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Traditional methods for predicting post-fracturing productivity in horizontal
fractures primarily use fracture and formation parameters for calculations.
Complex fracture data are difficult to obtain, and these methods do not
consider the effects of displacement mechanisms, fracturing techniques, or
time factors on post-fracturing productivity. To address the limitations and
shortcomings of existing post-fracturing performance prediction methods for
horizontal fractures, a horizontal fracture well productivity predictionmodel was
established by combining physical mechanisms with data-driven approaches.
First, based on physical mechanisms, factors influencing well productivity were
selected from reservoir properties and fracturing operations. Second, relevant
characteristic parameters were chosen from geological conditions, production
characteristics, and fracturing techniques to perform clustering analysis on
fracturing intervals in the data sample. Intervals with similar multidimensional
physical features were grouped into the same category. Under the assumption
of similar characteristics and mechanisms, correlation analysis was conducted
for each fracturing interval category to identify the dominant controlling factors
affecting post-fracturing productivity in each reservoir type. Machine learning
algorithms were used to establish intelligent models describing the relationships
between post-fracturing production enhancement effects, dominant factors,
and production time for each reservoir category. Finally, during fracturing
design, the optimal productivity prediction model was matched to each
interval based on its characteristics to predict post-fracturing productivity.
Additionally, the influence patterns of proppant volume on well productivity
were comprehensively analyzed to optimize reasonable proppant volumes
for different wells and intervals. Field validation showed that the productivity
prediction model achieved an average error of 7.06%, providing a basis for
horizontal fracture engineering design and achieving cost reduction and
efficiency improvement in oilfield development.
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data-driven, horizontal fracture fracturing, productivity optimization, application,
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1 Introduction

Fracturing of Vertical wells in shallow oil reservoirs has the
characteristics of small scale, low cost, and good effectiveness, is
one of the most commonly used methods to increase production.
In shallow oil reservoirs, the relatively low vertical stress coupled
with a high horizontal in-situ stress dominance results in a
propensity for hydraulic fractures to propagate horizontally. As
the cornerstone of fracturing design optimization, productivity

forecasting for hydraulically fractured wells encompasses dual
methodologies: stimulation ratio quantification and production
profile prediction. Conventional evaluation of horizontal fracture
efficacy predominantly relies on analytical solutions for stimulation
ratio (SR) computation. SinceMcGuire and Sikora (1960) pioneered
the methodology for predicting productivity of vertically fractured
wells via stimulation ratio in 1960, numerous scholars worldwide
have conducted extensive studies under diverse conditions to

FIGURE 1
Modeling schematic of the fractured well capacity prediction model.

FIGURE 2
Schematic diagram of post-fracturing capacity intelligence model application.
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TABLE 1 Data composition of the data sample set.

Displacement method Fracturing wells / well Fracturing technology Fracturing wells / well

Water flooding 1878 Conventional fracturing 921

Polymer flooding 2379 Multi-Fracture Fracturing 3267

Alkaline-Surfactant-Polymer 1011 Selective Fracturing 1080

Total 5268 Total 5268

TABLE 2 Data range of dataset.

Data range Present
formation

pressure /MPa

Well spacing
/m

Depth in the
middle

of the oil layer
/m

Sandstone
thickness /m

Effective
thickness /m

Porosity /%

Minimum value 5.21 100 798 0.2 0.1 20

Maximum values 20.48 300 1192 19.3 12.4 53

Permeability
/μm2

Fracture
uncot
/strip

Total
fracturing

fluid
volume /m3

Proppant
volume /m3

Pre-fracture
water

content /%

Daily oil
production

from
small layer
before

fracking /t

Minimum value 0.004 1 32 4.5 82 0.001

Maximum values 1.5 2 111 120 99 8.79

TABLE 3 Dummy variable coded transformational relationships between the replacement method and the fracturing process.

