-organic frameworks (MOFs),
carbon nanotubes), revealing that H2 uptake is maximized at
pore diameters of 6–8 Å due to van der Waals interactions and
quantum confinement. Their work identified a threshold energy
for effective confinement, below which larger pores outperform
smaller ones despite lower surface areas. Similarly, Oliver et al.
(2024) utilized MD to investigate hydrogen transport in geological
porous media (e.g., shale, clay), demonstrating that self-
diffusion coefficients in kaolinite and graphene pores decrease
exponentially with pressure due to gas-phase densification. These
studies emphasize the importance of integrating computational
methods with experimental validation to bridge the gap between
fundamental understanding and technological implementation.
Additionally, the development of force fields has also contributed
to enhancing the accuracy of simulations. These findings
provide insights into the effects of pressure, temperature and
pore space on gas adsorption and diffusion, highlighting
the importance of evaluating the competitive adsorption of
gas mixtures in coal pores, which is vital for UHS in UCG
cavities.

Despite the multiple advantages of UHS in post-burn cavities
of UCG, there are still many issues that have yet to be clarified.
Firstly, the stability and sealing of post-burn cavities need to
be further investigated to ensure the safety of H2 during the
storage process (Shahabuddin and Alam, 2022). Second, the
adsorption and desorption behavior of H2 in the nanopore, and
possible gas leakage are key technical challenges that need to
be addressed (Mulky et al., 2024). Finally, the current research
on UHS in cavities of UCG is still at an early stage and lacks
large-scale experiments and field validation, which constitutes
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TABLE 1 Statistical table of the test data of the coal samples in the Junggar basin, China.

Sample Proximate analysis (%) Maceral content (%) Ro,m (%)

Moisture as received Ash Volatile Fixed carbon Vitrinite Inertinite Liptinite

ZG-1 10.12 17.09 46.42 8.37 87.36 9.89 2.75 0.41

an obstacle to the practical application of the technology
(Dong et al., 2024).

To address that issue, this study employs molecular dynamics
(MD) simulations to systematically investigate the feasibility of
UCG cavities as UHS sites. The microscopic behavior of H2 in
coal nanopores at various scenarios of temperatures, pressures,
porosities, and water contents, and the competitive adsorption of
multiple gases under mixed conditions were investigated. With
this work, we hope to provide a useful reference for the future
development of UHS technology, and at the same time, contribute to
the comprehensive utilization of coal resources and the development
of clean energy.

2 Molecular models and simulations

2.1 Coal sample collection and
experimental testing

In this study, the coal sample was collected from the Mesozoic
Lower Jurassic in the Junggar Basin (ZG-1), China. Table 1 lists
the analytical results. Ultimate analysis of the ash-free sample
was conducted using the Elementar UNICUBE (German EA
Company) in CHNS mode. By establishing two sets of parallel
samples, the average values of carbon, hydrogen, nitrogen,
and sulfur contents in the coal sample were determined.
Maceral components of sample were observed and quantitatively
analyzed using a Leica DM4500P polarized light microscope,
and counts were statistically analyzed based on the total
percentages of vitrinite, inertinite, and liptinite groups adding
up to 100%. The reflectance of vitrinite in the coal samples
was measured using the same microscope and an MSP-II
microphotometer.

Table 1 shows the average mean vitrinite reflectance (Ro, m) of
the samples is 0.41% and the volatilematter content is 46.42%, which
is a low-rank lignite. (O’Keefe et al., 2013; Schobert, 2017). The
vitrinite group has a higher content of 87.36%. It is characterized
by a higher oxygen content and slightly lower carbon content,
with aliphatic formations often located on the side chains of
aromatic rings (Niekerk and Mathews, 2010). These experimental
results provide a solid data foundation for establishing a molecular
model of coal.

