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Surface waves have proven to be valuable instruments in subsurface
investigation, finding applications in diverse fields such as hydrocarbon and
mineral resource exploration. The computation of dispersion spectrums is a
critical step in multi-channel analysis of both active and passive surface waves
for imaging subsurface shear-wave velocity distribution. A high-resolution
surface-wave dispersion spectrum is fundamental for accurate dispersion curve
picking and shear-wave velocity structure inversion. This paper presents a high-
resolution method for surface-wave dispersion spectrum computation using
Tau-P transform implemented with an iterative threshold shrinkage algorithm
scheme. In this method, Tau-P transform is formulated as a sparse inversion
scheme, and the Tau-P coefficients are iteratively thresholded to achieve a high-
resolution Tau-P domain representation. By transforming surface wave traces
into the Tau-P domain with the above sparse inversion algorithm and then
converting them to the frequency phase velocity domain, a high-resolution
dispersion spectrum is achieved. This method can also be applied to compute
surface wave dispersion spectrum for irregularly sampled data. Synthetic tests
of the proposed method demonstrate that the proposed scheme generates a
high-resolution surface-wave dispersion spectrum that matches the theoretical
dispersion curve. Field data tests also demonstrate that the dispersion spectrum
generated with the proposed algorithm shows higher resolution and less noise.
Also, the resultant shear-velocity inversion result matches better with the
collocated micrologging result than the result associated with the conventional
Tau-P trans-form algorithm, indicating a higher-precision inversion result.
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1 Introduction

In seismic exploration of the shallow subsurface, surface waves
usually account for the major portion of seismic recordings. In
their propagation, surface waves of different frequencies exhibit
different phase velocities. This feature is referred to as dispersion.
The dispersion feature of surface waves has been discovered to
be dominantly controlled by the shear-velocity (Vs) distribution
of the medium in which the surface waves are propagated, and
dispersion can be used to analyze the Vs distribution of the
medium (Aki and Richards, 1980; Lee and Solomon, 1979).
Since Vs distribution is crucial information for various fields,
including the exploration of hydrocarbon and mineral resources
(Yang et al., 2011), shallow geohazard mitigation (Yilmaz et al.,
2006), civil engineering (Nazarian et al., 1983; Foti et al., 2011),
etc., surface waves and their dispersion features are demonstrating
ever increasing significance in the above fields, especially with the
development of seismic acquisition technologies such as wireless
nodes and distributed acoustic sensing systems.

Since the dispersion feature of surface waves was discovered,
various methods have been developed to utilize surface-wave
dispersion to investigate shallow Vs distribution, and the
computation of dispersion feature maps, usually referred to
as dispersion spectrums, has been a critical step in surface
wave processing procedures. Among the developed surface
wave methods, the spectral analysis of surface waves (SASW)
(Stokoe et al., 1994) method and the multi-channel analysis of
surface waves (MASW) are extensively applied (Park et al., 1999a;
Park and Miller, 2008; Mi et al., 2017). For these methods, surface-
wave dispersion curves are extracted from seismic recordings and
then used to estimate for subsurface Vs distribution via least-
squares inversion for stochastic inversion algorithms. In recent
years, passive surface wave methods have been developed as a very
important supplement to traditional surface wave exploration using
active sources; the above approaches have been extended for passive
seismic recordings as well (Behm and Snieder, 2013; Bensen et al.,
2007; D'Amico et al., 2008; Nakata et al., 2011). For passive surface
wave methods, noise seismic traces are recording and processed
to extract surface waves, and dispersion curves are computed
to be inverted for Vs profiles. Since no active energy source is
needed, passive surface methods are especially advantageous for
environmentally sensitive areas and suitable for real-time imaging
and permanent monitoring. With the development of waveform
inversion methods, wave-equation-based dispersion inversion and
dispersion spectrum inversion methods have been developed for
surface wave recording because of the enhanced imaging ac-curacy
(Li et al., 2017; Pan et al., 2019). These approaches estimate Vs
distributions via a minimization of the difference between the
dispersion curves or dispersion spectrums for the recorded data and
simulated data, and the residual of dispersion curve or dispersion
spectrum is back-propagated to update the Vs structure. In short,
with the development of surface wave exploration technologies,
computation of surface-wave dispersion has been and remains a
fundamental step in surface wave processing.