Data parameters Data categories before conversion Post-conversion data

Displacement method

Alkaline-Surfactant-Polymer 00

Polymer flooding 01

Water flooding 10

Fracturing technology

Selective Fracturing 00

Conventional fracturing 01

Multi-Fracture Fracturing 10

investigate the relationships between stimulation ratios and fracture
geometry dimensions coupled with conductivity. Prats (1961)
proposed a methodology for calculating the SR under steady-state
flow conditions in 1961. Cui Disheng (Choi, 1986) developed a
comprehensive SR calculation framework incorporating multiple
contributing factors: fracture stimulation effects, formation damage
mitigation, drainage area configuration, and well placement
optimization, thereby advancing amore holistic predictivemodel for

post-fracturing productivity enhancement. Liang and Zhao (2019)
established a correlation between Estimated Ultimate Recovery
(EUR) and 10 key production-influencing factors for fractured
horizontal wells using Random Forest algorithms. Raymond and
Binder (1967) analytically derived stimulation ratios for a centrally
located fractured well within a circular drainage area under
pseudo-steady state flow conditions. Zhang (2020) developed a
COMSOL-based predictive model quantifying stimulation ratios
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and liquid production rates through systematic analysis of reservoir
properties (permeability, porosity), fracture parameters (length,
conductivity), and operational variables (flow rate, bottom hole
pressure), explicitly accounting for parameter sensitivity and
cross-correlation effects. Ma (2022) formulated a semi-analytical
single-well model for fractured horizontal wells in heterogeneous
tight oil reservoirs, leveraging Laplace-space Green’s functions for
rectangular domains. This model specifically evaluates fracture
penetration ratio and permeability contrast impacts on post-
fracturing productivity. Mohaghegh et al. (2017) implemented
a neuro-fuzzy framework combining fuzzy clustering for well
typology classification, Key Performance Indicator analysis for
dominant factor identification, and Artificial Neural Networks
integrating geological (TOC, brittleness index), completion (stage
spacing), and stimulation (proppant intensity) parameters to predict
early-phase production. Pan et al. (2018) applied grey correlation
analysis to identify critical productivity drivers—proppant volume,
net pay thickness, total injected fluid volume, and stimulation
stages—subsequently constructing a multiple linear regression
model for initial production forecasting in tight oil horizontal
wells. Wang and Chen (2019) proposed machine learning-
driven productivity prediction models for hydraulically fractured
horizontal wells by integrating Artificial Neural Networks and
Support Vector Machines (SVM). Yan et al. (2021) developed
predictive frameworks for post-fracturing production in tight
sandstone reservoirs under limited historical datasets, employing
an ensemble of Elastic Net regression, Decision Trees, and
SVM to identify salient parameters from multi-domain fracture-
influencing factors. Tang andWang (2023) constructed anXGBoost-
based productivity forecasting model for 267 horizontal wells in the
Sulige Gas Field, leveraging petrophysical features (gas saturation,
porosity) and engineering variables (total proppant volume,
cluster spacing) as model inputs to quantify fracture-reservoir
interactions.

In summary, analytical formulas for post-fracturing
performance prediction inherently require fracture parameters
as inputs. However, shallow reservoir fracturing operations are
typically low-cost and small-scale, making fracture parameter
acquisition challenging. Furthermore, with advancements
in multi-fracture stimulation technologies, critical variables
such as fracture count are absent in conventional analytical
models. These formulas yield static productivity estimates,
whereas actual post-fracturing production exhibits dynamic
temporal decline behavior. Consequently, analytical approaches
demonstrate limited applicability in modern fracturing evaluation.
Existing data-driven methodologies predominantly adopt well-
centric modeling frameworks while neglecting the impacts
of diverse displacement mechanisms (e.g., water flooding,
polymer flooding, ASP flooding) on stimulated productivity. In
shallow reservoirs undergoing various enhanced oil recovery
processes, distinct displacement physics–including viscosity
modification (polymer), interfacial tension reduction (surfactant),
and mobility control (ASP) – differentially influence fracture-
reservoir interactions. Therefore, developing displacement
mechanism-specific data-driven productivity prediction models
for targeted fracturing intervals shows significant potential
to enhance fracturing design accuracy and optimize cost-
benefit ratios.

2 Methodology

2.1 Main technical principles

Post-fracturing performance varies significantly across different
fracturing intervals, stimulation techniques, and displacement
mechanisms due to distinct underlying physical mechanisms. The
workflow involves three key steps: (as shown in Figure 1):

1. DataCollection and preprocessing: Sample data fromwells and
target fracturing intervals are collected and preprocessed.