13C-NMR enables quantitative analysis of different types of
carbon structureswithin the carbon skeleton, providing information
on the relationship between carbon and hydrogen, conformation
and conformation in the molecule. Measurements were made
using a Bruker 400 M NMR spectrometer. The spectrometer was
equipped with a 4 mm rotor, with a MAS spin rate of 10 kHz, a
recovery time of 4 s, and a collection pulse program set to “cp”

with a desired scan delay of 6.5 μs. Initial models were established
and calculated using ACD/C Predictors, allowing for continuous
adjustments and optimizations compared to the experimental 13C-
NMR spectra (Liu et al., 2021). By adjusting the method in this
way, an average molecular model was finally obtained representing
the ZG-1 tested. The structural formula and comparison spectra
are shown in Figures 1a,b.

2.2 Annealing of the coal

The initial configurations are constructed using the PACKMOL
package (Martínez et al., 2009). All the MD simulations are
conducted with the GROMACS package (version 2021.5)
due to its high efficiency in parallel computing, which is
suitable for simulating complex systems such as coal nanopores
(Berendsen et al., 1995; Van Der Spoel et al., 2005). Visualize all
MD trajectories and configurations, the VMD package was utilized
in this study.

The annealing of the coal molecules was first conducted
to build a coal matrix for the subsequent simulations of gas
adsorption. One hundred coal molecules were placed in a cubic
box (Lx = Ly = 10 nm and Lz = 10 nm) and the boundary
conditions with periodicity were imposed in all directions. Then
the steepest descent algorithm was applied to achieve energy
minimization tasks and eliminate nonphysical contacts. It has to
be noticed that the maximum of the force within any pair of
atomic was set up as 1,000 kJ/(mol × nm). Subsequently, the
system was relaxed for 2 ns, employing a timestep of 0.5 fs, within
a canonical ensemble (NVT). To build a model of low-rank coal,
a 10 ns annealing cycle was conducted from 1000 K to 298.15 K
using an isothermal-isobaric (NPT) ensemble under 10 MPa with
a time step of 1 fs. These optimization conditions ensure the
low-rank coal model is physically accurate (Dang et al., 2017;
Zheng et al., 2013). Figure 1c shows the structure of the obtained
low-rank coal with sizes Lx = Ly = 8 nmand Lz = 3.5 nm and chemica
l formula C7900H8600O600.

2.3 Simulation system establishment

Three different types of models were established to study the
effects of temperature, pressure, pore size, water content, and gas
mixing conditions on the H2 adsorption and diffusion behavior.
Two layers of the low-rank coal model were placed parallel to
mimic a coal nanopore Figure 2a. Figure 2b shows a series of
anhydrous coal pore models with different pore sizes; A total of
11 sets of pore size parameters of 1, 2, 3, 4, 5, 7.5, 10, 12.5,
15, 17.5, and 20 nm were set in this work, and only the initial
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FIGURE 1
(a) Average molecular model of coal sample; (b) Comparison between the experimental and the calculated 13C NMR spectra; (c) Annealed low-rank
coal model.

models of 2 nm and 20 nm are given for the convenience of display.
Figure 2c shows a coal pore model with different water content
at 298.15 K and 20 MPa with a pore size of 10 nm. Here, the
density of water is expressed through the following Equation 1
(Li et al., 2024a):

ρw =
N
NA
×mA

A
× 103 (1)

where ρw denotes the density of water, g/m2; N represents the
number of water molecules introduced, NA refers to Avogadro’s
constant, mol−1; mA is the relative molecular mass of water, g/mol;
and A corresponds to the surface area of the upper and lower
boundaries of the coal pore, m2.

Table 2 shows the parameters of the different water
content models.

Figure 2d shows a mixed adsorption model of H2, CH4
calculated under the corresponding simulation conditions
using the modified Peng-Robinson equation of state, and CO2
with a pore size of 10 nm. The number of gas molecules was
calculated under the corresponding simulation conditions using
the modified Peng-Robinson equation of state (Leachman et al.,
2009; Mosher et al., 2013; Robinson et al., 1997; Span, 1994).
In this study, pressure is indirectly controlled by adjusting the
bulk phase chemical potential. The Peng-Robinson equation
of state calculates the densities of gases and mixtures at
specified pressures, ensuring adsorption occurs under controlled
conditions.