To compute and visualize the dispersion feature of surface
waves, McMechan and Yeldin proposed Tau-P transform applied for
computation of dispersion spectrums for surface wave recordings
(Mcmechan and Yedli, 1981). Also known as the slant-stack

transform, Tau-P coefficients are computed by stacking on a surface
wave gather along a straight line defined by a dip P and intercept Tau.
The Tau-P coefficients are transformed into the f-P or f-v domain
to illustrate the surface-wave energy for different frequencies and
phase velocities. This method works best with higher-mode surface
waves but suffers from a low resolution for the fundamental-mode
surface waves and can be susceptible to truncation effect and data
aliasing (Shao and Li, 2010). Since Tau-P transform is an extensively
used and studied data-processing tool in exploration seismology,
it is easily extended to the field of surface wave processing for
dispersion computation. In 1987, Gabriels and introduced F-K
transform for dispersion spectrum computation (Gabriels et al.,
1987). This method is easy to implement, but it requires regularized
spatial sampling for the surface wave recordings, and bad traces
or missing traces can de-grade the quality of the computation
results. In 1998, Park et al. proposed a phase-shift method that
includes a temporal Fourier transform and spatial integration for
the surface wave traces (Park et al., 1999a; Park et al., 1999b). In
2007, Xia et al. developed a frequency-decomposed slant-stacking
algorithm and improved identification of dispersion curves for high
frequencies (Xia et al., 2007). In 2008, Luo et al. developed a high-
resolution Radon transform algorithm for dispersion spectrum
computation. In this algorithm, an iteratively reweighted least-
squares inversion is used for the linear Radon transform to
achieve sparse transform coefficients, and it significantly improves
the resolution of the resultant surface-wave dispersion spectrum
(Luo et al., 2008). Many scholars introduced a vector wavenumber
transform method to scan for the dispersion energy of surface
waves and demonstrated high resolution for surface waves of both
fundamental and high-order modes (Wang et al., 2019; Yang et al.,
2019; Hu et al., 2020). Many scholars also expanded a nonlinear
signal comparison method developed for global seismology to
multi-channel surface wave exploration for the shallow subsurface
and achieved high-resolution dispersion computation (Hu et al.,
2018; Hu and Zheng, 2019; Yi et al., 2021). Su et al. developed a
chirplet transform method for high-resolution dispersion imaging
computation (Qin et al., 2021). Cheng et al. summarized the artifacts
in surface-wave dispersion spectrums and the corresponding root
causes, providing an in-depth understanding of the complexity
of dispersion spectrums and facilitating further development for
more precise dispersion spectrum computation (Cheng et al., 2023).
In addition, Serdyukov et al. proposed the Slant f-k transform
based on the standard S-transform, which performs better on noisy
data compared to traditional f-k transforms (Serdyukov et al.,
2019). Building upon this, researchers proposed a modified S-
transform based high-resolution wave-field transformation method
to unambiguously image the surface wave dispersion spectrum
for low SNR (Mukherjee et al., 2025).

Dispersion spectrums or dispersion images of surface waves are
crucial input for the inversion of Vs distribution. Therefore, it is of
vital significance to enhance the resolution of computed dispersion
spectrums so that accurate estimation of subsurface Vs can be
achieved. Also, the success of seismic exploration largely depends
on proper seismic data acquisition. Obstacles and physically
inaccessible areas (e.g., buildings, rivers, highways, etc.) often force
the collected data to contain missing or incomplete traces. Many
scholars have proposed that the concept of compressed sensing can
reconstruct regular surface wave-fields from under-sampled records

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2025.1600734
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Li et al. 10.3389/feart.2025.1600734

TABLE 1 Parameters for a three-layer model.

Layer no. S-wave velocity (m/s) P-wave velocity (m/s) Density (kg/m3 ) Thickness (m)

1 390 800 1900 25

2 540 1,100 1950 25

half-space 660 1,300 2000 ∞

(Zhan et al., 2018; Mukherjee and Elita, 2022; Cao et al., 2025).
Also there are someothermethods to compute dispersion spectrums
from irregular-sampled surface wave data, like the Phase shift
method and the F-J transform. Nevertheless, methods to compute
high-resolution surface wave dispersion spectrum from irregularly
sampled data remain poorly explored.

