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Seismic first break picking based
on multi-task learning

Zhongpo Zhang* and Jing Yang

R&D Center of Science and Technology, Sinopec Geophysical Corporation, Nanjing, China

Introduction: Seismic first break (FB) picking helps us with near surface
tomography, microseismic detection among other tasks. Using image semantic
segmentation (ISS) networks to do so has been a hot topic in recent years,
and multi-task learning has also demonstrated excellent data representation
capabilities in several areas.

Methods: To improve accuracy, we combine the FB picking task with the
seismic data reconstruction task, and propose an enhanced FB picking training
method based onmulti-task learning network. Specifically, we use two decoding
branches of the same size in the network, which are the ISS decoding branch
for the FB picking task, and the seismic feature learning decoding branch for the
reconstruction task. The introduction of the seismic feature learning decoding
branchwill further help the network encoder to extract seismic effective features
more efficiently, which will improve the accuracy of the ISS decoding branch,
and ultimately improve the accuracy of the FB picking. During the training
process, we use different loss functions for different decoding branches, and
guide the network fitting through joint loss. In addition, we randomly add noise
as well as random elimination to the seismic data to simulate the low SNR trace
sets and bad traces that may exist in seismic data acquisition, and discuss the
impact of different cases on the training results.

Results and discussion: The experimental results show that this method
achieves more accurate FB picking results than the existing single-branch ISS
methods, with an average picking error as low as 3.08 ms in the field data,
and the percentage of traces with a picking error higher than 15 samples is
as low as 0.03%, which is far superior to the network methods such as UNet,
STUNet, SegNet, and Res-Unet, and effectively realizes the overall high-quality
FB picking.

KEYWORDS

seismic first break (FB), image semantic segmentation, FB picking, multi-task learning,
seismic data reconstruction

1 Introduction

Seismic exploration is a geophysical method that utilizes the propagation
characteristics of seismic waves to detect underground structures. It is widely
applied in mineral resource exploration (Malehmir et al., 2012), oil and natural
gas prospecting (ZHAO, 2008), geothermal resource assessment (Maćkowski et al.,
2019; Mondol, 2010; Wright et al., 1985), and groundwater investigation
(Haeni, 1986). As a crucial step in seismic data processing, the accuracy of
seismic first break (FB) picking directly impacts subsequent procedures, such as
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static correction, near-surface velocity modeling and
noise suppression (Mondol, 2010; Coppens, 1985;
Socco et al., 2010; Saragiotis et al., 2013). Consequently, the
advancement of this technology has garnered sustained attention
from both academia and industry.

As exploration scales continue to expand, the number of
seismic source shots and geophones recorded in seismic surveys
is increasing rapidly. Consequently, the seismic traces requiring
processing often reach tens of thousands or even exceed one
hundred thousand, posing a significant challenge to achieving
efficient and accurate seismic FB picking. Although manual picking
methods offer high accuracy, they are inefficient, labor-intensive,
and inadequate for handling large-scale exploration data. Over the
past few decades, researchers have developed various automated
FB picking methods, including the energy ratio method (Coppens,
1985; Lee et al., 2017), cross correlation method (Molyneux and
Schmitt, 1999), fractal dimension method (Boschetti et al., 1996;
Sabbione and Velis, 2010), and image edge detection method
(Luo et al., 2018; Mousa et al., 2011). However, under complex
geological conditions, these methods often struggle to maintain
picking accuracy when processing low-quality data, thereby limiting
their effectiveness in practical applications. In recent years, with the
rapid advancement of artificial intelligence technology, intelligent
methods have been widely applied in seismic data processing (Jiao
and Alavi, 2020; Mousavi and Beroza, 2023; Jia and Ma, 2017).
This technology is expected to further enhance the automation of
FB picking, improve accuracy and computational efficiency, and
meet the demands of increasingly complex geological exploration.
Consequently, the development of intelligent FB picking methods
with high efficiency and accuracy has become a focal point of
research (Yuan et al., 2018; Harsuko and Alkhalifah, 2024).