2.4 Force fields

The topologies of all the coal, H2 and CH4 molecules were
expressed by the OPLS-AA force field (Jorgensen et al., 1996).
The forcefield parameters were sourced from the LigParGen server
(Dodda et al., 2017). Moreover, the OPLS-AA force field has
been confirmed in earlier research, demonstrating alignment with
experimental results and the NIST standard database (Fan et al.,
2020; Zhan et al., 2020). The CO2 molecules were modeled using
the potential parameters of the Elementary Physical Model (EPM2)
(Harris and Yung, 1995).

As shown in the Equation 2, the non-bonding interaction
equations for this system are both expressed in terms of the
Lennard-Jones (LJ) potential, as well as the Coulomb electrostatic
interactions:

u(rij) = 4εij[(
σij
rij
)
12
−(

σij
rij
)
6
]+

qiqj
4πε0rij

(2)

Where rij, σij, εij, denote the distance between atoms, size parameters,
and L–J energy, separately; the partial atomic charge q is used
to calculate the Coulomb interaction, while ε0 stands for the
dielectric constant.

The Lennard-Jones potential parameters for distinct particles
were determined using the Lorentz-Berthelot combination rules as
below Equations 3, 4:

σij =
1
2
(σi + σj) (3)

εij=√εiεj (4)

where σ and ε represent the standard L-J parameters for size and
energy, between atomic sites i and j.

2.5 Simulation details

After the construction of the adsorption system was completed,
energy minimization was then performed using the steepest
descent algorithm, reducing the maximum force between any atom
pair to less than 1,000 kJ/(mol × nm). The next step involved
relaxing the system for 2 ns with short timesteps of 0.5 fs. The
system was then equilibrated for 40 ns over a longer time span
of 1 fs in a typical ensemble of set simulation temperatures
(Berendsen et al., 1984; Bussi et al., 2007). Finally, an additional
10 ns simulation in a canonical ensemble was used as the
production phase. During the production phase, a velocity-rescale
thermostat, and a Parrinello-Rahman barostat were utilized to
regulate temperature and pressure. The particle mesh Ewald (PME)
method was used to evaluate the pair of Coulomb interactions,
with a Fourier spacing set at 0.12 nm and a cut-off radius of
1.2 nm. The van der Waals interactions were calculated using a
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FIGURE 2
Molecular models. (a) Coal nanopore, H2, CH4, and CO2 models; (b) Anhydrous pure H2 adsorption models with different pore sizes; (c) Different water
content models for H2 adsorption (pore size = 10 nm); (d) Mixed H2, CH4 and CO2 adsorption system (pore size = 10 nm).

TABLE 2 Water density corresponding to the number of water
molecules in different simulation models.

Number of water molecules ρw

100 × 2 0.05 × 10-3 g/m2

500 × 2 0.23 × 10-3 g/m2

1,000 × 2 0.47 × 10-3 g/m2

2000 × 2 0.93 × 10-3 g/m2

standard cut-off approach, with the same cut-off radius of 1.2 nm
(Darden et al., 1993).

The mean square displacement (MSD) and self-diffusivity are
crucial indicators for analyzing the motion of gas molecules within
coal nanopores. MSD is often utilized to assess the extent of a
particle’s positional deviation from a reference point over time.
According to the Einstein relation, the slope of the MSD as a
function of time is directly linked to self-diffusivity. Both MSD

and self-diffusivity are determined using the parameters outlined in
Equations 5, 6:

MSD = 1
N

N

∑
i=1
[ri(t) − ri(0)]

2 (5)

D = 1
6N

lim
t→∞

d
dt

N

∑
i=1
[ri(t) − ri(0)]

2 (6)

where D represents the self-diffusion coefficient, N denotes the
number of adsorbate molecules, t refers to the simulation time, and
ri(t) and ri(0) are the position vectors at time t and the initial time,
respectively.