Here, we propose a novel high-resolution Tau-P transform
algorithm for the computation of surface-wave dispersion
spectrums. This algorithm is based on the sparse inversion
scheme of an Iterative Shrinkage Thresholding Algorithm (ISTA)
(Chambolle et al., 1998; Daubechies et al., 2004; Figueiredo and
Nowak, 2003). Compared with conventional dispersion spectrum
computationmethods, this proposed algorithmproduces dispersion
spectrums with significantly higher resolution and signal-to-
noise ratio. This method can still compute high-quality dispersion
spectrum from surface wave records with missing traces and it is
easy to implement and parameterize. With these advantages, this
method can essentially benefit the surface wave process with more
efficient and accurate dispersion curve picking. This paper first
introduces the methodology of the proposed high-resolution Tau-
P transform algorithm. Then synthetic examples demonstrate the
performance of our proposed algorithm by comparing computation
results with those generated with a conventional algorithm and
theoretical values. Also, field data experiments demonstrate the
performance of the proposed high-resolution algorithm in the
computation of a dispersion spectrum and its impact on the
subsequent Vs inversion. Lastly, conclusions are given.

2 Principles and methods

For the computation of surface-wave dispersion spectrums
which reflect the variation of surface wave velocity with respect
to the frequency of the recording, plane-wave de-composition
has been an effective approach. This is because the propagation
velocity of plane waves can be easily computed from their dips,
and then, with a temporal Fourier transform, the frequency
velocity spectrums of the surface wave recordings, dispersion
spectrums in another word, can be achieved. Tau-P transform as
a classical plane-wave decomposition algorithm has been widely
used for computation of surface-wave dispersion spectrum. Tau-
P-transform-based dispersion computation can be achieved with
a three-step approach (space-time domain recording to Tau-p,
Tau-P to f-p, and f-p to f-v transformations), or in a two-
step fashion (space-time domain recording to f-p and f-p to f-
v transformations). For both approaches, Tau-P transform is the
core part and determines the performance of the final dispersion

spectrum.Here, we first introduce the algorithmof Tau-P transform,
and then present the proposed high-resolution Tau-P transform
based on the ISTA algorithm.

2.1 Tau-P transform

Tau-P transform decomposes a time-space domain trace gather
into plane-wave components with different dipping angles, through
stacking along straight lines defined with an intercept of Tau and dip
P. This process can be formulated as [Tau-p transform paper]:

m(τ,p) = ∫
+∞

−∞
d(t = τ+ px,x)dxdt, (1)

where d(t,x) represents the time-space t-x domain input, τ and
p stands for the intercept along time axis and dip, and m(τ,p)
is the τ-p coefficient or the transform output. Since dip p can
be easily converted to traveling velocity of a plane wave, Tau-
P transform output m(τ,p) can be converted to a frequency
velocity domain to illustrate the dispersion feature of a surface-wave
trace gather in Equation 1.

To avoid temporal interpolation in the slant-stacking operation,
Tau-P transform is usually implemented as the frequency space
domain integration. This process is formulated as:

M( f,p) =
xmax

∑
xmin

D( f,x)e−i2πfpx, (2)

where D( f,x) is temporal Fourier transform of input d(t,x), f
denotes frequency, xmin is the minimum offset of the seismic
recording, and xmax is maximum offset. The inverse Fourier
transform on M( f,p) is equivalent to m(τ,p), the Tau-P
representation of the input.

Equation 2 can be also expressed with a matrix formulation:

M = LTd. (3)

In this equation Li,j = e
−i2πfpixj is the transform matrix, where d

is the frequency domain representation of the input; i and j are the
discrete index for dip p and offset x respectively.

With M( f,p) computed, traditional Tau-P transform m(τ,p)
via an inverse Fourier transform applied to the frequency axis
f. However, for surface waves, the dispersion spectrums can be
mapped from the f − p spectrum M( f,p) directly because dip p is
the inverse of velocity.

