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The prediction and classification of rockburst risk based on microseismic data is
the premise of preventing rockbursts during deepmine excavation. By reviewing
previous studies, this paper finds two problems that hinder the rockburst
prediction: 1) there is a lack of research on the distribution features ofmonitoring
data on the main controlling factors of rockbursts; 2) there is no research on
the intra-class variance and inter-class gap of microseismic data. Based on
the typical rockburst risk events, a quantitative information model of geology
and mining is constructed. The relationship between the spatial–temporal
distribution characteristics of microseismic data before a rockburst and the
main controlling factors of a rockburst is studied. The results show that the
distribution features may be different for the same type of microseismic (MS)
and rockburst events, and different types of events may show similar distribution
features. Therefore, based on the quantitative study of the relationship between
the performance of a deep learning prediction algorithm and a rockburst
prediction vector, a rockburst risk and type prediction algorithm based on a
convolutional neural network (CNN)-gated recurrent unit (GRU) model with
prototype-based prediction is proposed. The CNN-GRU model can produce
prediction vectors by fusing implicit and explicit information extracted from
the original MS data and early warning indicators. Cross-entropy loss, vector-
prototype contrastive loss, and vector-prototype contrastive loss are proposed
to automatically control the intra-class variance and inter-class gap of prediction
vectors belonging to different rockburst risks and types. Many experiments show
that the performance of the proposed CNN-GRU model with prototype-based
prediction is superior to other algorithms in the prediction of rockburst risks and
types based on MS data.
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1 Introduction

As underground mining and excavations continue to expand
at a rapid pace, a significant engineering challenge arises in the
instability of the surrounding rock masses (Aydan et al., 2017).
Rockburst, a representative instability phenomenon, is caused by
the abrupt release of accumulated elastic strain energy, posing
a grave threat to the safety of workers and causing extensive
damage to underground engineering structures (Basnet et al.,
2023). A significant number of researchers are committed to
addressing this challenge by elucidating the occurrence mechanism
(Askaripour et al., 2022; He et al., 2023), enhancing prediction
accuracy (Basnet et al., 2023; Pu et al., 2019), and developing
effective control measures (Li et al., 2019; He et al., 2018).
Rockburst prediction aims to generate accurate signals prior to
the occurrence of these disasters, serving as a prerequisite for
controlling and managing the rockburst hazards. Nevertheless, due
to its unpredictable emergence and numerous influencing factors,
rockburst prediction remains a challenging task that has yet to be
fully resolved.

Rockburst prediction is conventionally classified into long-term
prediction and short-term prediction (Liang et al., 2020). Long-
term rockburst prediction endeavors to utilize rock mechanical
parameters for constructing a prediction model with the aim
of assessing the rockburst probability and types of diverse
surrounding rock masses under assorted field conditions. This
task is customarily accomplished during the initial stage of
engineering design or excavation (Liang and Zhao, 2022). The
objective of short-term rockburst prediction, on the other hand,
is to predict the time, types, and damage magnitude of dangerous
rockburst events by conducting dynamic and static analyses on
real-time monitoring data. It is typically carried out during the
excavation period (Jinqiang et al., 2021). To attain satisfactory
outcomes, researchers are dedicated to applying diverse methods
for rockburst prediction, such as empirical analytical (He et al.,
2018; Yang et al., 2018), experimental (Hu et al., 2023; Cheng et al.,
2023), numerical (Wang et al., 2021; Manouchehrian and Cai,
2018), intelligent (Adoko and Zvarivadza, 2018; Xue et al.,
2023), and expert system (Li et al., 2020) methods. Although
each rockburst prediction method has its own advantages, in
contrast to intelligent methods, traditional prediction methods
hinge on extensive expert experience and meticulous judgment.
Therefore, the machine learning method represents a promising
alternative and has been adopted by numerous researchers
to dissect and handle the intricate and nonlinear process of
rockburst prediction.