With the rise of deep learning, this cutting-edge
technology—which employs neural network models to fit complex
nonlinear mappings—has garnered significant attention, leading
numerous researchers to adopt it across various fields (LeCun et al.,
2015; Guo et al., 2016; Shinde and Shah, 2018; Wang X. et al.,
2024). Since seismic data preprocessing tasks (e.g., seismic FB
picking, seismic data denoising, etc.) are often regarded as signal
processing or image analysis tasks, and such tasks are the main
areas where deep learning techniques are applied, various types of
deep learning-based seismic FB picking methods have emerged. In
terms of data dimensionality, some researchers proposed 1-D single-
channel FB picking methods based on fully convolutional networks
(Wu et al., 2019; Zhu and Beroza, 2019; Loginov et al., 2022). These
methods achieve high-precision results in high signal-to-noise ratio
(SNR) data but fail to capture FB correlation information from
neighboring traces and perform poorly on large-scale complex
datasets. Compared to 1-D single-trace FB picking, 2-D multi-
trace deep learning methods, which frame FB picking as an image
semantic segmentation (ISS) task, exhibit superior noise immunity
and picking accuracy. By incorporating the spatial information of
neighboring traces’ FBs, these methods enhance performance in
complex datasets. Consequently, many researchers have explored
convolutional network-based architectures such as UNet and its
variants (Hu et al., 2019; CHEN et al., 2021; Zwartjes and Yoo, 2022),
SegNet (Yuan et al., 2022), as well as Transformer-based models
like STUNet (Jiang et al., 2023) and StorSeismic (Harsuko and
Alkhalifah, 2022) for multi-trace seismic FB picking. Furthermore,

3-D multi-trace seismic FB picking method based on ISS networks
was also proposed (Han et al., 2021; Jiang et al., 2024). In addition to
variations in data dimensionality, researchers have explored different
types of network models, such as graph neural network-based FB
picking method (Wang et al., 2024a) and Bayesian network-based
FB picking method (Wang et al., 2024b). Extensive experiments
on both simulated and field data have demonstrated that neural
network-based seismic FB picking methods outperform traditional
automatic approaches. Moreover, since seismic data are often stored
in a 2-D format, numerous studies have focused on 2-D multi-
trace FB picking methods utilizing ISS networks (Zwartjes and
Yoo, 2022; Xu et al., 2021).

Initially, due to hardware limitations and training efficiency
constraints, most neural network models were designed for end-
to-end mapping within a single encoding-decoding framework,
making it challenging to achieve multi-branch, multi-task
synchronous training and inference. In addition to variations in
data dimensionality, researchers have explored different types of
network models. For example, Wu et al. used a multi-task learning
network for the realization of airborne transient electromagnetic
denoising and inversion (Wu et al., 2022). Ovcharenko et al.
achieved low-frequency extrapolation and elastic model building
from seismic data through multi-task learning (Ovcharenko et al.,
2022). Shan et al. and Deng et al. realized multi-parameter forward
modeling of 2-D as well as 3-D magnetotelluric through multi-
task learning (Shan et al., 2021; Deng et al., 2025). The above studies
demonstrate thatmulti-task learning can improve a networkmodel’s
ability to capture data features, leading to better performance while
imposing only a limited increase in network size. Most existing
deep learning-based seismic FB picking studies adopt a single-task
learning framework, with limited research on applying multi-task
learning to this problem. To address this gap, we introduce multi-
task learning into the seismic FB picking task and incorporate a
seismic feature learning decoding module into the ISS-based FB
picking network to enhance the feature extraction capability of the
original encoding module. Specifically, the network model consists
of two decoding branches of equal size: one for FB picking via image
semantic segmentation and the other for data reconstruction in
seismic feature learning. We believe that incorporating the seismic
feature learning decoding branch will encourage the network
encoder to extract effective seismic features more efficiently, thereby
enhancing the accuracy of image semantic segmentation decoding
and ultimately improving FB picking precision. To simulate low
signal-to-noise ratio trace sets and bad traces in seismic pickups,
we introduce random noise and randomly remove seismic data,
then analyze the impact of different scenarios on the results. During
training, we employ distinct loss functions for each decoding branch
and optimize the network using a joint loss approach. Experimental
results indicate that the proposed method outperforms existing
single-branch image semantic segmentation approaches, achieving
an average picking error as low as 3.08 m. Notably, the method
maintains a high zero-error picking ratio, while the percentage of
traces with a picking error exceeding 15 samples is as low as 0.03%
—significantly outperforming networks such as STUNet, SegNet,
and Res-UNet, effectively achieving high-quality FB picking.
Furthermore, the lightweight double-decoding convolutional
network exhibits low computational complexity, resulting in shorter
training time and higher inference efficiency.
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FIGURE 1
Flowchart of multi-trace seismic first break picking based on deep learning.