2.2 ISTA-based Tau-P transform

Equation 3 shows the matrix formulation of Tau-P transform.
This equation indicates that the Tau-P coefficients can be also

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2025.1600734
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Li et al. 10.3389/feart.2025.1600734

FIGURE 1
(A) The synthetic seismic shot gather. (B,C) The Tau-P panels computed using the conventional method and the proposed high-resolution method,
respectively. (D,E) The f-P panels computed using the conventional method and the proposed high-resolution method, respectively. (F,G) The
dispersion spectrums computed using the conventional method and the proposed high-resolution method, respectively.
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FIGURE 2
The dispersion spectrums computed from the synthetic seismic shot gather. (A–C) The dispersion spectrums computed using the proposed
high-resolution method and the threshold values are 0.3, 0.6, and 0.95, respectively. (D) The dispersion spectrum computed using the high-resolution
linear Radon transform (HR-LRT).

achieved via an inversion with the objective function as:

Φ = ∥ d − Lm∥2. (4)

The least-squares solution to Equation 4 is expressed as:

m = (LTL)−1LTd. (5)

Equation 5 shows the process of the conventional solution. To
achieve a sparse solution, a L1 regularization term is usually added
to the objective function,

Φ = ‖d − Lm‖22 + λ‖m‖1. (6)

Beck et al., proposed the fast iterative shrinkage thresholding
algorithm to solve the slow convergence problem (Beck and
Teboulle, 2009). It has become a common tool for solving the 1-
norm regularized linear inversion problems in Equation 6.Thehigh-
resolution linear or hyperbolic Radon transform belongs to exactly
this kind of issue. Some authors have used it along with the high-
resolution Radon transform to deal with the similar seismic wave
problems, such as velocity and seismic data analysis (Gong et al.,
2016; Li and Li, 2017; Zhang et al., 2024).

Among the various algorithms developed to solve this equation,
ISTA is an efficient approach that is easy to implement. According
to this method, the solution m is iteratively thresholded according
to its amplitude with a decreasing threshold value, and a sparse
solution to Equation 4 is achieved. This process is expressed as:

mi = Thi(mi−1 + αL
T(d − Lmi−1)). (7)

Here, α is the step length and Thi is the threshold function.
This thresholding function in Equation 7 sparsifies the inversion
result and helps to achieve a high-resolution inversion result. The
thresholding functionThi(x) and threshold valueTi are expressed as:

Thi(x) =
{
{
{

x, |x| ≥ Ti

0,x < Ti

, (8)

Ti =max|mi| − a
I− i
I

max |mi|. (9)

In Equations 8, 9, i is current iteration number and I is the total
iteration number. a is the thresholding value, the value of a ranges
from 0 to 1.

When this scheme is applied to Tau-P transform, the iterative
thresholding process picks the high amplitude Tau-P coefficients
first and then recovers lower-amplitude coefficients gradually; a
high-resolution Tau-P transform can be achieved, and it also
represents well the input seismic data.

Similar to Equations 2, 3, when M( f,p) is computed, Tau-P
representation of the input seismic gather can be computed via an
inverse Fourier transform applied to the time axis, and dispersion
spectrums can be achieved with dip p mapped to velocity v.

3 Synthetic data results

To illustrate the performance of an ISTA-based Tau-P transform
on the computation of the dispersion spectrum of surface-wave
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FIGURE 3
(A) The synthetic seismic shot gather with 20% random noise added. (B,C) The Tau-P panels computed using the conventional method and the
proposed high-resolution method, respectively. (D,E) The dispersion spectrums computed using the conventional method and the proposed
high-resolution method, respectively.

gathers, we generate synthetic surface wave seismograms via a finite-
difference solution to the elastic wave equation (Kelly et al., 1976)
and compute the dispersion spectrum.

Table 1 shows the elastic parameters for a three-layermodel used
for numerical simulation of the surface waves, and a Ricker wavelet
with dominant frequency of 30 Hz is used as the source wavelet. A
total of 120 traces with a recording spacing of 2 m were recorded to
form the synthetic seismic shot gather as shown in Figure 1A.

The synthetic shot gather in Figure 1A is transformed to a
Tau-P domain using the conventional method and the proposed
high-resolution method, respectively. As shown in Figures 1B,C,
the transform result generated with the high-resolution algorithm

demonstrates a much more focused spectrum than the result
associated with the conventional Tau-P transform algorithm. The f-
P spectrums in Figures 1D,E also show this feature. With this shot
gather, dispersion spectrums are computed with conventional Tau-
P transform and the ISTA-based high-resolution Tau-P transform
scheme as shown in Figures 1F,G. And the threshold value is 0.9.
To verify the precision of the computed dispersion spectrums,
dispersion curves are computed directly from the synthetic model
in Table 1 and plotted as green dotted lines on the dispersion
spectrums. As illustrated in Figures 1F,G, both dispersion spectrums
overlay well with the simulated dispersion curve shown as the green
dotted lines in this figure, and the dispersion spectrum computed
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FIGURE 4
(A) The synthetic seismic shot gather with 40% randomly traces removed. (B,C) The Tau-P panels computed using the conventional method and the
proposed high-resolution method, respectively. (D,E) The dispersion spectrums computed using the conventional method and the proposed
high-resolution method, respectively.

with the ISTA-based Tau-P transform scheme shows a remarkably
higher resolution than the one computed with a conventional Tau-P
transform.

