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Magnetic data boundary detection is a key technology in potential field data
processing, providing an effective basis for the division of geological units and
fault structures. It holds significant importance in geological structure analysis
and mineral exploration. Deep learning methods, which can automatically
capture complex magnetic anomaly features, have been widely applied in
boundary detection. However, convolution-based neural networks are limited
by the local receptive field of the convolution paradigm, making it difficult
to effectively establish long-range dependencies. This poses a challenge
for high-precision magnetic data boundary detection. Additionally, traditional
loss functions fail to guide the network in effectively extracting boundary
information, limiting the accuracy of boundary detection. To address these
issues, this paper proposes a magnetic data boundary detection method based
on a self-attention mechanism. This method fully leverages the self-attention
mechanism in Transformers to effectively extract global features, allowing the
model to focus on key regions within the input data, thereby enhancing its ability
to recognize complex boundaries. Meanwhile, an edge-enhanced loss function
is introduced to further strengthen the model’s ability to extract boundary
information. Synthetic experiments demonstrate that the proposed method
achieves higher prediction accuracy and more precise boundary localization.
Furthermore, validation using magnetic anomaly observation data from the
Yushishan area in Gansu, China, confirms the reliability of the boundary
detection results.

KEYWORDS

magnetic surveys, boundary detection, self-attention mechanism, transformer, edge-
enhanced loss

1 Introduction

Magnetic surveys have long been integral to mineral exploration, geological mapping,
and engineering, valued for their straightforwardmeasurement and interpretative processes,
making them indispensable in geophysical applications. Delineating the horizontal
boundaries of anomalous bodies is a prevalent problem in potential field interpretation.
Over the past century, researchers have proposed various potential field boundary detection
methods, primarily relying on the calculation of horizontal and vertical derivatives of

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2025.1600631
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2025.1600631&domain=pdf&date_stamp=2025-07-17
mailto:gcliu@seis.ac.cn
mailto:gcliu@seis.ac.cn
https://doi.org/10.3389/feart.2025.1600631
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2025.1600631/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1600631/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1600631/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1600631/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Haihua et al. 10.3389/feart.2025.1600631

the anomaly field and their combinations. Among thewidely applied
approaches are directional derivatives, total horizontal gradient
(THG), analytic signal and its derived filters, as well as tilt angle
(TILT) methods (Cordell and Grauch, 1985; Miller and Singh,
1994). Directional derivatives highlight regions of abrupt potential
field changes, indicating shallow structural boundaries; THG, the
magnitude of the horizontal gradient, also focuses on identifying
gradient maxima (Nabighian, 1972; Nabighian, 1974; Nabighian,
1984; Rumelhart et al., 1986; Commer, 2011; Fedi and Florio,
2001). However, when the source is deeply buried and the signal
attenuates, these methods often result in blurred or difficult-to-
identify boundaries. To address this, theTILTmethod, defined as the
ratio of the vertical derivative to the total horizontal derivative, was
introduced as a balanced filter. It has been shown to produce distinct
boundary responses over near-vertical contacts after reduction to
the pole. The analytic signal method has also been extended to both
2D and 3D potential field interpretations, with its core principle
based on the Hilbert transform relationship between horizontal and
vertical derivatives. In recent years, several improvement strategies
have been proposed, including the integration of multi-source
geophysical data and the introduction of more efficient boundary
extraction algorithms, aimed at enhancing the accuracy and stability
of structural identification (Salem and Al-Dosari, 2022; Essa et al.,
2022; Salem et al., 2008; Essa and Diab, 2024). Nonetheless,
these traditional boundary detection methods mainly depend on
partial derivative operations, making them susceptible to noise and
potentially leading to false anomalies. Moreover, for complex and
deep-seated geological bodies, these methods still exhibit significant
localization errors.Therefore, a more effective approach is needed to
overcome these challenges.