2. Fracturing layer clustering: fracturing intervals are grouped
into clusters based on multidimensional features, including
geological conditions production characteristics, and
stimulation parameters Clusters are formed under the
assumption that intervals within the same group share
identical attributes, mechanisms, and post-fracturing
productivity enhancement patterns.

3. Model Development: For each cluster, dominant factors
governing horizontal fracture performance are analyzed.
Tailored productivity prediction models are then established
for horizontal fracture-dominated intervals, achieving higher
accuracy and efficiency for specific geological and operational
categories.

During fracturing design, the target interval is classified
using a clustering model based on its characteristic features. The
classified interval category is then matched with the optimal
productivity predictionmodel tailored for that specific interval type.
By activating the selected model and inputting relevant interval
data and stimulation parameters, the post-fracturing production
behavior—including production trends and decline patterns—can
be predicted for the target interval. As shown in Figure 2.

2.2 Data collection and preprocessing

Based on the physical mechanisms of fracturing-induced
productivity enhancement, 12 characteristic parameters were
selected, encompassing pre-fracturing geological parameters,
production parameters, and fracturing operational parameters,
along with two additional features: displacement mechanism and
fracturing technique type. The displacement mechanisms primarily
include water flooding, polymer flooding, and ASP flooding, while
fracturing techniques are categorized into conventional fracturing,
multi-fracture stimulation, and selective zonal fracturing. A dataset
comprising 5,268 fractured well samples was established, as detailed
in Table 1. The distribution of sample data across these categories
is presented in Table 2. The dataset structured enables physics-
informed machine learning while maintaining operational reality
constraints.

For clustering analysis of fracturing intervals, numerical
data are required. In addition to standard preprocessing
steps such as normalization, the original dataset contains two
categorical/textual variables—displacement mechanisms and
fracturing techniques—which were converted into numerical
representations using dummy variable encoding (Jin et al., 2023).
For displacement mechanisms, ASP flooding was selected as the
reference category, with water flooding and polymer flooding
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FIGURE 3
Evaluation of Clustering Results. (A) The silhouette coefficient score situation for each cluster (B) Silhouette coefficient at k = 9.

encoded as “01” and “10,” respectively. For fracturing techniques,
selective zonal fracturing served as the reference category,
while conventional fracturing and multi-fracture stimulation
were encoded as “01” and “10.” The dataset before and after
transformation is presented in Table 3.

2.3 Cluster analysis of fractured intervals

The dataset is partitioned into subsets of similar characteristics
based on the similarity between different intervals. Each subset
contains samples with closely aligned properties, while maintaining

distinct differences between subsets. This approach facilitates a
comprehensive understanding of key information patterns within
the fracturing well data. The K-means clustering algorithm
(Wang, 2018; Chen and Xiao, 2004) — an iterative analytical
method—provides interpretable results where cluster centroids
represent the characteristic attributes of each group. As clustering
outcomes critically depend on the selection of cluster numbers
(k), determining the optimal k-value is pivotal, particularly when
fracturing interval categories lack predefined definitions.

For this analysis, k-values ranging from 2 to 13 were
systematically tested on the fracturing well dataset. Clustering
performance was evaluated using the silhouette coefficient metric,
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FIGURE 4
Correlation between main control factors and production capacity in different intervals. (A) Model 0 (B) Model 1 (C) Model 2 (D) Model 3 (E) Model 4 (F)
Model 5 (G) Model 6 (H) Model 7 (I) Model 8.
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FIGURE 5
Process of random forest training.

TABLE 4 Tree depth, tree number and maximum R2 determination coefficient of 9 types of fracturing well productivity prediction models
(Random Forest).

Model categories 0 1 2 3 4 5 6 7 8

Regression tree depth/layer 15 19 18 19 17 16 15 19 16

Number of regression trees/tree 850 100 850 950 150 350 150 900 100

Test set coefficient of determinationR2 0.90 0.82 0.83 0.85 0.89 0.84 0.83 0.86 0.82

Training set coefficient of determinationR2 0.97 0.96 0.99 0.97 0.98 0.98 0.99 0.96 0.97

which quantifies both intra-cluster cohesion (a(i)) and inter-cluster
separation (b(i)) for each k-value. The silhouette score s(i) —
calculated as:

s(i) =
b(i) − a(i)

max (a(i),b(i))

Serves as a composite evaluation criterion. Higher s(i) values
indicate superior clustering configurations, with the k-value yielding
the maximum s(i) identified as the optimal classification scheme for
multidimensional fracturing interval features.