Furthermore, we further evaluated the impact of different
threshold values on the dispersion spectrum calculation results,
in order to analyze their effect on the stability and accuracy of
the outcomes. Figure 2 mainly shows the calculated dispersion
spectrums form Figure 1A under different threshold values.
Figures 2A–C illustrate the results of dispersion spectrum
computation using the ISTA-based high-resolution Tau-P transform
with threshold values set to 0.3, 0.6, and 0.95. Figure 2D illustrates
the results of dispersion spectrum computation using high-
resolution linear Radon transform (Luo et al., 2008). According

to the computed results, the resolution improves as the threshold
value increases, and making it easier to accurately pick the
dispersion curves in the post-processing stage. Compared to the
high-resolution linear Radon transform (HR-LRT)method, the IST-
based high-resolution method achieves higher resolution through
threshold adjustment. If the threshold is too low, the resulting
resolution may be insufficient. On the other hand, if the threshold is
too high, it can lead to over-sparsification of the signal, where many
useful components that should have been preserved are mistakenly
discarded as noise.

To further test the resilience of the proposed high-resolution
Tau-P transform algorithm to noise, random noise is added to the
input seismic gather, and dispersion spectrums are computed.
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FIGURE 5
The dispersion spectrums computed from the synthetic seismic shot gather with 40% randomly traces removed. (A–C) The dispersion spectrums
computed using the proposed high-resolution method and the threshold values are 0.3, 0.6, and 0.95, respectively. (D) The dispersion spectrum
computed using the high-resolution linear Radon transform (HR-LRT).

Figure 3A shows the data with random noise added to
the seismic gather in Figure 1A. The noise amplitude is 20%
of the peak amplitude of seismic traces. As illustrated in the
Tau-P spectrums in Figures 3B,C and dispersion spectrums in
Figure 3D and in Figure 3E, and the threshold value is 0.9,
for noisy input, the proposed method produces results with a
significantly higher resolution and signal-to-noise ratio than the
conventional method.

To further test the applicability of the proposed high-resolution
Tau-P transformalgorithm to irregularly sampled data, we randomly
removed 40% of seismic traces in the input seismic gather and
computed the corresponding dispersion spectrums.

Figure 4A shows the data with randomly traces removed 40%
to the seismic gather in Figure 1A. As illustrated in the Tau-
P spectrums in Figures 4B,C, for randomly traces removed, the
proposed method produces results with a significantly higher
resolution and signal-to-noise ratio than the conventional method.
Due to irregularly sampled data, conventional method yields
dispersion spectrums with lower resolution in low-frequency
ranges in Figure 4D, making them difficult to accurately pick. In
contrast, the dispersion spectrum derived from high-resolution
algorithm in Figure 4E matches better with theoretical dispersion
curve, and the threshold value is 0.8.

Also, Figure 5mainly shows the calculated dispersion spectrums
from Figure 4A under different threshold values. Figures 5A–C
illustrate the results of dispersion spectrum computation using the
high-resolution Tau-P transform with threshold values set to 0.3,
0.6, and 0.95. Figure 5D illustrates the results of dispersion spectrum

computation using high-resolution linear Radon transform (HR-
LRT). When the threshold values are set to 0.3 and 0.6, the
calculated dispersion spectrums exhibit lower resolution in the low-
frequency range, which may lead to inaccurate dispersion curve
picking. The high-resolution linear Radon transform also suffers
from the same issue. When the threshold value is set to 0.95,
the dispersion spectrum shows higher resolution and matches
better with theoretical dispersion curve in the low-frequency range.
Compared with the high-resolution linear Radon transform, the
method proposed in this paper can achievemore accurate dispersion
spectrums computation in the low-frequency components for
irregularly sampled data through appropriate threshold adjustment.