Microseismic (MS) monitoring is a widely acknowledged and
highly effective tool for identifying the dangerous signals and key
controlling factors of rockburst types for short-term rockburst
prediction. It is capable of monitoring the occurrence of rockbursts
by extracting valuable signals that propagate from the fracturing
process of rock masses. Recently, by capitalizing on the capabilities
of machine learning in handling nonlinear problems, scholars
have directed their attention to rockburst prediction based on
MS data through the application of existing machine learning
algorithms. Such algorithms encompass support vector machine
(SVM) (Ji et al., 2020; Jin et al., 2022), convolutional neural network
(CNN) (Dong et al., 2023; Zhang et al., 2021; Yin et al., 2021a),

variants of RNN (Hu et al., 2023; Di et al., 2023a; Di et al., 2023b),
convolutional long short-term memory (ConvLSTM) (Chen et al.,
2023; Ma et al., 2021), and ensemble-learning (Liang et al., 2020;
Yin et al., 2021b; Liang et al., 2021), among others (Yin et al.,
2024a; Yin et al., 2024b; Cheng et al., 2024; Yin et al., 2021c).
Zhang et al. (2021) and Yin et al. (2021a) have conducted an
exploration of the key microseismic indexes that can characterize
the development process of rockbursts and have applied the refined
convolutional neural network (CNN) to predict rockbursts. In
order to depict the spatiotemporal relationship within microseismic
data and process the spatiotemporal indexes for rockburst
prediction, Chen et al. (2023) developed a deep learning model
founded on a ConvLSTM to forecast short-term rockburst risks.
Concurrently, the ensemble-learning methodologies (Liang et al.,
2020; Yin et al., 2021b; Liang et al., 2021) have also been employed
to acquire a highly potent rockburst prediction model relying on
MS parameters.

Previous research on the rockburst prediction first analyzed
the distribution features of microseismic data before a rockburst
occurred.Then, the rockburst prediction indexes are presented, and
the machine learning algorithm is used to describe the relationship
between the rockburst prediction indexes and the future rockburst
risks and types. However, these studies ignore the influence of
the main controlling factors of rockbursts on the distribution of
MS events before a rockburst occurs. In the rockburst prediction
and classification process, there is no quantitative analysis of the
influence of the intra-class variance and inter-class gap of prediction
vectors on the prediction accuracy. The prediction vectors are the
result of rockburst prediction indexes orMS data processing by deep
learning encoders.

A quantitative information model of geology and mining
is constructed based on the different types of rockburst risk
events. The temporal and spatial distribution characteristics of
MS data before a rockburst, in the main controlling factors
of rockburst (i.e., geological structure, roof, coal pillar, and
high-stress coal mass), are studied. The results show that the
distribution features of microseismic and rockburst events of the
same type may differ, and different types of events may show
similarities in space-time distribution. The relationship between
the performance of a deep learning prediction algorithm and the
prediction vector of rockbursts is studied. The rockburst prediction
model must accurately distinguish the differences between different
types of data and accurately describe the intra-class variance of
monitoring data.

A rockburst risk and type prediction method based on a
convolutional neural network (CNN)-gated recurrent unit (GRU)
and prototype learning prediction head is proposed.TheCNN-GRU
model can generate prediction vectors by integrating both implicit
and explicit information derived from original microseismic
(MS) data and prediction indexes. Through the use of cross-
entropy loss, vector-prototype contrastive loss, and inter-vector-
prototype contrastive loss, the model can autonomously manage
the intra-class variance and inter-class distance of prediction
vectors corresponding to different rockburst risks and types.
Extensive experimental results demonstrate that our proposed
CNN-GRU model with prototype-based prediction outperforms
alternative algorithms in forecasting rockburst risks and types
using MS data.
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FIGURE 1
The architecture of the CNN-GRU rockburst risk and type prediction model with a prototype-based prediction head.

2 Spatial–temporal and intensity
evolution of rockbursts in MS data

Although the factors influencing rockbursts are complex, four
controlling factors affecting the structure and stress of rockbursts
are commonly recognized: geological structure, hard rock strata,
coal pillars, and mining depth. The geological and mining data
related to these four factors from typical rockburst events are first
quantified. For each working face, themining progress over a 10-day
sliding window throughout the entire mining process is calculated.
The geological and mining information models corresponding to
different working faces are constructed. Then, by projecting the MS
data to the quantified geological andmining informationmodel,MS
events and rockbursts are simply divided into four types, that is, the
hard rock roof type, geological structure type, coal pillar type, and
mining depth type, as shown in Figure 1. Some events are caused by
more than one controlling factor.

Figure 2 shows that the distribution of different types of
MS events is disordered and irregular within 10 days before the
rockburst. Even for the same type of events, microseismic events
are clustered in several central regions and do not show similar
distribution characteristics. Meanwhile, the same type of MS events
is clustered in several central regions and do not show similar
distribution characteristics. During long-term mining, most MS
events show the characteristics of irregularity and relatively uniform
distribution and occur in the area where the main control factors
are active. When MS events occur intensively in some special
areas, it indicates that there is a rockburst risk in the area.
When MS events occur intensively in some special areas during
the short term, this indicates that there is a rockburst risk in
these areas.