As shown in Figure 3, the silhouette coefficient initially increases
with the number of clusters (k) and gradually plateaus. The
maximum silhouette coefficient is achieved at k = 9, indicating
optimal clustering results. Therefore, the fracturing intervals in the

dataset exhibit the best clustering performance when classified into
9 categories.

2.4 Principal controlling factor analysis

TheMaximal Information Coefficient (MIC) is a nonparametric
statistical method rooted in mutual information theory, designed
to quantify association strength between variables, particularly
adept at capturing complex linear and nonlinear relationships in
high-dimensional data. Its core principle involves dynamically
partitioning data grids to compute the maximum mutual
information across varying resolutions. Compared to Pearson’s
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FIGURE 6
Principle diagram of Bagging regression algorithm.

TABLE 5 Tree depth, tree number and maximum R2 determination coefficient of 9 types of fracturing well productivity prediction models (Bagging).

Model categories 0 1 2 3 4 5 6 7 8

Regression tree depth/layer 19 19 20 20 18 20 19 19 20

Number of regression trees/tree 200 100 800 1000 200 100 350 600 750

Test set coefficient of determinationR2 0.90 0.91 0.85 0.89 0.91 0.85 0.85 0.88 0.82

Training set coefficient of determinationR2 0.98 0.94 0.97 0.96 0.98 0.95 0.96 0.95 0.94

correlation coefficient, which only identifies linear associations,
MIC demonstrates significantly enhanced sensitivity to nonlinear
patterns such as exponential, periodic, and piecewise relationships,
while maintaining robustness against noise and outliers.

In hydraulic fracturing engineering, nonlinear characteristics
frequently govern interactionsbetween reservoirparameters (porosity
ϕ, permeability k), operational parameters (proppant volume m,
fracture count N), and productivity. Certain parameters exhibit
threshold effects on productivity enhancement—where exceeding
critical values leads to stabilized stimulation effects—while others
followpower-lawrelationshipswithproductionoutcomes.Traditional
regressionmodels struggle to characterize such complexities, whereas
MIC enables precise identification of dominant factors through global
optimization of variable association patterns.

Based on geomechanical and flow theory, the following
multidimensional parameters were analyzed:

Geological Parameters:

Porosity (ϕ)
Permeability (k)

Sandstone thickness (h)
Reservoir mid-depth (D)

Operational Parameters:

Proppant volume (m)
Fracture count (N)

Dynamic Parameters:

Current reservoir pressure (P)
Well spacing (L)
Pre-fracturing water cut ( f )

Target Variable:

Post-fracturing productivity (Q)

Z-score standardization applied to eliminate dimensional
heterogeneity. For each variable pair (Xi, Q), dynamic grid
partitioning was performed in 2D space. Mutual information
maxima were computed across grid resolutions. Normalized MIC
values (0 ≤ MIC ≤1) were derived, characteristics with a MIC value
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FIGURE 7
Establishment process of post fracturing production capacity prediction model.

TABLE 6 Maximum values of model tree depth, number of trees, and corresponding R2 coefficients of determination for 9 types of fractured well
production capacity prediction models (GBRT).

Model categories 0 1 2 3 4 5 6 7 8

Regression tree depth/layer 7 8 10 7 6 14 7 5 9

Number of regression trees/tree 800 950 900 1000 850 950 850 950 550

Test set coefficient of determinationR2 0.91 0.90 0.89 0.89 0.91 0.89 0.90 0.89 0.89

Training set coefficient of determinationR2 0.93 0.92 0.93 0.92 0.92 0.91 0.94 0.93 0.92

greater than 0.4 can be considered as primary control factors, with
results visualized in Figure 4.

The results demonstrate that distinct geological characteristics
and microscale mechanistic variations across reservoir categories
lead to divergent macro-scale dominant factors governing post-
fracturing productivity within each fracturing interval type.