Defined as probability functions, radial distribution functions
(RDFs) describe the spatial distribution of specific particles in
relation to their coordinates, revealing details about particle
aggregation and ordering behavior. It can be understood as the
ratio of the local density to the average bulk density of the
system. Consequently, RDF serves as a valuable tool for evaluating
particle interactions. Notably, the intensity of particle interactions is
reflected by the height of theRDFpeak, with a higher peak signifying
stronger interaction. The corresponding calculation formula is
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FIGURE 3
Number density profile of H2 in the z direction in coal pore with different temperatures and pressure.

provided as Equation 7:

gab (r) =
dN

4πρbr
2dr

(7)

where dN is the number of particles b of atom a between
the r and r + dr shell layers, and ρb is the density of
particle b.

3 Results and discussions

3.1 Effect of temperature and pressure

The influence of temperature and pressure on the microscopic
behavior of H2 was focused on by setting the temperature variation
range from 273.15 to 348.15 K and the pressure variation range
from 5 to 20 MPa for the model of anhydrous coal pores with a
pore size of 10 nm. Figure 3 shows the number density distribution
of H2 at various temperatures and pressures. H2 forms a single
adsorption layer on both coal surfaces, with the bulk density
remaining stable within a specific interval. This phenomenonis

consistent with the findings of previous studies (Li et al., 2024a).
At the same pressure, the density peak of H2 in both the
adsorbed phase and the bulk phase diminishes as the temperature
rises. This indicates that low temperature are more favorable
for H2 storage in coal. At constant temperature, the maximum
density in the adsorption layer and the surrounding bulk medium
increases significantly as pressure increases. Consequently, the H2
storage capacity of coal also increases with higher pressure. This
phenomenon is consistent with the results of Shang et al. (2024) in
their study of the effect of temperature-pressure onUHS in kaolinite
slits.

To better describe the H2 characteristics in coal pores, Figure 4
depicts the diffusion features of H2 in 10 nm coal pores under
different temperature and pressure conditions. Overall, the diffusion
coefficient of H2 in coal is proportional to temperature and inversely
proportional to pressure. As temperature increases and pressure
decreases, the diffusion coefficient of H2 gradually rises. This is
because the increase in temperature enhances the kinetic energy
of H2, which in turn accelerates the mobility of H2, prompting
it to overcome the energy barriers and facilitating the desorption
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FIGURE 4
Diffusion coefficients of H2 in coal pore at various temperatures and
pressure (pore size = 10 nm).

and diffusion of the gas. As the pressure decreases, the amount
of H2 in the coal pores decreases, and the collision frequency
between H2 decreases, which results in an increase in the mean
free range of H2, thus improving H2 migration and diffusion. This
finding is consistent with the results obtained in the previous study
(Liu et al., 2022).

3.2 Effect of pore size

The adsorption and desorption behaviors of H2 in anhydrous
coal pores of 1–20 nm pore sizes were investigated at 298.15 K,
20 MPa. As shown in Figure 5, the number density distribution
of H2 at equilibrium varies with different pore sizes. In Figure 5a,
for pore sizes smaller than 7.5 nm, the peak density of H2
adsorption and the bulk phase density increase as the pore
size enlarges. However, this trend becomes less evident for pore
sizes greater than 7.5 nm, as depicted in Figure 5b. Such a
trend is consistent with the results of H2 in carbonate minerals
and clay minerals with different pore sizes (Li et al., 2024a;
Liu et al., 2022).

Figure 6 shows the mean square displacement (MSD) and the
self-diffusion coefficient of H2 under changing pore size conditions.
From Figure 6a, in the 1–7.5 nm pore size range, the MSD increases
as the pore size grows. In the pore size range of 7.5–20 nm, theMSD
hardly varies with pore size but fluctuates within a range. Figure 6b
similarly demonstrates such a trend. As the pore size grows, the
diffusion coefficient increases rapidly for pore sizes smaller than
7.5 nm. However, when the pore size exceeds 7.5 nm, the diffusion
coefficient shows only slight fluctuations with further increases
in pore size. We consider that the reason for this phenomenon
is the result of gas-solid interaction. At the same temperature