2 Methods

With the widespread adoption of deep learning across various
fields, the multi-trace seismic FB picking method based on image
semantic segmentation has demonstrated strong noise immunity
and significant practical engineering value. As illustrated by the
workflow in Figure 1, deep learning-based seismic FB picking
consists of threemain steps: data preprocessing, labeling and dataset
generation, network training and inference. Data preprocessing
focuses on formatting and sizing seismic data for network input.
Labeling and sample pair generation define the calibration method
for FBs and the structure of data sample pairs, playing a crucial role
in enabling the network to efficiently recognize FB features. The
network training and inference stage involves selecting the network
architecture and optimizing training and inference strategies, which
directly impact the accuracy of FB picking. In this paper, we
propose an efficient and systematic approach for all three steps.
High-precision seismic FB picking is achieved through linear
correction, pre- and post-mask calibration, and a lightweight
double-decoding convolutional network based on multi-task
learning.The following section provides a detailed description of the
proposed method, covering network principles, data preprocessing,
and labeling.

2.1 Network

The double-decoding convolutional network for seismic FB
picking proposed in this paper is illustrated in Figure 2. The overall
design follows the classical UNet architecture (Ronneberger et al.,
2015), which is widely recognized for its stability and efficiency
in computer vision tasks. The network is primarily composed of
an encoding part and a decoding part. In the encoding part, each
downsampling stage comprises two convolutional operations with
a (3, 3) kernel and (1, 1) strides, followed by two ReLU activation
functions and a max-pooling operation. Each downsampling stage
reduces the feature map size while increasing the number of feature
channels. The reduction in feature map size facilitates long-range
feature interactions within the data, whereas the increased number
of channels enhances the network’s ability to extract deeper feature
representations. A downsampling stage can be mathematically
expressed as follows:

xout =MaxPool2×2 (ReLU(ConV3×3ReLU(ConV3×3 (xin)))) (1)

where xin and xout represent the input and output data, respectively;
MaxPool denotes the max-pooling operation; ConV denotes the
convolution operation; and the subscript n × n indicates the size
of the convolutional kernel or the pooling stride.
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FIGURE 2
Schematic diagram of double decoding convolutional network and data input and output.

FIGURE 3
Schematic before and after linear correction.

FIGURE 4
Mask labeling method. (a) Seismic data. (b) labeling method, label the pre-FB and post-FB of the seismic data as positive and negative samples.
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FIGURE 5
Comparison results of the mask map output by each network method. Red pixels indicate ground truth FBs, green pixels indicate the predicted FBs for
the given method, while blue pixels highlight instances where the predicted FBs are entirely correct (0 sample point error).

The network’s decoding stage consists of Decoder A and
Decoder B, each corresponding to a distinct task. Decoder A serves
as the image semantic segmentation branch, while Decoder B
functions as the seismic feature learning branch. Each decoding
branch comprises four identical upsampling stages, where each
stage includes a transposed convolution operation with a (4,
4) kernel and (2, 2) strides, followed by a ReLU activation
function. Each decoding branch employs skip connections via
channel concatenation to fuse features from the downsampling path
with those from the corresponding upsampling path, facilitating
interactions between shallow image textures and deep abstract
features. Through these operations, each upsampling stage increases
the feature map size while reducing the number of feature channels,
gradually restoring the original data dimensions. Mathematically,
one upsampling stage in each decoding branch can be expressed
as Equation 2:

yout = ReLU(Cat(Ei,TansConV4×4 (yin))) (2)

where yin and yout represent the input and output data, respectively.
TransConV denotes the transposed convolution operation, Ei
represents the feature map from the corresponding downsampling
stage, and Cat refers to the channel concatenation operation. while
the subscript n × n maintains the same definition as in Equation 1.