Deep learning (DL), as an emerging technology, has been widely
applied across various fields (Zhang et al., 2022; Li et al., 2022;
Tejaswini et al., 2024; Liu et al., 2024; Shen et al., 2025a; He et al.,
2025; Shen et al., 2025b), including geophysics. Wang et al. (2020)
utilized a convolutional neural network (CNN) to interpret gravity
data by treating contourmaps as unknown images to identify gravity
anomaly sources, achieving promising results. Huang et al. (2021)
employed a U-Net neural network for 3D gravity sparse inversion,
transforming gravity inversion into an imbalanced segmentation
problem and obtaining reliable results. Naprstek and Smith (2022)
applied CNNs to interpret linear structures in aeromagnetic survey
data, enabling depth estimation of edge positions, though this
method is limited to linear feature anomalies. Zhang and Yu (2022)
proposed a potential field boundary detection method based on
DL and an improved U-Net, capable of identifying both linear and
prismatic geological boundaries. Zhou et al. (2024) used a UNet++
network for magnetic anomaly boundary detection, achieving
more effective feature extraction through dense skip connections.
Although these CNN-based networks have yielded good predictive
performance, their reliance on convolutional operations with a
limited receptive fieldmeans they can only capture local information
in the anomaly data while neglecting global context and long-range
dependencies. In magnetic data boundary detection, the magnetic
fields generated bymagnetized bodies at different depths and spatial
distributions exhibit multi-scale superposition characteristics. If the
long-range magnetic perturbations of local anomaly sources are not
sufficiently represented, it becomes difficult to model the global
correlations in the magnetic field data, leading to boundary shifts

or blurring. Furthermore, traditional loss functions fail to guide the
network to focus on the boundary features of undergroundmagnetic
anomalies, limiting its performance in magnetic data boundary
detection and resulting in inaccurate boundary predictions.

The Transformer (TF), with its powerful global modeling
capabilities, has expanded from the field of computer vision
to geophysical applications. Jiang et al. (2023) developed a
feature extraction framework centered on TF, preserving the
temporal characteristics of the original signal while using cross-
channel attention mechanisms to model the first-arrival waveform
correlations of adjacent detectors, significantly improving spatial
consistency in first-arrival picking. In data reconstruction,
Gao et al. (2024) designed a TF architecture incorporating residual
learning, leveraging multi-head self-attention to separate noise
from valid signal components, achieving simultaneous seismic
trace interpolation and random noise suppression. In inversion
problems, Zhu et al. (2025) innovatively introduced TF into seismic
impedance inversion, using its global context modeling capability
to reveal the macroscopic distribution of underground medium
parameters, effectively enhancing inversion stability in complex
structural regions. While TF methods have been widely adopted in
seismic applications, their use in magnetic data boundary detection
remains unexplored.

To address these challenges, this paper proposes amagnetic data
boundary detection method based on a self-attention mechanism.
By fully leveraging self-attention, the proposed method captures
global information and establishes long-range dependencies by
considering the relationships among all elements in the magnetic
anomaly sequence. This allows the network to reweight features
across the entire dataset, focusing on key anomalous regions.
Simultaneously, the model takes advantage of convolutional
operations for local feature extraction, effectively modeling
the detailed boundary information of underground sources.
Additionally, an edge-enhanced loss function is introduced to
further strengthen boundary feature extraction, enabling the
network to learn both boundary and deep structural features in
a targeted manner, ultimately producing more accurate boundary
predictions.

Comparative results with classical deep learning and traditional
methods demonstrate that the proposed approach, through the
combination of self-attention mechanisms and edge-enhanced loss,
significantly reduces boundary detection errors and improves
resolution. Finally, the proposed method was successfully applied to
the magnetic anomaly observation data from the Yushishan area in
Gansu, China, achieving effective boundary predictions.