The sequential expansion of the time and MS energy across the
entire working face is illustrated in Figure 3. Over the long term,
it is obvious that the main active controlling factors of a rockburst
are the same as those of most MS events. This is because there
are structural planes that hinder energy propagation among these
four main controlling factors, and the occurrence area of most MS
events can be used to determine the destination or main path of
energy propagation. The variation of MS energy over time scales
is disordered. From a short-term perspective within a rockburst
occurrence, the energy and frequency of MS events have increased
slightly, showing a relatively active state.

In summary, the MS events can be divided into four types
according to the time and space projection of MS events on
the controlling factors. For the entire mining process, all types
of MS events are disordered and irregular in terms of temporal
and spatial characteristics. When the same type of MS events
evolves from disordered and scattered to ordered and intensive,
the main controlling factor area may have a rockburst hazard.
However, even in the short term of rockburst occurrence, MS events
are clustered within several centers on the time and space scale.
Therefore, it is difficult and complex to summarize the temporal and
spatial characteristics of the same type of MS data and accurately
distinguish between different types.

3 Relationship of prediction head and
rockburst prediction vectors

In this paper, the content of rockburst prediction includes the
risk and type. There are two rockburst risk prediction results:
dangerous and non-dangerous. There are four rockburst type
prediction results: gravity type, coal pillar type, roof type, and
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FIGURE 2
Rockbursts and MS events caused by different main controlling factors within the working face. The MS data of all figures are within 10 days of the
rockburst occurrence. The first-row figures show the dangerous MS events influenced by the (a) hard rock roof, (b) geological structure, (c) coal pillar,
or (d) gravity or mining depth factors. The second row figures show the projection results of all MS data.

FIGURE 3
Time sequence exhibition of various MS events within the working faces where a (a) hard rock roof type rockburst, (b) geological structure type
rockburst, (c) coal pillar type rockburst, and (d) mining depth or gravity type rockburst occurs. Selected working faces are the same as those in Figure 3.
The MS event with the maximum energy value is the rockburst.

tectonic type. For the machine learning-based rockburst risk and
type prediction method, the algorithms mainly consist of the
encoder, decoder, and prediction head. The encoder is mainly
responsible for analyzing the input MS data and extracting
data features. For most previous rockburst prediction methods,
the function of an encoder was replaced by the calculation
formulas of prediction indexes. The decoder analyzes the feature

space of the data features and processes them into vectors with
rockburst risk and type information. The final prediction head
maps such vectors to the probabilities of rockburst risk and
rockburst types.

This section takes rockburst risk prediction as an example to
study the distribution requirement of decoder output vectors and
representative vectors in the prediction head. For the traditional
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rockburst risk prediction head, it is reasonable to assume that
there are two representative vectors, that is, a non-dangerous
representative vector w1 and a dangerous representative vector w2.
After the rockburst prediction vector v is obtained, the essence of this
problem is to determine the probability that v belongs to risk class C
according to the relationship between v and the representative vector
wc in the prediction head, which can be regarded as follows:

f(ω⊤c v+ bc) = const (1)

The least squares error between the dangerous probability
calculated based on the vector v and the target yi can be
written as follows:

L = 1
2

N

∑
n=1
(ω⊤c vn + bc − yn)

2 (2)

where N is the total number of samples. To simplify the calculation,
the C label is changed to yc = N/N1, and the other label is changed
to yc = −N/N2. To obtain the maximum likelihood estimate for bc,
setting Lwith respect to bc to 0, the following result can be obtained:

bc = −
1
N
ω⊤c (Ncmc +Ncmc) (3)

wheremc andmc are the two category centers of dangerous and non-
dangerous vectors. Setting the derivatives of L with respect to wc:

∂L
∂ωc
= (∑

n∈C
vnv

T
n + ∑

m∈C

vmv
T
m −Ncmcm

T −Ncmcm
T)ωc −N(mc −mc) (4)

where m = (Ncmc +Ncmc)/N. In order to analyze the data
distribution requirements of vector v data, the intra-class variance is

∑
n⊂C
[ω⊤c (xn −mc)]

2+∑
n⊂C

[ω⊤c (xn −mc)]
2 = ω⊤c Swωc (5)

where k is the class index. The SW is

SW = {∑
n⊂C
(vn −mc)(vn −mc)

⊤+∑
n⊂C

(vn −mc)(vn −mc)
⊤} (6)

The inter-class distance can be expressed as

(mc −mc)
2 = ω⊤c SBωc (7)

where the SB is

SB = (mc −mc)(mc −mc)
⊤ (8)

According to Equation 6, the following equation can
be obtained.