Notably, despite the distinct task characteristics of different
branches, their respective downstream tasks lead to diverse output
styles. This encourages the encoding part of the network to
extract more effective and abstract data features. With the above
encoding and decoding network architecture, a nonlinear mapping
relationship between seismic data and feature masks can be
constructed. The image semantic segmentation branch ultimately
applies a Sigmoid function to normalize the data within the range (0,
1), producing a single-trace binary FB mask. This branch employs
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FIGURE 6
Comparison of FB picking across networks for test set data B. (No.400 traces to No.480 traces localized data).

FIGURE 7
Comparison of FB picking across networks for test set data C. (No.145 traces to No.225 traces localized data).

the Binary Cross-Entropy (BCE) function to compute the loss. As
a widely used loss function in binary image semantic segmentation
tasks, Binary Cross-Entropy (BCE) is easy to implement and enables
efficient training (Ruby and Yendapalli, 2020). It is mathematically
defined as follows:

BCELoss = −
W

∑
i=1

H

∑
j=1
[Gij × lgPij + (1−Gij) × lg(1− Pij)] (3)

where Gij represents the ground truth value of a sample point in the
feature map, Pij denotes the corresponding predicted value from the
network, andW andH indicate thewidth and height of the datamap,
respectively.

The seismic feature learning decoding branch normalizes
the data within the range (−1, 1), producing a single-channel
reconstructed seismic output. The reconstruction of seismic data

in this branch is formulated as a regression task, where the
Mean Squared Error (MSE) function is used to compute the
loss by measuring the squared differences between predicted
values and ground truth labels. The MSE loss is mathematically
defined as follows:

MSELoss = 1
N
∑N

i=1
(yi − xi)

2 (4)

where N represents the total number of data; x represents the true
value; and y represents the network predicted value.

Combining Equations 3,4, the final joint loss function
is as follows:

Loss = αBCELoss + βMSELoss (5)

where α and β represent the weights of different loss functions, and
we will train the network by joint loss.
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TABLE 1 Percentage of different sample point error ranges for
each method.

Method Percentage of different SPE ranges

<=5 px↑ (%) 10 px↑ (%) >15 px↑ (%)

Res-Unet 97.53 99.45 0.25

Seg-Net 95.76 99.29 0.16

STUNet 97.37 99.02 0.77

UNet 96.69 98.97 0.67

Ours 98.27 99.56 0.03

Bolding denotes the best result.

2.2 Data preparation and labeling

Deep learning is a data-driven approach that utilizes large-
scale datasets to address various pattern recognition problems.
In supervised learning, properly designing training sample pairs
enables the network to efficiently establish complex nonlinear data
mappings. Existing deep learning-based seismic FBpickingmethods
treat seismic data as images and feed them into neural networks.
However, with the continuous advancement of seismic exploration,
the size of acquired seismic data has increased significantly. Directly
inputting the entire dataset into the network for FB picking imposes
high hardware demands, prompting the development of various
data cropping techniques (Xu et al., 2021; CHEN et al., 2021;
Jiang et al., 2023).

In this study, the linear correction method is applied. The
seismic signals recorded by each trace are adjusted by adding
a time increment corresponding to its respective shooting
distance. This process aligns all FB times to approximately the
same range, thereby significantly reducing the temporal sample
dimension of the data. As shown in Figure 3, the temporal
sample dimension of the original data is reduced by applying
linear correction and cropping non-FB regions. Compared to
previous cropping methods, the linear correction-based approach
enables the entire shot data to be fed into the network while
preserving a global perspective. The linear correction is defined
by the Equation 6:

Δt =
mi

v
(6)

where v represents the slope of the line connecting the FB
at the near and far sources of the original seismic record, mi
denotes the shot-receiver distance for geophone i, and Δt denotes
the time increment applied to the seismic signal recorded by
the geophone.

After the seismic data size is significantly reduced in the
time dimension through linear correction, mask labeling is
then applied. We employ a commonly used labeling method
that classifies seismic wave signals into two categories: pre-
FB and post-FB, as shown in Figure 4. This method is
used to label the seismic data as positive (1) and negative
(0) samples.