and pressure, the interactions between H2 and coal are more
potent in smaller pore sizes. As the pore size increases up to
several tens of nanometers, the effect of the solid phase surface
on the gas keeps decreasing or even can be neglected. Therefore,
in pore sizes smaller than 7.5 nm, the interaction between H2
and coal surface is stronger. Meanwhile, for pore size conditions
larger than 7.5 nm, the H2 gas mainly exists in the bulk phase,
and the migration ability gradually increases. This is consistent
with the previous explanation (Shang et al., 2024). For UHS, a
small pore size results in most of the H2 being trapped in the
adsorbed phase, causing substantial adsorption losses. On the other
hand, when the pore size exceeds 7.5 nm, the impact of pore size
on the H2 diffusion coefficient diminishes, allowing for sufficient
storage space within the pores, which makes this range more
ideal for UHS.

3.3 Effect of water content

Themain target of UCG is usually deep water-bearing low-rank
coal strata. Previous related studies have shown that the presence
of water may affect gas diffusion (Gensterblum et al., 2013). As a
result, this section investigates the influence of water content on
the adsorption and desorption behavior of H2 in coal pores using
models with varying levels of water content. Figure 7 displays the
morphology of water of different densities on the coal surface when
the system is in equilibrium. Water forms clusters adsorbed on the
coal surface and the size of the clusters increases with the increase in
water density. Here, there is a difference in the morphology and size
of water molecule clusters on the two coal surfaces due to different
functional group compositions and properties on the coal A and B
surfaces.

Figure 8a shows the number density distribution of H2 under
different water density conditions. H2 adsorption exists on the coal
surface when the water density is 0.05 × 10−3 g/m2. In contrast,
the coal surface is occupied by gradually increasing water molecule
clusters as the water density increases, and most of the H2 is in
the bulk phase when the water density is 0.05 × 10−3 g/m2. The
strong affinity between water molecules and oxygen-containing
functional groups in coal preferentially adsorbed water molecules
on the coal surface. Moreover, due to H2 bonding interactions, the
water molecules adsorb each other and then form clusters, leading
to the obstruction of H2 adsorption. This is consistent with the
findings of previous studies (Han et al., 2017). Figure 8b displays the
diffusion coefficient of H2 under different water densities. When the
water density is low, the stronger interaction between water and coal
surface allows H2 to diffuse in the coal pores, which can explain the
higher self-diffusion coefficient ofH2 at lowwater density. Expressed
as the diffusion coefficient is 263.54 (±3.22) ×10−5 cm2/s for a water
density of 0.23 × 10−3 g/m2. With the increased water density, the
water molecule clusters increase and continuously occupy the space
in the coal pores. The diffusion of H2 in the coal pores is hindered,
reflected by the gradual decrease of the diffusion coefficient of H2.
The variation of water content can influence UHS tremendously.
Water content conditions are feasible for UHS in post-burn UCG
cavities.
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FIGURE 5
Number density profiles of H2 in coal pores (a) 1–7.5 nm; (b) 10–20 nm (T = 298.15 K, P = 20 MPa).

FIGURE 6
(a) Mean square displacement (b) Diffusion coefficient of H2 in coal pore with various pore sizes (T = 298.15 K, P = 20 MPa).

3.4 Effect of gas mixtures

Earlier research has demonstrated that the presence of other
gases considerably influences the microscopic behavior of H2
(Zhang et al., 2024; Zhou et al., 2019). The syngas also includes
CO2 and CH4, among others, and will persist in the cavity, thereby
influencing the adsorption and diffusion characteristics of H2. For
this reason, in this section, the gas mixture model (Figure 3d)
is used to investigate the competitive adsorption law of mixed
gases. Figure 9 shows the snapshots of adsorption of H2, CH4,
and CO2 adsorption in coal pores at different equilibrium times
at 298.15 K, from 3 to 15 MPa. Figure 10 complements Figure 9 by
showing the density distribution of the three gas molecules in the z-
direction at equilibrium 10 ns under different pressure conditions.
Both CH4 and CO2, like pure H2, were observed to create a uniform
adsorption layer across the coal matrix surface. Under the same