4 Field data results

4.1 Dispersion spectrum computation and
dispersion curve picking

This high-resolution algorithm for the computation of
dispersion spectrums is also tested with field surface-wave datasets
acquired in the suburb of Chengdu, the Sichuan province of China.
We demonstrate the results for a shot gather with high signal-to-
noise ratio and a shot gather with lower signal-to-noise ratio.

In the surface-wave shot gather in Figure 6A, there are a
total of 240 receivers with a 2 m recording spacing, and the
seismic source is located at the center of the recording array.
We used only the right half of the shot gather for this test. As
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FIGURE 6
(A) A high signal-to-noise ratio shot gather. (B,C) The Tau-P panels computed using the conventional method and the proposed high-resolution
method, respectively. (D,E) The dispersion spectrums computed using the conventional method and the proposed high-resolution method,
respectively. (F) Dispersion curve picking from the dispersion spectrums. The red curve is picked from the conventional dispersion spectrum, and the
black curve is the picked from the high-resolution dispersion spectrum.
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FIGURE 7
(A) A low signal-to-noise ratio shot gather. (B,C) The dispersion spectrums computed using the conventional method and the proposed
high-resolution method, respectively. (D) The dispersion spectrum computed using the high-resolution linear Radon transform (HR-LRT).

shown in this figure, strong surface waves are present in this
dataset. We transformed the field data to a Tau-P domain using
conventional Tau-P transform and the ISTA-based high-resolution
Tau-P transform. As shown in the Figures 6B,C, the high-resolution
Tau-P transform algorithm generates a remarkably more focused
spectrum than the conventional Tau-P transform algorithm.

Dispersion spectrums are computed for this shot gather with
conventional Tau-P transform and the proposed high-resolution
algorithm, as demonstrated in Figures 6D,E. In the figure, the
threshold value is set to 0.9 and the dispersion spectrum computed
with the proposed algorithm shows a much higher resolution
than the one computed with conventional Tau-P transform and
much fewer artifacts, especially for frequencies below 10 Hz and
above 35 Hz.

This higher resolution and signal-to-noise ratio can significantly
enhance the efficiency and precision in manual and automatic

picking of the dispersion curves. In Figure 6F, the red curve is
computed with conventional Tau-P trans-form and the green one
is computed with the ISTA-based high-resolution Tau-P transform.
Dispersion curves picked from these two spectrums show a close
match between the two dispersion curves.

We test the proposed algorithm with a noisier shot gather
from this dataset. As shown in Figure 7A, this shot gather contains
components other than surface waves, such as P waves and noise,
and the surface wave events are not as coherent as those in
Figure 6A. Figures 7B,C show the dispersion spectrums of this shot
gather computed with the conventional Tau-P transform and the
proposed high-resolution version, and the threshold value is 0.8,
and Figure 7D shows that the dispersion spectrum computed with
high-resolution linear Radon transform (HR-LRT). The proposed
high-resolution algorithm and HR-LRT method both produce
a dispersion spectrum with much more focused energy and
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FIGURE 8
(A) A low signal-to-noise ratio shot gather with randomly traces removed 40%. (B,C) The dispersion spectrums computed using the conventional
method and the proposed high-resolution method. (D) The dispersion spectrum computed using the high-resolution linear Radon transform (HR-LRT).

much less noise in the Figures 7C,D than the conventional Tau-P
transform in the Figure 7B.

We also test the proposed algorithm with a noisier shot
gather which contains the 40% missing traces from this dataset.
As shown in Figure 8A, due to the random removal of 40%
seismic traces, continuous and distinct surface waves are invisible
in the record.

Figures 8B,C show the dispersion spectrums of this shot
gather computed with the conventional Tau-P transform and
the proposed high-resolution version, and the threshold value
is 0.7. It shows that the proposed high-resolution algorithm
produces a dispersion spectrum with much more focused
energy and less noise than the conventional Tau-P transform.
Figure 8D shows that the dispersion spectrum computed with

high-resolution linear Radon transform (HR-LRT). Based on the
dispersion spectrums obtained from irregularly sampled data,
it can be observed that the proposed high-resolution algorithm
demonstrates higher accuracy in the low-frequency components
and matches better with the results derived from the complete
gather shown in Figures 7B,C.