3 Experimentation

3.1 Experimental environment and data

The experimental hardware environment consists of an
Intel i7-14700 KF processor and a NVIDIA RTX 4090D
GPU, with the PyTorch framework used for training. The
network hyperparameters are set as follows: the RAdam
optimizer is used (Liu et al., 2020), the batch size is 16, the initial
learning rate is 0.0002, and themaximumnumber of training epochs
is 130. In this study, 434 shot records of 2-D seismic exploration
data acquired in North China are used for field experiments. The
data are sampled at 4 m intervals, with each shot record containing
480 traces and 256 time samples after linear correction. All the
experiments are randomly divided into training set, validation set
and test set according to the ratio of 70%, 20% and 10%, respectively.
The training set is used to train the network, the validation set
assesses the model’s fitting performance during training, and the
test set independently evaluates the FB picking performance of
each network.

3.2 Evaluation of indicators

In this study, the accuracy of FB picking for each network is
evaluated by comparing the predicted mask plots and analyzing
quantitative metrics. In terms of quantitative evaluation, the mean
sample point error (mSPE) between the predicted mask and the
ground truth label provides a clearer comparison of each network’s
FB picking performance. Additionally, analyzing the distribution
of errors across different ranges helps to assess the strengths
and weaknesses of each network. The mean time error (mTE)
between the final prediction and the actual FBs offers a more
intuitive understanding of the error range in practical applications.
Additionally, the computational complexity and inference time of
each network are also critical factors.The computational complexity
of the network is measured using the GitHub open-source toolkit
pytorch-OpCounter library (Zhu, 2018), and inference time is
determined by evaluating the number of data samples processed per
second under the same hardware environment. The mSPE and mTE
can be mathematically defined as Equations 7, 8:

mSPE = 1
N
∑N

i=1
(|pi − gi|) (7)

mTE =mSPE× t (8)

where N represents the total number of seismic traces recorded in
the shot set, p denotes the network-predicted FB sample time, g
corresponds to the actual FB sample time in the labeled map, and
t indicates the time interval between seismic samples. The unit of
mSPE is pixel (px), and the unit of mTE is ms.

3.3 Results and analysis

To evaluate the performance of the proposed FB pickingmethod
on field data, three shot records from the test set are randomly
selected for analysis. The results are compared with those of existing

Frontiers in Earth Science 07 frontiersin.org

https://doi.org/10.3389/feart.2025.1601134
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhang and Yang 10.3389/feart.2025.1601134

TABLE 2 Comparison of numerical results for each method.

Method mSPE↓ (px) mTE↓ (ms) FLOPs↓ (GMac) Inference Time↑ (Num. of
processes/s)

Training Time↓ (min)

Res-Unet 0.89 3.56 125.04 14.7 108.2

Seg-Net 1.13 4.52 75.05 20.1 136.6

STUNet 0.81 3.24 24.60 22.9 69.2

UNet 1.26 5.04 11.76 75.2 37.1

Ours 0.77 3.08 33.18 59.3 42.5

Bolding denotes the best result.

FIGURE 8
Comparison of feature maps at different encoding stages of the network. Down1 to Down5 represent the encoding stages from shallow to deep.

TABLE 3 Ablation experiments with different loss weight thresholds.

Group Num α: β Percentage of different SPE ranges Reconstruction SSIM ↑

mSPE↓ (px) <=5 px↑ (%) <=10 px↑ (%) 15 px↓ (%)

1 0.3: 0.7 0.99 97.38 99.12 0.33 0.9983

2 0.4: 0.6 0.77 98.27 99.56 0.03 0.9992

3 0.5: 0.5 0.77 97.91 99.56 0.11 0.9986

4 0.6: 0.4 0.82 97.67 99.42 0.15 0.9898

5 0.7: 0.3 1.05 97.23 98.79 0.92 0.9763

6 1: 0 1.21 96.77 98.71 0.93 0.1161

Bolding denotes the best result.

single-task methods, including UNet, STUNet (Jiang et al., 2023),
SegNet (Yuan et al., 2022), and Res-UNet (Zwartjes and Yoo, 2022).
The performance comparison of these FB picking models with the
proposed method is illustrated in Figure 5. In each figure, the white
masked area represents the time after FBpicking, while the gray non-
masked area corresponds to the time before FB picking. Red pixels
represent the manually labeled actual FBs, identified by professional
interpreters. Green pixels indicate the predicted FBs for the given
method, while blue pixels highlight instances where the predicted

FBs are entirely correct (0 sample point error).The predicted FBs for
each method are obtained from the boundaries of the binary mask
before and after the FB, with the threshold conventionally set to 0.5.