temperature-pressure conditions, the CO2 adsorption phase has the
highest peak density with a sharp peak shape. This phenomenon
is consistent with a denser surface distribution of CO2 molecules,
with most of the CO2 molecules located in the adsorbed phase
and a small amount in the bulk phase. The peak density of CH4
in the adsorption phase is lower than that of CO2, and most of
the CH4 molecules still exist in the bulk phase, denoting that the
adsorption of CH4 on the coal surface is weaker than that of CO2.
In contrast to CO2 and CH4, the adsorption phase density profile
of H2 only shows two tiny shoulders at 3 MPa, and almost all H2
is in the bulk phase. This suggests that in the mixed presence of
H2, CH4 and CO2 in coal pores, the gas adsorption capacity is in
the order of H2<CH4<CO2.This is consistent with the phenomenon
observed in shale casein by a previous author (Zhang et al., 2024).
Regarding the reasons for the remarkable CO2 adsorption effect,
limited studies have attributed this phenomenon to the following
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FIGURE 7
Snapshots of water molecules of different densities at equilibrium (H2 molecules are hidden for transparency and coal is shown uniformly in grey).

FIGURE 8
(a) Number density curve. (b) Diffusion coefficient of H2 in coal pore with various water densities (T = 298.15 K, P = 20 MPa, pore size = 10 nm).

(Mastalerz et al., 2004): (a) CO2 is adsorbed not only in coal pores,
but also in the organic structure of coal during gas-solid-phase-
gas-phase interactions (Clarkson and Bustin, 1999); (b) CO2 can be

adsorbed in a larger range of coal pores (microporous-mesoporous)
(Merkel et al., 2015); (c) CO2 interacts more strongly with the
surface of coal (Zhou et al., 2019).
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FIGURE 9
Snapshots of the adsorption process of gas mixtures in coal pores at different equilibrium times (T = 298.15 K, pore size = 10 nm).

FIGURE 10
Number density profile of gas mixtures with different and pressure (T = 298.15 K, pore size = 10 nm).
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FIGURE 11
The interaction energy of gas mixtures and coal at 3, 9, 15 MPa (T = 298.15 K, pore size = 10 nm).

FIGURE 12
Radial distribution function curves between gas mixtures and coal at 3,
9, 15 MPa (T = 298.15 K, pore size = 10 nm).

To further analyze the competitive adsorption properties of the
gas mixtures, the interaction energy, including van der Waals and
Coulomb forces, betweenH2, CH4, CO2 and coal at 3, 9, and 15 MPa
were calculated, as shown in Figure 11. Overall, the interaction
energies between the three gas molecules and coal intensify as
pressure increases.This indicates that the attraction of coal to gases is
proportional to the pressure. van derWaals interactions are observed
betweenH2 and coal. Major van derWaals interactions are observed
between CH4 and coal, with weak Coulombic interactions. The
interaction energy of CO2 with coal is much larger than that of H2
and CH4, and there is a contribution from Coulomb interactions in
particular. This phenomenon is due to the very low zeta potential of
the coal surface. H2 and CH4 have no external dipole moments, so
theweaker interactions betweenH2, CH4, and coal aremainly due to
dispersive or induced forces. However, CO2 has a large quadrupole
moment (−4.3 × 10−26 esu.cm2) (Buckingham et al., 1968), allowing
for charge interactions betweenCO2 and coal, which in turn interact

strongly with the coal surface. This agrees with the understanding
achieved by previous work (Iglauer et al., 2021).

To gain deeper insights into the distribution patterns of the gases
on the coal matrix, the RDFs between the hydrogen atoms in H2, the
carbon atoms in CH4 and CO2, and the carbon atoms in coal were
calculated respectively, as shown in Figure 12. H2 has no significant
peak. CH4 had a broad peak at 0.514 nm only at 3 MP CO2 was
observed as a broad peak at 0.478 nm at 9 MPa, with a sharper peak
at 0.448 nm at 3 MP. The RDF and mean distances indicate that the
coal surface affects the distribution of the gas mixtures differently.
CO2 and CH4 are more tightly distributed near the coal surface,
while H2 is distributed in the bulk phase. This is corroborated by
the number density distribution (Figure 10) and the interaction
energy perspective (Figure 11). For such reason, we suggest that
CO2 molecules have higher polarity and stronger affinity to the coal
surface. This is the main reason why the adsorption of CO2 is better
than CH4 and H2. This is in agreement with Li et al. (2024b).