2 Methodology

2.1 Boundary detection problem

For computational convenience, assume that remanent
magnetization does not exist and that all magnetization is purely
vertical. In this case, the magnetic forward modeling problem can
be expressed as Equation 1 (Green, 1996):

∆T =
μ0κH
4π
{(ζ− z)arctan[−

(x− ξ)(y− η)
r(z− ζ)

]}|ξ2ξ1|
η2
η1|

ζ2
ζ1
. (1)
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FIGURE 1
Network architecture diagram. (a) TCNet network architecture. (b) Tf block diagram.

FIGURE 2
Training dataset model.

here, μ0 is the magnetic permeability of free space, κ is the magnetic
susceptibility, and H is the magnetization intensity of the magnetic
medium. ξ1, ξ2 are theX-axis coordinates of the underground source,

and η1, η2 are theY-axis coordinates, ζ1, ζ2 are the Z-axis coordinates.
x, y, z represent the coordinates of the observation point. Inmagnetic
anomaly boundary extraction tasks, traditional methods (such as
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FIGURE 3
Network training loss function.

TILT and THG) typically rely on gradients, derivatives, or second-
order edge enhancement functions based on the magnetic anomaly
field to indirectly extract edge information. The results are often
presented as continuous response images or pseudo-color intensity
maps. These methods amplify abrupt changes in field intensity to
indicate the probable locations of anomaly boundaries. Generally,
traditional magnetic data boundary detection methods can be
expressed as Equation 2:

MB = argmaxΩ{F(∆T) ∗K}. (2)

here, MB represents the boundary of the underground magnetic
body, F (.) is the preprocessing mapping operator, K is the filter or
differential operator, and Ω is the parameter space.

Unlike the aforementioned methods, DL methods adopt a
supervised learning strategy, training neural networks with large
amounts of ∆T and MB data to learn the nonlinear mapping
relationship between them. This gradually builds a mapping model
from the original magnetic anomaly field to the target boundary,
thereby enabling the direct prediction of MB. This mapping
relationship can be expressed as Equation 3 (Yu and Ma, 2021):

MB =Net(∆T,θ), (3)

where Net represents the neural network, M̂B is the predicted
magnetic body boundary by the neural network, and θ denotes the
network parameters.

2.2 Network architecture

The network architecture proposed in this paper (TCNet) is
shown in Figure 1a. Assuming the magnetic anomaly data ∆T has a
size of 1 × 32 × 32, where 1 is the number of channels. TCNet consists
of 9 stages, each of which is a combination of a TF Block and a conv
block. The specific structure of the TF Block is shown in Figure 1b.
The TF Block first divides the raw ∆T data into P × P patches
and serializes them for subsequent processing. In this paper, P = 4.
Then, each patch is transformed into a feature vector (token) with a
dimension of d through linear projection, constructing a serialized
feature representation with spatial correlations. Simultaneously,
positional encoding is applied to embed the position information
of each patch into the corresponding token. For the token at the t-th

position in the sequence, the position vector is defined as Equation 4:

pit = sin(
t

10000
(i−1)
d

) i f i%2 = 0 elsepit = cos(
t

10000
i
d

), (4)

here i represents the index of each magnetic anomaly point in the t-
th token, and d refers to the dimension of the ∆T after serialization.
After position encoding, the magnetic anomaly data is sent into the
Transformer encoder, where it undergoes layer normalization via
the Norm layer, followed by multi-head self-attention computation.
In the self-attention mechanism, each token is multiplied by the
corresponding matrix to obtain q, k, and v. The self-attention
mechanism can be expressed as Equation 5:

{{{{{{
{{{{{{
{

α = softmax(QK
T

√dk
)

Attention(Q,K,V) = softmax(QK
T

√dk
)V,

(5)

here, all the q, k, and v form the matrices Q, K, and V,
respectively. All the αi,j form the matrix α, and N represents
the dimension of the sequence. The output of the self-attention
mechanism is the weighted sum of all Attention(Q,K,V), and
this global perception capability enables the model to overcome
the local receptive field limitation of traditional convolutional
operations when processing magnetic anomaly sequences. It
simultaneously analyzes the spatial correlation characteristics
between different underground source bodies, thereby constructing
a global strong dependency relationship across regions, which
provides ample spatial information support for the subsequent
boundary reconstruction. To enhance the information extraction
capability, the multi-head self-attention mechanism increases the
number of Q, K, and V. Generally, Multi-head Self-attention can be
expressed as Equation 6:

{
{
{

Multihead(Q,K,V) = Contact(head1,head2,⋯⋯,headh)W

headh = Attention(QW
Q
h ,QW

K
h ,QW

V
h ),

(6)

here, WQ
h ,W

K
h ,W

V
h are the weights learned by the linear projection

layers. The output of the multi-head self-attention mechanism is
combined with the input sequence through a residual connection,
forming a residual compensation structure to alleviate the gradient
vanishing problem. Layer normalization is then applied to ensure
the stability of the feature distribution. Afterward, the output with
the residual connection is passed to the MLP, which uses the ReLU
activation function to connect two fully connected layers. High-
order interaction modeling is achieved by first increasing and then
decreasing the feature dimensions. Similarly, the output of the
MLP is connected to the input sequence via a residual connection,
followed by layer normalization. The mathematical process of the
Transformer module can be expressed as Equation 7:

{{{{
{{{{
{

z0 = [x1pE;x2pE;⋯⋯;xnpE] +EPOS
z′l =MSA(LN(zl−1)) + zl−1 l = 1⋯L

z′l =MSA(LN(zl−1)) + zl−1 l = 1⋯L .

(7)

here, EPOS is the position vector, MSA stands for Multi-head Self-
Attention, and LN represents layer normalization. After passing
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FIGURE 4
(a) represents Model 1, (b) shows the corresponding magnetic anomaly, (c) is the boundary of (a,d) is the boundary detection results of the proposed
method, (e) is the boundary detection results of Swin-Transformer, (f) is the boundary detection results of U-Net, (g) is the boundary detection results
of THG, (h) is the boundary detection results of TILT.

TABLE 1 Evaluation metrics for model testing.

Model/Method Model 1 Model 2 Model 3

IOU↑ MSE↓ IOU↑ MSE↓ IOU↑ MSE↓

TC-Net 0.987 0.0021 0.914 0.0036 0.865 0.0049

Swin-Transformer 0.973 0.0034 0.885 0.0052 0.822 0.0064

U-Net 0.964 0.0040 0.862 0.0061 0.793 0.0087

through the TF Block, the data reaches the Conv Block, where
the local receptive field characteristics of the convolutional kernel
focus on the detailed features between neighboring anomalies,
enhancing themodel’s ability to extract local detail information.The
formula is as Equation 8:

F = σ[BN(Conv(F ′))]. (8)

here, F ′ is the data processed by the TF Block, BN stands for
BatchNorm, and σ is the ReLU activation function. Each stage
repeats the above operation.

The cascaded design of self-attention and convolution in TCNet
enables the model to leverage the Transformer for modeling the
complex non-local interactions between source bodies, allowing
the network to focus on the most relevant magnetic anomaly
areas, thereby improving boundary identification accuracy when
processing large-scale geological structures. At the same time, the
convolutional layers facilitate local detail extraction, enabling the
network to better reconstruct subtle boundaries when handling
locally complex structures.

2.3 Loss function

During the network training process, the parameters are
continuously updated through backpropagation to solve the
optimization problem shown in Equation 9.

̂θ = arg minθ
1
N

N

∑
i=1

L(MBi,Net(∆Ti,θ)). (9)

where L represents the loss function, N is the number of samples
in the training set, and (MBi,∆Ti) denotes the i-th pair of samples
in the training set. In magnetic data boundary detection, the loss
function is used tomeasure the difference between the reconstructed
source body boundary and the true underground source body
boundary, guiding the network training. The most commonly used
loss function is the MSE (Mean Squared Error) loss function, which
is expressed as Equation 10:

LMSE =
1
N

N

∑
i=1
∥MBi − M̂Bi ∥

2, (10)
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FIGURE 5
(a) represents Model 2, (b) shows the corresponding magnetic anomaly, (c) is the boundary of (a,d) is the boundary detection results of the proposed
method, (e) is the boundary detection results of Swin-Transformer, (f) is the boundary detection results of U-Net, (g) is the boundary detection results
of THG, (h) is the boundary detection results of TILT.