We also test the proposed high-resolution algorithm with
a shot gather containing higher-mode surface wave energy in
the Figure 9A. Figures 9B,C show the dispersion spectrums
computed with the conventional Tau-P transform and the
proposed high-resolution algorithm. As illustrated in the
dispersion spectrums computed with the high-resolution algorithm
captures the dispersion energies of different modes accurately,
with remarkably improved resolution.
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FIGURE 9
(A) A shot gather containing higher-mode surface waves. (B,C) The dispersion spectrums computed using the conventional method and the proposed
high-resolution method, respectively.

4.2 Impact of high resolution dispersion
spectrum on Vs inversion result

Inversion of dispersion curves is a crucial step in surface wave
analysis for shear-wave velocity imaging. However, conventional
algorithms usually produce a low-resolution and noisy dispersion
spectrum at low frequencies, which decreases the accuracy of
the picked dispersion curve and inversion results. In this part,
we use another field surface-wave dataset to demonstrate the
impact of the high-resolution algorithm on dispersion curve picking
in the low-frequency zone and subsequent shear-wave velocity
inversion results. We apply the proposed algorithm to a virtual
surface-wave shot gather extracted from a 20-min roadside passive
seismic data recording using a seismic interferometric method
(Cao et al., 2021; 2023). Virtual surface-wave gathers usually contain
strong interference components since they are extracted from noisy
recordings. As shown in Figure 10A, strong surface-wave energy is
extracted along with some noise interference in the gather.

Dispersion spectrums are computed for this virtual surface-wave
shot gather with conventional Tau-P transform and the proposed
high-resolution algorithm. As the Figure 10B shows, the dispersion
spectrums in the low-frequency portions have a much lower
resolution, andnoise in recorded data can further blur the dispersion
spectrum and add to the difficulty in dispersion curve picking
in this zone. In Figure 10C, the high-resolution Tau-P transform
algorithm generates a much sharper dispersion spectrum with
less noise than the conventional Tau-P transform. Then dispersion

curves are picked from these two dispersion spectrums, as shown in
Figure 10D,These two dispersion curves overlapwell for frequencies
above 15 Hz, but there are clear discrepancies below 15 Hz. This
observation is consistent with the remarkably lower resolution in the
low frequencies in Figure 10B, since this low resolution significantly
added to the ambiguity of dispersion curve picking.

With the dispersion curves in Figure 10D, Vs profiles are
generated by a Monte-Carlo inversion method. Figures 10E,F
respectively show the dispersion curve fitting results for the
conventional method and the proposed high-resolution method.
In addition, the inverted Vs profiles are displayed along with a
Vs profile derived from collocated micrologging measurements,
as shown in Figure 10G. It can be observed in Figure 10G that
the two inverted Vs overlap well for a depth above 12 m and
depart below this depth. This observation is consistent with the
behavior of the dispersion curves in Figure 10D since deep Vs
are mainly influenced by low frequencies. This result is consistent
with longer wavelengths penetrate greater depths for a given mode,
generally exhibit greater phase velocities, and are more sensitive
to the elastic properties of the deeper layers. Conversely, shorter
wavelengths are sensitive to the physical properties of near-surface
layers, which indicates that low frequencies are more sensitive
to deeper layers, while higher frequencies are more sensitive to
shallower layers (Xia et al., 2004; Foti et al., 2014). For Vs below
12 m, the results associated with the high-resolution dispersion
spectrum match much better with the micrologging result than
the result associated with the low-resolution spectrum, indicating
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FIGURE 10
(A) A virtual surface-wave shot gather computed with deconvolution interferometry. (B,C) The dispersion spectrums computed using the conventional
method and the proposed high-resolution method, respectively. (D) Dispersion curve picking from the dispersion spectrums. The red curve is picked
from the conventional dispersion spectrum, and the black curve is the picked from the high-resolution dispersion spectrum. (E,F) The dispersion curve
fitting results for the conventional method and the proposed high-resolution method, respectively. (G) The Vs inversion results for the dispersion
curves calculated by the two methods. The red curve shows the inverted Vs associated with conventional Tau-P transform, and the green one is the
inverted Vs associated with the proposed high-resolution algorithm; the blue curve is the Vs result computed from micrologging data. (H) The
Sensitivity analysis of shear wave velocity at different depths corresponding to frequency bands.
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that the high-resolution spectrum enables a more precise Vs
inversion through more accurate dispersion curve picking in
the low-frequency zone. To further assess the reliability of the
inversion results, a theoretical layered model was constructed by
integrating three sets of Vs profiles, as shown in Figure 10H.
The sensitivity of the dispersion curves to variations in shear
wave velocity at different layers was investigated by independently
increasing Vs values in each layer. Specifically, a 20% increase in
Vs4 resulted in significant changes in the dispersion curves within
low-frequency zone. When Vs3 was increased by 20%, notable
variations appeared primarily in the 10–15 Hz band. In contrast,
a 20% increase in Vs1 induced sensitivity in frequencies above
10 Hz. And the actual results are consistent with the theoretical
test outcomes. Since micrologging is a more direct measurement of
the Vs from boreholes, Vs from micrologging is generally believed
to have high fidelity. Therefore, Figure 10G indicates that the Vs
profile achieved using the high-resolution dispersion spectrum has
higher precision than the inverted one based on the low-resolution
dispersion spectrum.