∑
n∈C

vnv
⊤
n + ∑

m∈C
vmv
⊤
m = SW +Ncmcmc

⊤ +Ncmcmc
⊤ (9)

Combining Equation 8 and Equation 9, Equation 4 can be
transformed to

∑
n∈C

vnv
⊤
n + ∑

m∈C
vmv
⊤
m = SW +Ncmcmc

⊤ +Ncmcmc
⊤ (10)

Setting Equation 10 to zero, the following equation can
be obtained:

ωc ∝ S−1W (mc −mc) (11)

Due to the differences in the monitoring data, SW is positive
and not proportional to the unit matrix. Therefore, in the task of
rockburst risk prediction, the vector v should not only maximize
the variance between categories (mc and mc) but also minimize the
variance within each category SW.These two objects are interactive.
This conclusion is also applicable to the prediction of rockburst
type. If there is no proper training method, reducing the intra-
class variance of vectors within the same class will also lead to the
reduction of inter-class distance of vectors. Therefore, in this paper,
the decoder output vectors of rockburst risk and type are controlled
using a prototype-based prediction head that can accurately control
the intra- and inter-class variances of vectors.

4 CNN-GRU model with the
prototype-based prediction head

According to the analysis in Section 2 and Section 3, the
distribution of rockburst data is very complicated, and it is difficult to
describe the distribution of rockburst prediction vectors belonging
to one rockburst risk class or type by a representative vector in
the traditional classifier head. Moreover, the traditional prediction
headers based on single or multi-layer perceptrons are updated
by backpropagation. This results in the distribution space of the
rockburst prediction vectors that cannot be reasonably controlled.
Therefore, a novel CNN-GRU algorithm for comprehensively
analyzing the original MS data and rockburst prediction indexes
is presented to project the MS data to rockburst risk and type
prediction vectors by automatically analyzing and fusing the
spatiotemporal distribution features of MS data. Then, a prototype-
based rockburst risk and type prediction head that can control the
inter-class distance and intra-class variance of the prediction vectors
is constructed.

4.1 The encoder-decoder based CNN-GRU
algorithm

As mentioned in Section 2, the distribution characteristics of
MS events in different stages of rockburst development are very
complicated. Therefore, in previous studies, the MS data are first
transformed into prediction indexes before inputting the machine
learning model. In this paper, the CNN-GRU algorithm outputs the
prediction vectors by comprehensively analyzing the original MS
data and the prediction indexes, as shown in Figure 4.

The encoder consists of five one-dimensional (1D) CNN-based
layers. Each 1D CNN layer contains a convolution layer, a batch
normalization layer, and a rectified linear unit (ReLU) activation
function. The number of convolution kernels in each layer is 12, 12,
12, 24, and 24, respectively. The input of the CNN-based encoder
is the original MS data with a standardized time interval of two
adjacent events, X, Y, andZ coordinates, and energy. If the number of
analyzed MS data elements is n and the dimension of the prediction
vector is 24, the input and output dimensions of the encoder are
[batch size, n, 5] and [1, batch size, 24].

The decoder consists of five GRU-based modules. The hidden
layer parameter of the first GRU module is the encoder output.
The input of each GRU module is made up of different rockburst
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FIGURE 4
The illustration of prototype updating and matching in the
prediction head.

prediction indexes. The decoder outputs are the prediction vectors
whose dimension is [1, batch size, 24]. In this model, the rockburst
prediction index consists of standardized temporal concentration
QT , the time information entropy Qt , space concentration QD,
spatiotemporal diffusion ds, and energy concentration indexQE.The
temporal concentration QT can be formalized as

QT = Var(Tn)/ΔTn (12)

where QT ,Var(Tn) and ΔTn are the temporal concentration, the
variance, and the mean value of the time interval of the last
nMS events.

Therefore, the time information entropy Qt is used to describe
the aggregation degree of MS events in the time series, reflecting the
disorder or order in the evolution of MS time.

Qt =
−(1/n)∑n

i=1
pi ln

pi

ln(n−1)
(13)

where n is the total number of selectedMS events. pi =
ti+1−ti
tn−ti

, ti is the
occurrence time of the i-th MS event, and the value of pi is 0∼1.

The spatial distribution of MS events is important for
understanding the stability of the coal rock mass in the mine.