FIGURE 6
(a) represents Model 3, (b) shows the corresponding magnetic anomaly, (c) is the boundary of (a,d) is the boundary detection results of the proposed
method, (e) is the boundary detection results of Swin-Transformer, (f) is the boundary detection results of U-Net, (g) is the boundary detection results
of THG, (h) is the boundary detection results of TILT.

As can be seen from the above equation, the MSE tends to
smooth the prediction results to reduce the overall loss, which may
lead to inaccurate boundary reconstruction by themodel. To address
this issue, this paper introduces an edge-enhancing loss function

that explicitly constrains the differences between the predicted
values of boundary pixels and their neighboring background pixels,
thereby improving the model’s sensitivity to boundary structures
and enhancing the clarity of the network’s boundary predictions.
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FIGURE 7
Boundary Detection Results after Adding 5% Noise. (a) Magnetic anomalies after adding noise. (b–f) are the boundary detection results using the
method proposed in this paper, UNet, THG, TILT, and Theta, respectively.

TABLE 2 Ablation study results.

Model/Method Model 1 Model 2 Model 3

LMSE-TCNet 0.979 0.903 0.842

Ltotal-TCNet 0.987 0.914 0.865

formula is as Equation 11:

Lcontrast =∑max(0,0.5− |M̂Bn − M̂Bb|), (11)

here, M̂Bn represents the network’s predicted background value,
and M̂Bb represents the network’s predicted boundary value. As
shown in the formula, this loss function constructs a lower bound
constraint (set to 0.5) on the difference between the values of
boundary regions and their adjacent background regions. When
the predicted difference is less than this threshold, the loss
term is positive and generates gradients to drive the model to
enlarge the response difference between the boundary and the
background.When the difference exceeds 0.5, the loss automatically
becomes zero, preventing excessive adjustments to regions that are
already well distinguished. This mechanism not only enhances the
discriminability of boundary regions but also effectively suppresses
the tendency of boundary predictions to average out, thereby
improving the clarity of the boundaries. Therefore, the final loss

function is defined as Equation 12:

Ltotal = LMSE + αLcontrast (12)

α is the weighting coefficient, which needs to be determined
through multiple experiments. For the optimal selection of α, this
paper empirically tested nine values (0.01, 0.02, 0.03, 0.04, 0.05,
0.06, 0.08, 0.1, and 0.3) by training the network with each α. After
extensive experimentation, it was found that the network’s boundary
prediction results were best when α = 0.03.

2.4 Dataset creation and network training

In this paper, the underground space is divided into 32 × 32 × 16
cubes, with each cube sized 1.00 × 1.00 × 1.00 km. A heterogeneous
dataset containing 30,000 samples is constructed using a random
walk method and forward modeling, as shown in Figure 2. The
model’s magnetization is set to 0.2 SI, and the background field is
set to 0. The random walk method first divides the 3D space into a
four-quadrant symmetrical structure. Starting points are randomly
selected in each quadrant, and their movement is controlled to
take s steps (where s∈[40,70]) in a random direction, dynamically
generating irregular 3D geological models. This results in a highly
random dataset that can approximate any underground source,
forming the basis for training a well-optimized network. All models
are set with a uniform magnetization of 0.2 SI and background
field interference is eliminated. A regular dataset, which does not
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FIGURE 8
(a) Tectonic framework of China. (b) Geological map of the Qilian Block (The purple box is the research area, revise from Yu et al., 2015).