5 Discussion

In this paper, the computation of dispersion spectrums
for surface waves is discussed. A high-resolution computation
algorithm is proposed because dispersion spectrum computation is
an essential step in surface wave data processing. In many scenarios,
such as short data-recording apertures or at low frequencies, the
computed dispersion spectrums demonstrate low resolution and
pose a severe challenge for accurate dispersion curve picking
and subsequent Vs estimation. This proposed high-resolution
algorithm demonstrates a clearly enhanced resolution and precision
in computed dispersion spectrums compared to the conventional
methods. Also, this method is easy to implement and parameterize
because of the simplicity of the algorithm. Therefore, this method is
a very use-full tool to tackle the aforementioned challenges.

Moreover, this high-resolution algorithm is based on a sparse
inversion algorithm, which can effectively suppress random
noise in the input seismic data. Compared with other higher-
resolution methods, the proposed method can still compute
more accurate and higher-resolution dispersion spectrums from
irregularly sampled data by adjusting the threshold parameter
appropriately. The high-resolution algorithm demonstrates superior
applicability in processing surface wave data acquired from
logistically constrained environments, such as densely constructed
urban areas characterized by complex infrastructure, where
acquisition operations face significant challenges. Similarly, this
method is also applicable to processing irregular sampled data
collected by seismic stations. As illustrated in the computed
dispersion spectrums, the proposed algorithm also achieves a
higher signal-to-noise ratio, and this enhancement can also increase
the accuracy and efficiency of dispersion curve picking and
subsequent Vs estimation. The advantages can benefit surface wave
imaging, especially recently developed passive surface wave imaging
methods. With the development of novel seismic acquisition tools
such as autonomous nodes and fiber-optic acoustic sensing systems,
passive surface wave imaging is garnering increasing popularity
because of its advantages of real-timemonitoring and environmental

friendliness. However, the strong noise in the extracted surface
waves usually degrades the accuracy and efficiency of dispersion
curve extraction and Vs imaging precision. This proposed high-
resolution algorithm has demonstrated significant potential in this
area, and, combined with machine learning algorithms, it could
further improve the efficiency and precision of passive surface
imaging and monitoring.

6 Conclusion

This paper presents a novel method for computing high-
resolution dispersion spectrums for surface waves. The proposed
approach utilizes a Tau-P transform, which is further enhanced
by incorporating the Iterative Shrinkage Thresholding Algorithm
(ISTA) to effectively sparsify the Tau-P coefficients. The efficacy
of the proposed method is demonstrated through both synthetic
and field data tests, where it is shown to generate high-resolution
dispersion spectrums that closely match the theoretical dispersion
curve. The results also indicate that the proposed method yields a
higher resolution and fewer artifacts in the dispersion spectrums,
which can improve the precision and efficiency of dispersion
curve picking in subsurface surface wave imaging. This benefit
is of special significance, since the surface wave data volume
is rapidly increasing, and the demand of real-time automatic
processing is ever-increasing with the advancement of data
acquisition technologies. Field tests also demonstrate inverted Vs
associated with the proposed high-resolution method match better
with collocated micrologging results in the deep part, indicating
more precise Vs derived from the higher resolution spectrum
generated with the proposed method. This experiment suggests
that a high-resolution spectrum computed with the proposed
method could enablemore reliable Vs inversion results for scenarios
of low-resolution dispersion spectrums, such as low frequencies
and short recording arrays. The approach presented in this
research offers a valuable instrument to improve the precision and
efficiency of subsurface geological structures and rock properties’
comprehension. Consequently, it has significant potential to
enhance the identification and development of hydrocarbon and
mineral resources in a more efficient manner.
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