QD = Var(Rn)/ΔRn (14)

where QD, Var(Rn), and ΔRn are the space concentration, variance,
and mean value of the radius corresponding to the last nMS events.

The spatiotemporal diffusion is summarized to reflect the
dispersion degree of MS events in time and space.

ds = (X)
2/t (15)

where X is the average distance between sequential MS events. t is
the average time interval between sequential MS events.

The energy concentration index is established to reflect the
energy change and MS distribution before the rockburst.

QE = Var(En)/ΔEn (16)

where QE, Var(En), and ΔEn are the energy concentration, the
variance, and the mean value of the energy corresponding to the
continuous n MS events.

4.2 The prototype-based rockburst risk
and type prediction head

To control the inter-class distance and intra-class variance of
the prediction vectors, a novel rockburst risk and type prediction
head that can constantly adjust the position of the prototype is
proposed, as seen in Figure 4. In the perceptron-based prediction
head, the prototype can be regarded as the representative vector in
the traditional prediction head.

In this method, the sub-centers of vectors belonging to class C
are described by K prototypes, that is, {pc,k}

K
k=1

. Pc,k is the k-th sub-
cluster center of prediction vectors belonging to class C. With this
prototype-based classifier, the probability distribution of prediction
vector v over the C class can be described as

p(c|v) =
exp(−sv,c)

Σc
c′=1 exp(−sv,c′)

,with sv,c =min {⟨v,pc,k⟩}
K
k=1

(17)

where the vector-class distance sv,c ∈ [−1, 1] is the distance to
the closest prototype of class c. Based on Equation 12, the cross-
entropy loss is

lCE = − log
exp(−sv,c)

Σc
c′=1 exp(−sv,c′)

(18)

As studied in Section 3, the prediction head should push the
prediction vector close to a certain prototype (i.e., the center of
vectors) of class c and distant from other prototypes belonging
to other classes. However, Equation 7 only considers one vector-
class distance. Therefore, the updating method and other limiting
conditions of the prototype should be studied.

The prototypes are selected and assigned by the online
clustering. Prediction vectors within the same class are assigned to
the prototypes of that class, and the prototypes are then updated
according to the assignments. Formally, given the vectors Vc =
{vn}

N
n=1 in a training batch that belongs to class c, the goal is to map

the vectors VC to the K prototypes Pc = {pc,k}
K
k=1

of class C. The
vector-to-prototype mapping is denoted as Lc = [lvn]

N
n=1
∈ {0,1}K×N.

lvn = [lvn,k]
K
k=1
∈ {0,1}K is the one-hot assignments of vectors vn over

the K prototypes.The optimization of LC is achieved by maximizing
the similarity between vector embeddings and the prototypes.

max
Lc

Tr(L⊤c P⊤c Vc),

s.t.Lc ∈ {0,1}K×N,L⊤c 1K = 1N,Lc1N =
N
K
1K

(19)

The unique assignment constraint L⊤c 1K = 1N ensures that each
vector is assigned to one and only one prototype. The equipartition
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constraint Lc1N =
N
K
1K enforces that each prototype is selected

at least N/K times in the batch on average. This constraint
prevents all vectors from being assigned to a single prototype
and eventually benefits the representative ability of the prototypes.
To solve Equation 8, Lc can be relaxed to an element of the
transportation polytope:

max
Lc

Tr(L⊤c P⊤c Vc) + κh(Lc),

s.t.Lc ∈ RK×N
+ ,L⊤c 1K = 1N,Lc1N =

N
K
1K

(20)

where h(Lc) = ∑n,k − lvn,k log lvn,k is an entropy, and κ > 0 is a
parameter that controls the smoothness of the distribution.With the
soft assignment relaxation and the extra regularization term h (Lc),
the solution of Equation 9 can be given as

Lc = diag(ψ)exp(
P⊤c Vc

κ
)diag(ε) (21)

where ψ∈RK and ε∈RN are re-normalization vectors, computed by a
few steps of the Sinkhorn–Knopp iteration.

The vector-prototype contrastive learning strategy is employed
to maximize the prototype assignment posterior probability
and the variation of different prototypes. The vector-prototype
contrastive loss is

lPPC = − log
exp(v⊤pcv,kv/τ)

exp(v⊤pcv,kv/τ) +∑p−∈P−
exp(v⊤p−/τ)

(22)

where the temperature τ controls the concentration level of
representations. Equation 11 enforces each vector v to be similar
with its assigned prototype pcv,kv , and dissimilar with other irrelevant
prototypes p−.