FIGURE 9
Measured magnetic anomaly map.

exist in the 2,000 training sets, is created as the test set and input
into the network at a ratio of 14:1:1. During the network training
phase, mini-batch gradient descent (batchsize = 32) combined with
the Adam optimizer is used. The initial learning rate is set 2 ×
10−4, with a dynamic decay mechanism implemented using a step
decay strategy, where the learning rate is multiplied by 0.8 every
15 epochs. To prevent overfitting, a Dropout regularization layer
with a probability of 0.2 is introduced, and the parameter space
convergence is achieved after 100 training epochs.The loss function
during the network training process is shown in Figure 3. The PC is
configured with a 1 × 3.90 GHz Intel Xeon W-2245 processor, a 1 ×
8 GBNVIDIAQuadro RTX 4000 GPU, and 192 GB of memory.The
complete training of the network takes approximately 70 min.

3 Synthetic examples

3.1 Evaluation metrics

Considering that this study focuses on deep learning-based
underground anomaly boundary detection, the Intersection over
Union (IOU) metric is used to more intuitively measure the overall
accuracy of boundary region localization. As shown as Equation 13:

IOU =
M̂B ∩MB

M̂B ∪MB
. (13)

The intersection ratio helps us intuitively assess the quality
of the boundary prediction results. Additionally, to further assess
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FIGURE 10
(a) Boundary result map obtained using the method proposed in this paper. (b) Boundary result map obtained using the TILT method.

the pixel-wise differences between the model’s predicted maps and
the ground truth label maps, this paper introduces Mean Squared
Error (MSE) as an auxiliary evaluation metric. Its calculation
formula is as Equation 14:

MSE = 1
N

N

∑
i=1
(M̂B −MB)

2 (14)

This paper compares the boundary detection results of the
proposedmethod, Swin-Transformer, U-net, THG, and TILT, which
are presented in the following sections.

3.2 Test model 1

Model 1 consists of four horizontal prismatic bodies with a
magnetization of 0.2 SI, all buried at a depth of 5 km. As shown
in Figure 4a, the resulting magnetic anomaly is shown in Figure 4b,
and its boundary in the horizontal projection plane is displayed
in Figure 4c. Figures 4d–h show the boundary detection results for
eachmethod. It can be observed that the boundaries predicted by the
deep learning methods are more focused and better reflect the true
boundary positions compared to traditionalmethods.Moreover, the
proposed method performs better than the Swin-Transformer and
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FIGURE 11
Major and secondary faults within the region.

U-Net method, with boundaries that are clearer and more closely
aligned with the true model boundaries. The IOU values and MSE
errors are shown in Table 1.

3.3 Test model 2

Model 2 consists of two step-like models of the same size and
depth, but with different horizontal positions, as shown in Figure 5a.
Themagnetic anomaly it produces is shown inFigure 5b. Its projection
in the horizontal plane is shown in Figure 5c. Figures 6d–h show the
boundary detection results for three methods. From the results, it
can be seen that traditional methods still fail to intuitively display the
boundary positions of the anomalous bodies. The Swin-Transformer
method performs well in extracting the overall shape of stepped
anomaly boundaries, particularly excelling in maintaining boundary
continuity. However, since its feature extraction process focuses more
on global structure modeling and lacks a mechanism for enhancing
local fine-grained edge features, some boundary regions exhibit a
certain degree of blurriness.TheU-Net method accurately locates the
boundary of the step-like anomalous bodies at shallow depths, but for
deeper regions, the boundarydetection results showdiscontinuity and
false anomalies.The proposedmethod providesmore continuous and
clearerboundarydetectionresults,withhigher identificationaccuracy.