The MSDs and diffusion coefficients of H2, CH4, and CO2
under different pressure conditions were calculated in Figure 13The
movement characteristics of the gas mixture in the coal nanopore
can be represented. It is obvious that themovement of the three gases
in the coal nanopore is significantly different. Figure 13a indicates
that under the same temperature and pressure conditions, the MSD
of H2 is the highest, and the MSDs of CH4 and CO2 are lower
than that of H2, especially CO2, which has the smallest MSD,
indicating that H2 is free to move and tends to be present in the bulk
phase. In contrast, the movement of CH4 and CO2 molecules was
inhibited, and CO2 molecules had the highest diffusion resistance.
From Figure 13b, the higher the pressure, the smaller the diffusion
coefficients of the three gases, indicating that the resistance to
diffusion of the gases is higher, while the attraction is stronger, a
finding confirmed by analyzing the interaction energy (Figure 11).

Therefore, the syngas present in the UCG cavities with CO2
and CH4 as the main components will be preferentially adsorbed
over H2. Fundamentally, CO2 and CH4 will occupy the adsorption
sites on the coal surface in preference to H2, which in turn
reduces the interaction between H2 and coal (Figure 14). The
presence of CO2 and CH4 as syngas provides the possibility to
reduce H2 adsorption losses and to increase the purity of H2 in
the cavities (Zhang et al., 2024).
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FIGURE 13
(a) Mean square displacement (b) Diffusion coefficient of gas mixtures with different pressures (T = 298.15 K, pore size = 10 nm).

FIGURE 14
Schematic of competitive adsorption of H2, CH4, and CO2 adsorption at UCG cavity boundary.

4 Conclusion

This work is the first uses molecular dynamics simulations
to systematically investigate the microscopic behavior of gases
under pure H2 and a mixture of H2, CH4, and CO2 conditions.
Based on experimental tests, a physically meaningful low-rank
coal model was first constructed. Then, the pure hydrogen-coal
nanopore model with different pore sizes and water contents,
and the mixed gas-coal nanopore model were established to

illustrate the effects of temperature, pressure, pore size, and
water content. Thus, the potential of UHS in UCG cavities was
elucidated. Based on our study, the following conclusions are
reached:

H2 diffusion in coal nanopores increases with temperature and
decreases with pressure. Higher temperatures enhance desorption
andmobility, while lower pressures reduce occupancy, increasing the
mean free path ofH2. ForUHS, low temperatures and high pressures
are optimal.
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With pore sizes below 7.5 nm, strong H2-coal interactions lead
to lower diffusion and higher adsorption losses. In contrast, at pore
sizes above 7.5 nm, most H2 resides in the bulk phase, resulting in
a diffusion coefficient that becomes less dependent on pore size and
stabilizes. Therefore, conditions with pore sizes larger than 7.5 nm
are more advantageous.

Changes inwater content have a significant effect onUHS.When
the water content is low, H2 adsorption exists on the coal surface.
With the increase of water density, the coal surface will first be
occupied by water molecule clusters, leading to the obstruction of
H2 adsorption, when H2 is mainly located in the bulk phase. As the
size of water molecule clusters continues to increase, the space in the
coal pores is occupied, the diffusion coefficient of H2 decreases, and
the diffusion is inhibited. The water-bearing conditions are feasible
for UHS in deep coal seams.

In the mixture of H2, CH4, and CO2 in the UCG cavities, the
gas adsorption capacity is shown as H2<CH4<CO2. This leads to
weakened interaction between H2 and coal, and the adsorption of
H2 is significantly inhibited. However, this offers the possibility of
improving the purity of H2 in cavities.

This work clarifies the mechanism of UHS in porous media and
cavities under different influencing factors, providing new ideas for
the design and location selection of UHS.
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