Equation 18 andEquation 22 inspire inter-class and inter-cluster
discrimination but do not consider reducing the intra-cluster
variation, that is, making vectors of the same prototype compact.
Thus, a compactness-aware loss is employed for further regularizing
representations by directly minimizing the distance between each
prediction vector and its assigned prototype:

lPPD = (1− v⊤pcv,kv)
2 (23)

Note that both v and pcv,kv are 2-normalized. To accurately
control the results, the prototypes were not learned by stochastic
gradient descent. After each training iteration, each prototype
is updated as:

pc,k← μpc,k + (1− μ)vc,k (24)

where the updated weight μ is 0.999. vc,k is the mean vector of the
embedded training pixels, which are assigned to prototype pc, k by
online clustering.

This training objective minimizes intra-cluster variations while
maintaining separation between features with different prototype
assignments. As shown in Figure 5, the total loss for prototype-based
prediction head is

L = λ1lCE + λ2lPPC + λ3lPPD (25)

where λ1∼λ3 are the weights for the loss function.Their values are 1,
0.5, and 0.1 in the article.

As shown in Figure 1, there are two outputs of the prototype-
based prediction head, that is, the rockburst types and rockburst
risks. There are four classes for the rockburst types, including
geological structure, hard rock strata, coal pillars, and mining
depth. The class of rockburst risks consists of dangerous and non-
dangerous events.

5 Engineering application and
experiment implementation details

5.1 Rockburst type and risk prediction data

In the experiments, microseismic data from three different
rockburst-prone mines are utilized, with the number of monitoring
data elements being 29,156, 48,318, and 32,796, respectively. The
geological formations and mining conditions exhibit significant
heterogeneity for these three mines. Because these mines are located
in different places, the geological andmining conditions vary among
these rockburst mines. The MS data information includes time
interval, X, Y, and Z coordinates, and energy value, respectively.
The types of rockburst events and MS events are determined by
the projection results of events in different rockburst controlling
factor areas. The rockburst types are geological structure, hard
rock strata, coal pillars, and mining depth. The rockburst risk
levels are dangerous and non-dangerous. In the original MS data,
the proportion of rockburst risk events is very low. Therefore, in
the training and testing stages, large energy events, obvious mine
earthquakes, and rockbursts are defined as dangerous events, and
other MS events are defined as non-dangerous samples. In the
presented prototype-based prediction head, the prototype numbers
for each rockburst type and risk level are set as 5.

In this paper, the standardized time interval of two adjacent
events, the X, Y, and Z coordinates, and the energy are selected
as the input features of the encoder. The standardized rockburst
prediction indexes are selected as the input feature of the decoder.
The target is future MS event types and risk levels. By employing
the inputs as features and future MS event types and rockburst risk
levels as labels, the samples for rockburst types and levels prediction
are constructed. When processing the original MS data to sample
features, by setting the fused number ofMS events as n = 5, 6,…, 15,
thirty datasets for each coalmine are constructed.The partition ratio
of training and test samples is 7:3 based on the continuous timeline.
Considering the imbalance between different risk level events as
well as the number of dangerous and non-dangerous samples, the
weighted sampling method is used during training.

5.2 Comparison methods and
implementation details

The comparison methods are SVM (Ji et al., 2020), CNN
(Zhang et al., 2021), LSTM (Di et al., 2023b), and CNN-GRU
with traditional prediction head methods, which are the most
popular supervised machine learning methods for rockburst risk
and type prediction. The traditional prediction head is a two-layer
MLP network.

Frontiers in Earth Science 07 frontiersin.org

https://doi.org/10.3389/feart.2025.1601090
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhang et al. 10.3389/feart.2025.1601090

FIGURE 5
The illustration of different loss functions for the prototype-based prediction head.

The training epoch for each method is 200. For the
comparison method with the traditional prediction head,
the CE loss function is employed to evaluate the difference
between the model output and the targets. The input of
comparison methods is the combination of sample features.
All experiments are implemented on Pytorch 1.10.2 +
CUDA 11.3, in FP32 precision by using two RTX A6000 GPUs.
A batch size of 512, an Adam optimizer with a momentum of 0.9,
a weight decay of 4 × 10−5, and an initial learning rate of 5 × 10−4

are employed.
To show the performance of different algorithms, the evaluation

metric of different algorithms adopts the prediction accuracy of
different rockburst types (Types), non-dangerous samples (Non),
and dangerous samples (Dan) on the testing dataset.