3.4 Test model 3

Model 3 consists of two prisms of different sizes and depths but
with the same horizontal center position, as shown in Figure 6a.The
magnetic anomaly it produces is shown in Figure 6b. Its projection
in the horizontal plane is shown in Figure 6c. Figures 5d–h show
the boundary detection results for three methods. From the figures,
it is clear that traditional boundary detection methods still diverge
and cannot accurately locate the specific boundary positions. In
this model, the Swin-Transformer demonstrates strong capability in
modeling the overall shape of large-scale anomaly boundaries, with

good boundary continuity. However, it shows signs of boundary
blurring in small-scale anomaly regions, indicating a limited ability
to capture features in local, small areas. The U-Net boundary
detection results are clearer, with better performance in detecting
the edges of shallow anomalous bodies, but the detection results
for deeper anomalous bodies are worse. The possible reason is that
the network extracts less global information and fails to effectively
model the complex relationships between large-area anomalies. The
proposed method achieves the best detection accuracy, especially in
accurately characterizing the horizontal boundaries of large, deep
anomalies.

3.5 Noise robustness test

To evaluate the robustness of the proposedmethod, 5%Gaussian
white noise was added to the test model, with a signal-to-noise
ratio (SNR) of approximately 22 dB. To better illustrate the impact
of noise on traditional methods, we also compared with the
Theat method. Figure 7 shows the magnetic anomaly and boundary
detection results of the test model with added random noise. From
the figure, it can be seen that the boundary detection results of the
proposed method still match the true boundaries well and maintain
high accuracy, indicating strong noise resistance. In contrast, the
boundary detection results of traditional methods are more blurred,
demonstrating their sensitivity to noise.

3.6 Ablation experiment

To further demonstrate the role of each component of the
proposed method, we performed boundary identification on the
above models using TCNet constrained by L_MSE and the
composite loss function L_total proposed in this paper, and
evaluated the results using IOU. The results are shown in Table 2.
It can be seen that L_total achieves higher boundary detection
accuracy on all threemodels, indicating that it can guide the network
to more effectively extract the boundary features of underground
anomalies, thereby improving the boundary detection accuracy.
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4 Application to field data

4.1 Geological environment of the study
area

The Yushishan area is located in the northwestern part of
China, in Akesai County, Gansu Province. It is situated at the
confluence of the Altyn Mountains fault, the Qilian orogenic belt,
and the Quanjie block, on the northern edge of the Qaidam Basin
(Yu et al., 2015; Liu et al., 2007; Zhang et al., 2015; Wu et al., 2001;
Xu et al., 2006), as shown in Figure 8. This region is an important
structural window for understanding the tectonic evolution of
northeastern Tibet and southern Tibet (Wang et al., 2018; Jiang et al.,
2020). The area has undergone multi-stage tectonic, magmatic,
and metamorphic processes, forming unique rock assemblages and
metallogenic systems (Jiang et al., 2022). Tectonically, Yushishan
is located in the western part of the Central Qilian block, with
the Altyn northern block to the north, the Quanjie block to the
south, the Hongliugou-Lapazhen mixed rock belt to the west, and
the Central-Southern Qilian arc-basin system to the east (Yu et al.,
2012; Jia et al., 2016; Yang et al., 2014). It preserves a complex
geological record from the breakup of the Rodinia supercontinent in
the late Neoproterozoic to the subduction and collision of the Paleo-
Tethys Ocean in the Early Paleozoic (Xu et al., 1999).The left-lateral
Altyn Fault, as a major transverse structure, dominates the regional
tectonic pattern, facilitates the displacement of crustal blocks, and
promotes the ascent of deep magmas/fluids, significantly affecting
the mineralization channels (Wu et al., 2001).

The regional basement is composed of the Paleoproterozoic
Daken Daban Formation (Pt1D), primarily consisting of
amphibolite facies metamorphic rocks, including gneiss,
amphibolite, and marble. The overlying strata, previously attributed
to the Mesoproterozoic Aoyougou Formation (Cha), have now been
redefined as the Neoproterozoic Yushishan Formation (Pt3ys),
based on zircon U-Pb ages ranging from 790 to 843 Ma (Yang
et al., 2012; Liu et al., 2022). This revision resolves a long-standing
stratigraphic dispute and clarifies that the Yushishan Formation is
composed of interlayered light rocks, marble, and amphibolite, with
distinct layered features. It contrasts sharply with the shallowmarine
clastic-volcanic sedimentary sequence of the regional Duoruoer
Formation (Zhou et al., 2022).