As observed in Figure 5, the proposedmethod achieves superior
FB picking results in most cases. In shot set A, where FB time
variations are more gradual, our method achieves nearly perfect
FB picking, exhibiting high continuity and accuracy. In shot sets
B and C, which contain traces with insignificant FBs, the single-
task UNet, SegNet, and Res-UNet fully convolutional segmentation
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TABLE 4 Ablation experiments with different noise levels and different numbers of bad traces.

Group Num Type Percentage of different SPE ranges Reconstruction SSIM ↑

mSPE↓(px) <=5 px↑(%) <=10 px↑(%) >15 px↓(%)

1 no bad and noisy traces 0.77 98.27 99.56 0.03 0.9992

2 10% bad and noisy traces 0.85 98.18 99.65 0.12 0.9892

3 15% bad and noisy traces 0.82 98.45 99.58 0.04 0.9836

Bolding denotes the best result.

networks exhibited poor FB picking performance, as indicated
by the discontinuities in their predicted masks. In contrast, our
method accurately picks FBs in regions with inconspicuous FBs
at data boundaries, benefiting from the training of the seismic
feature learning decoding branch. Additionally, it demonstrates high
precision in identifying FB regions, as shown in Figures 6, 7. As
shown in Figures 5–7, the proposed double-decoding multi-task
seismic FB picking method effectively mitigates mask discontinuity
and boundary ambiguity present in other methods, thereby
enhancing the accuracy of FB predictions.

Table 1 presents the error distribution statistics across different
sample point error intervals in the test set for each method. As
shown in the table, our method achieves the best performance
in the ratio of sample point error < = five px, reaching 98.27%,
followed by single-task Res-UNet, STUNet, UNet, and SegNet in
descending order. Notably, for errors exceeding 15 pixels, the multi-
task learning-based FB picking method achieves an exceptionally
low error rate of just 0.03%, significantly outperforming the other
methods. This further demonstrates that the double-decoding
architecture enhances the network’s feature learning capability,
thereby improving the accuracy of final FB picking.

Table 2 presents a comparison of the numerical results for each
method in the test set. As shown in the table, our method achieves
the lowest average sample error and average time error, measuring
0.77 pixels and 3.08 m, respectively.Moreover, the average time error
is reduced by 38.9%, 4.9%, 31.8%, and 13.4% compared to single-
task UNet, STUNet, SegNet, and Res-UNet, respectively. Since our
double-decoding convolutional network is built upon the classical
UNet architecture, it exhibits low computational complexity (2.97
GMac) compared to fully convolutional networks (FCNs) such
as STUNet, SegNet, and Res-UNet. Additionally, it demonstrates
superior training efficiency, requiring only 37.1 min, and achieves
a high inference speed of 59.3 inferences per second. It can be easily
deployed in real-world engineering applications.

Analyzing the feature maps from the encoder part of the
network facilitates a deeper understanding of the characteristics and
advantages of multi-task learning. As our proposed network adopts
a double-decoding architecture based on the classical UNet, so we
compare it with the classical single encoder UNet to evaluate the
impact of multi-task learning on feature extraction. A shot from the
test set was randomly selected as input, and we extracted the output
feature maps at different encoding stages for each network model,
as illustrated in Figure 8. To facilitate comparison, we performed
channel-wise averaging on the feature maps at each encoding stage
and standardized the image size. As observed, for shallow feature

maps (down1 to down3), the results produced by the classical UNet
and ourmethod are relatively similar. However, in the deeper feature
maps (down4 and down5), the features extracted by the single
encoderUNet becomemore abstract and shownoticeable deviations
from the structure of the original seismic data. In contrast, the
feature maps extracted by our multi-task learning network are more
complete and concrete, better preserving the structural information
of the original seismic data. This is attributed to the structural
constraints imposed by the seismic data reconstruction decoding
branch, which significantly enhances the model’s ability to perform
structuralmodeling in deeper encoding stages.These results indicate
that, with the assistance of the reconstruction decoding branch,
the network achieves superior performance in both deeper feature
extraction and global representation.