5.3 Comparison results of different
rockburst types and risk prediction
methods

The comparison study results are shown in Figure 6. The
presented CNN-GRU model with the prototype-based prediction
head shows the best performance. The accuracy of the proposed
method on the testing set with different rockburst type samples, only
non-dangerous samples, only dangerous events achieves 80.72%,
78.62%, and 82.57% in Mine 1, 78.19%, 89.13%, and 79.72% in
Mine 2, and 76.07%, 86.92%, and 78.37% in Mine 3.

When different models reach the highest accuracy on different
data sets, the corresponding fusedMS event number n is similar. For
Mine 1 and Mine 2, when the fused MS event number n is 8, almost
all methods achieve the best performance. For Mine 3, the best

performance of the entire method appears when the fusedMS event
number n is 7.Thismay be because the rockburst prediction indexes
and MS data are mainly physical quantity indexes, considering
the physical logic of coal rock mass failure and mining rate.
For the same mine or workface, the physical logic and mining
rate are similar.

6 Ablation experiments and discussion

6.1 The number of prototypes

The number of prototypes in the prediction head influences
the accurate description of the intra-class variance and inter-class
distance of the rockburst prediction vectors. It can also affect
the output distribution of the prediction vector through the loss
function. The results of setting the fused MS event number n to
8/8/7 for Mine 1, Mine 2, and Mine 3 are shown in Table 1. The
optimal number of prototypes per class is five, considering the trade-
off between performance and computation cost. When the number
of prototypes is too small, it is impossible to describe the variance
between vectors in different classes. Too many prototypes can result
in overfitting and reduced computational efficiency.

6.2 Different deep learning methods with
the prototype-based prediction head

The prototype-based rockburst type and risk prediction head
showed significant performance gain for the CNN-GRUmethod, as
shown in Figure 6. To demonstrate the universality and superiority
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FIGURE 6
The performance comparison of the presented method and other methods. The presented CNN-GRU method is the presented CNN-GRU model with
the prototype-based prediction head. The traditional CNN-GRU method is the CNN-GRU model with a two-layer MLP prediction head.

of the prototype-based rockburst type and risk prediction head,
the prototype-based prediction head is employed with other
methods. The fused MS event number n is set as 8/8/7 for
Mine 1, Mine 2, and Mine 3. Table 2 reports that the prototype-
based prediction head is obviously superior to the traditional
prediction head for the employed deep learning methods. This
is mainly because the traditional prediction head only uses the
cross-entropy loss function to train, which cannot prevent the

representative vectors of the same class from becoming similar in
the training process.This results in the prediction head being unable
to describe the inner-class variance even with a sufficient number of
representative vectors. At the same time, it is impossible to control
the encoder–decoder to ensure the same kind of output prediction
vectors close in the distribution space for the traditional prediction
head. These problems are overcome in the prototype-based
prediction head.
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TABLE 1 The influence of prototype number on the presented CNN-GRU model with a prototype-based prediction head.

Number Accuracy in Mine 1 Accuracy in Mine 2 Accuracy in Mine 3

Types Non Dan Types Non Dan Types Non Dan

1 77.89 87.69 76.88 75.23 85.03 74.36 74.10 82.77 71.11

3 80.86 90.06 78.92 78.22 87.67 76.60 76.65 85.02 74.00

5 82.57 91.62 80.72 79.72 89.13 78.19 78.37 86.92 76.07

7 82.70 91.82 80.84 79.88 89.29 78.38 78.48 87.08 76.25

10 82.88 91.93 81.04 80.07 89.47 78.48 78.59 87.26 76.40

TABLE 2 The influence of prototype number on the presented CNN-GRU model with the prototype-based prediction head. CNN-GRU-Prototype and
CNN-GRU-Tradition are the CNN-GRU model with a prototype-based prediction head and a traditional prediction head, respectively.

Prediction head Throughput (samples/s) Accuracy in Mine 1 Accuracy in Mine 2 Accuracy in Mine 3

Types Non Dan Types Non Dan Types Non Dan

CNN-Prototype 420.8 77.81 86.80 75.95 74.27 84.68 73.07 72.77 81.02 70.15

CNN-Tradition 429.7 75.23 83.99 73.11 72.07 81.80 70.83 70.52 78.94 68.10

LSTM-Prototype 453.6 79.87 88.43 77.40 75.76 85.94 74.97 74.21 83.16 72.34

LSTM-Tradition 462.1 76.48 85.18 74.31 73.05 82.97 71.98 71.70 80.44 69.57

CNN-GRU-Prototype 405.9 82.57 91.62 80.72 79.72 89.13 78.19 78.37 86.92 76.07

CNN-GRU-Tradition 393.3 78.16 87.19 76.29 74.96 84.76 73.78 73.38 82.44 71.53

TABLE 3 The influence of loss function weights on the presented CNN-GRU model. The employed model is CNN-GRU-Prototype. λ1∼λ3 are the loss
function weights for cross-entropy loss, vector-prototype contrastive loss, and loss compactness-aware loss in Equation 25.