4.2 Boundary detection results analysis for
the study area

The total area of the study region is 1,590 square kilometers.
The survey was conducted at a 1:50,000 scale following standard
measurement procedures. The magnetic anomaly data is shown in
Figure 9. To meet the input requirements of the network, the data
dimensions were transformed to 32 × 32 using mean padding and
interpolation. The processed data were then fed into the network
trained on the dataset established in Section 2.4. After prediction,
the output was cropped to match the size of the study area, as
shown in Figure 10a. Figure 10b presents the boundary prediction
results using TILT. It can be seen that the boundaries obtained
using the proposed method are clearer than those produced by
traditional methods and can reflect boundary details of some

complex geological structures. The method clearly divides the study
area into three regions (Regions I, II, and III, shown in Figure 10a).
Region I corresponds to a narrow high-magnetic anomaly zone,
displaying an elongated, bead-like or strip-like distribution with
good continuity. The two boundary faults in this region correlate
well with the known east-west major faults (F1 and F2 in Figure 11).
Region II corresponds to the northern RTP anomaly. The western
section shows a moderate high-magnetic anomaly, attributed to
weaklymagneticQuaternary sediments and the limestone/marble of
the Annanba Formation in the western Jixi region. The stable high-
value anomaly here may originate from the strata in the Jixi region.
The eastern section presents a narrow high-magnetic belt trending
northeast, with discontinuous bead-like anomalies along the rock
contact zone. The exposure of the Annanba Formation in the Jixi
region and the intrusion of diorite/monocrystalline granite from the
Permian suggest that these anomalies are related to the intrusion.
Region III is located in the southern part of the study area, showing
large-scale negative anomalies containing two anomaly groups. The
high-value anomalies are speculated to originate from intrusions
within the Paleoproterozoic DakenDaban Formation. Furthermore,
the proposed method successfully identified two major faults (F1
and F2) and multiple minor faults (F3–F20 in Figure 11), showing
strong spatial consistency. To further validate the effectiveness of the
proposed method in boundary identification under real geological
conditions, the IOU metric introduced in Section 3.1 was used to
perform spatial overlap analysis between the model’s predictions
and existing geological structure data (sourced from the 1:50,000
geological map and Yu et al., 2015). The results show an IOU of
0.85, indicating that the proposedmethoddemonstrates good spatial
alignment with known geological boundary locations. Combining
the geological data, high-magnetic anomalies and their gradient
areas, as well as faults and host rock alterations (potassic, sodic, and
sericitic), provide a basis for delineating potential ore targets.

5 Conclusion

In this study, we propose an innovative self-attention-based
network architecture for magnetic data boundary detection. The
network introduces the self-attention mechanism to better model
the complex global relationships between underground sources,
while also fully leveraging the convolutional layers’ ability to
extract local information to better identify local boundary features,
thereby improving the resolution of the boundary detection results.
Additionally, an edge-enhanced loss function is introduced in
the loss function to enhance boundary information, forming a
composite loss function that couples boundary contrast information
and anomaly deviation constraints. This guides the network to
more effectively extract boundary information and deep features,
generating boundary results that are more consistent with the real
situation. During the testing phase, the proposed method was
verified to have stable noise robustness, and comparisons were
made with the most commonly used deep learning methods and
traditional methods. The results show that the proposed method
has the highest boundary intersection ratio, particularly in handling
complex large-area and deep geological structures, demonstrating
higher resolution and better boundary fitting. Finally, the method
was applied to boundary detection of real data from the Yushishan
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area, successfully identifying two major faults and multiple minor
faults, providing a basis for delineating potential ore target areas.
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