3.4 Ablation experiments

To further evaluate the effectiveness of the seismic feature
learning decoding branch introduced by multi-task learning, we
conducted ablation experiments on the contribution of each loss
term in the joint loss function. The experimental results are
presented in Table 3. Referring to Equation (5), we observe that
when the loss ratio α for the image semantic segmentation decoding
branch and β for the seismic feature learning decoding branch are
set to 0.4: 0.6 and 0.5: 0.5, the mSPE reaches its optimal value of 0.77
px. However, among other loss ratio configurations, the setting α:
β = 0.4: 0.6 yields the best performance. Furthermore, when α and
β are reversed in two paired control experiments (e.g., Group 1 vs
Group 5, Group 2 vs Group 4), the seismic feature learning decoding
branch with a higher loss ratio yields better metric results. This
further demonstrates the positive role of the decoding branch, as its
inclusion enhances the feature extraction capability of the encoder,
thereby improving the accuracy of the FB picking task. Furthermore,
we conducted an experiment where the loss weight of the seismic
feature learning branch was disregarded (α: β = 1: 0). The results
show that, without the guidance of the seismic reconstruction loss,
the overall performance is comparable to that of the single decoder
UNet, with different metrics showing mixed superiority.

To further investigate the impact of loss weight configurations
on the data reconstruction task, we computed the Structural
Similarity Index Measure (SSIM) under various α: β settings. The
highest reconstruction accuracy was achieved when α: β = 0.4:
0.6, yielding an SSIM of 0.9992, followed by the 0.5: 0.5 and
0.3: 0.7 configurations. And when α: β = 1: 0, the loss from
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the seismic feature learning decoding branch does not contribute
to the network weight updates, resulting in poor reconstruction
performance, with an SSIM of only 0.1161. This trend is generally
consistent with the ranking of other evaluation metrics, indicating
a strong synchronization between the data reconstruction and FB
picking tasks during joint training.

Finally, we conducted an ablation experiment on input seismic
data by introducing different levels of noise and bad traces. Noise
was simulated by adding 5% Gaussian noise to the original traces,
while bad traces were generated by zero-padding the original traces,
ensuring that noisy and bad traces did not overlap. This process is
commonly considered a form of data enhancement during training,
enhancing the network’s ability to extract features from seismic
data. Through this ablation experiment, we examine its potential
benefits under multi-task learning. The results, presented in Table 4,
indicate that different levels of noisy and bad traces lead to optimal
performance in different metrics. When no noisy or bad traces are
present, the mSPE and the ratio of sample point error > 15 px
achieve the best results. However, when the noisy and bad traces
each account for 10%, the ratio of sample point error < = 10
px achieves the best results, and when the noisy and bad traces
each account for 15%, the ratio of sample point error < = five
px achieves the optimal results. And for the data reconstruction
task, a higher degree of noisy and bad traces leads to lower SSIM
results, which is to be expected. These results suggest that the data
augmentationmethod introduced inmulti-task learning can further
enhance specificmetrics. However, its overall effectiveness should be
evaluated based on the primary task objective.

4 Conclusion

In this study, we integrate the seismic FB picking task with
the seismic data reconstruction task and propose an enhanced
training method based on a multi-task learning network. The
network’s feature extraction capability is enhanced by a newly
introduced seismic feature learning decoding branch for data
reconstruction, which improves deep abstraction modeling and, in
turn, enhances the accuracy of the semantic segmentation branch
for FB picking. We also analyze the effect of the loss weighting
ratio between tasks and identify the optimal balance. Additionally,
we introduce random noise and selectively remove seismic traces
to simulate low-SNR and poor-quality data, and analyze their
impact on the results. Experimental results show that the proposed
method outperforms existing single-branch semantic segmentation
methods across multiple metrics, yielding more accurate FB picking
results. Specifically, it achieves an average picking error of just
3.08 m on field data, with only 0.03% of traces exceeding a
picking error of 15 samples—significantly outperforming UNet,
STUNet, SegNet, andRes-UNet.These results highlight themethod’s
effectiveness in achieving high-quality FB picking. Moreover, the
lightweight dual-decoding convolutional network proposed in this
study demonstrates low computational complexity, fast training, and

high inference efficiency, suggesting its potential applicability to
higher-dimensional data and real-world engineering applications.
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