Loss function
weights

Accuracy in Mine 1 Accuracy in Mine 2 Accuracy in Mine 3

λ1 λ2 λ3 Types Non Dan Types Non Dan Types Non Dan

1 0.5 0.1 82.57 91.62 80.72 79.72 89.13 78.19 78.37 86.92 76.07

1 0 0.1 80.13 88.46 78.12 76.23 86.79 75.48 76.89 84.26 73.82

1 0.5 0 81.27 90.12 78.94 77.53 87.05 77.56 77.24 85.83 75.06

1 0.5 0.5 81.92 90.53 79.64 78.96 88.06 77.29 77.10 85.82 74.95

1 1 0.1 82.01 90.91 80.15 79.36 88.23 77.59 77.63 86.01 75.26

6.3 The weight of loss functions

There are three loss functions in Equation 25. Ablation
studies conducted to evaluate their individual contributions,
as shown in Table 3, demonstrate that all three components
enhance model performance, albeit with varying impacts. The
cross-entropy loss exhibits the most significant contribution, as it is
the primary training objective. Meanwhile, the vector-prototype
contrastive loss and the loss compactness-aware loss primarily
regulate prototype distribution within the classifier. Notably,

the experimental results reveal that maximizing the posterior
probability of prototype assignments and enhancing prototype
diversity between clusters are more critical than minimizing intra-
cluster compactness.

6.4 The weight of loss functions

To evaluate the influence of input indicators on model
performance, we conducted ablation experiments on five indicators
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TABLE 4 The influence of input indexes on the presented CNN-GRU model.

The missing index Accuracy in Mine 1 Accuracy in Mine 2 Accuracy in Mine 3

Types Non Dan Types Non Dan Types Non Dan

Temporal concentration 60.21 69.21 58.20 57.23 66.46 54.74 57.10 62.71 53.60

Time information entropy 62.23 71.96 60.86 59.65 68.28 56.77 59.30 64.72 56.03

Space concentration 68.88 77.61 67.04 66.38 74.70 63.84 65.10 72.07 62.55

Spatiotemporal diffusion 72.61 81.50 71.33 69.94 79.14 67.93 68.84 76.51 66.38

Energy concentration index 77.38 86.28 75.40 74.67 83.53 72.23 73.31 81.23 70.90

input to the GRU model. The results are presented in Table 4.
The experiments revealed that the energy concentration index
contributed most significantly to model performance, while the
time concentration index had the least impact. This phenomenon
may be attributed to the fact that the energy concentration
index directly reflects the accumulation and release processes
of elastic strain energy within the rock mass. When energy
becomes highly concentrated in a localized area, it indicates
sufficient accumulation of strain energy, which may suddenly
release upon reaching critical conditions, potentially triggering
a rockburst.

7 Conclusion

To overcome the problems of previous rockburst prediction
tasks, this paper constructs quantitative information models
of geology and mining based on typical rockburst events.
By studying the relationship between the spatial-temporal
distribution characteristics of MS data before a rockburst
and the main controlling factors of rockbursts, the results
show that the distribution features may be different for the
same type of MS and rockburst events. Different types of
events may show similar distribution features. The quantitative
research results on the relationship between the deep learning
prediction algorithm performance and prediction vectors
show that the rockburst prediction model must accurately
distinguish among the various types of rockburst events
and also accurately describe the intra-class variance of
monitoring data.

Based on the above insights, a novel rockburst risk and
type prediction algorithm based on a CNN-GRU model with
prototype-based prediction is proposed. The CNN-GRU model
consists of an encoder and a decoder, which can produce
prediction vectors by fusing implicit and explicit information
extracted from the original MS data and prediction indexes.
The prototype-based prediction uses cross-entropy loss, vector-
prototype contrastive loss, and vector-prototype contrastive
loss to automatically control the intra-class variance and inter-
class gap of rockburst risk and type prediction vectors. The
performance superiority of the proposed algorithm compared
with the previous algorithm is verified by the comparison

experiment on the data of three mines. The ablation experiment
also proves the universality of the proposed prototype-based
prediction head in different algorithms for rockburst risk and type
prediction.
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