2.5 Intelligent prediction modeling
development

The training dataset for each category of fractured well
productivity is denoted as D = {(Xi, Qi)} (i = 1,2,3, …,n), where
Xi∈Rp represents the multidimensional feature vector determined
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FIGURE 8
Proppant volume optimization based on maximum production. (A) N1-1 (B) N1-2 (C) N1-3 (D) Z1-1 (E) Z1-2 (F) Z1-3 (G) B1-1 (H) B1-2 (I) B1-3.

by dominant governing factors, and Qi∈R corresponds to the post-
fracturing productivity. The dataset D was split into training and
testing sets in an 8:2 ratio. Machine learning was performed on
the training set to develop post-fracturing productivity prediction
models for each fracturing interval category using Gradient Boosted
Regression Trees (GBRT), Random Forests (RF), and Bagging. The
post-fracturing productivity predictionmodels were optimized after
comparing and analyzing the evaluation metrics.

2.5.1 Random forest models for post-fracturing
capacity prediction

The Random forest algorithm is used to establish a post-
fracturing capacity prediction model, and the schematic diagram
of the Random forest regression algorithm is shown in Figure 5.
The maximum values of model tree depth, number of trees and
corresponding R2 coefficients of determination for the random
forest model for capacity prediction are detailed in Table 4. The
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FIGURE 9
Predicted daily oil production vs. actual daily oil production.

TABLE 7 Accuracy of prediction models in practical applications.

Model categories MRE RMSE

0 7.94% 0.26

1 11.33% 0.35

2 17.12% 0.42

3 14.66% 0.45

4 10.97% 0.44

5 9.92% 0.57

6 12.32% 0.58

7 13.18% 0.60

8 9.47% 0.85

MRE, ranges from7.94% (Category 0) to 17.12% (Category 2), with an average MRE, of
12.09%. RMSE, values are tightly clustered between 0.26 (Category 0) and 0.85 (Category
8), indicating robust model stability. The models demonstrate strong alignment with field
observations, with 6 out of 9 categories achieving MRE <13% and RMSE <0.6, validating
their predictive accuracy for post-fracturing performance.

average value of the R2 coefficient of determination of the nine types
of fracturingwell production capacity predictionmodels established
by the random forest regression algorithm is 0.85 for the test set and
0.97 for the training set, which is a difference of 0.12.

2.5.2 Bagging models for post-fracturing
capacity prediction

The Bagging algorithm is used to establish a post-fracturing
capacity prediction model, and the schematic diagram of the
Bagging regression algorithm is shown in Figure 6.

The maximum values of model tree depth, number of trees
and corresponding R2 coefficients of determination for the
Bagging model for capacity prediction are detailed in Table 5.
As shown in Table 5, the R2 coefficient of determination of the

nine types of fracturing well production capacity prediction models
established by Bagging regression algorithm is 0.87 on average for
the test set and 0.95 on average for the training set, with an average
difference of 0.09 between the two.

2.5.3 GBRT models for post-fracturing capacity
prediction

The GBRT algorithm is used to establish a post-fracturing
capacity prediction model, and the schematic diagram of the GBRT
regression algorithm is shown in Figure 7. During the construction
of the productivity prediction models, key parameters considered
included tree depth and number of trees. A Bayesian optimization
approach was employed to determine the hyperparameters of the
nine GBRT models for different fracturing interval categories, as
detailed in Table 6.

Comparative analysis of the prediction effect of three 9-class
small-layer fracturing well capacity prediction regression models. It
can be seen that the RandomForest regression algorithm established
by the nine categories of fracturing well capacity prediction model
has the smallest R2 coefficient of determination, and the fracturing
well capacity prediction GBRT regression model is better than the
Bagging model as a whole.

3 Case study

3.1 Proppant volume optimization on the
fracturing production rate

The proppant volume is one of the critical parameters
influencing fractured well productivity. Designing an appropriate
proppant volume prior to fracturing operations not only maximizes
the oil-enhancement effects of stimulation but also effectively
controls single-well operational costs and improves the cost-
benefit ratio (Guo et al., 2024). Insufficient proppant volume leads
to inadequate fracture width and uneven proppant distribution,
reducing the effective stimulated reservoir volume and reservoir
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permeability. Conversely, excessive proppant volume may cause
proppant flowback or poor packing, hindering the formation of
high-conductivity fractures and even resulting in fracturing failure.
Therefore, optimizing proppant volume is essential for ensuring
fracturing efficacy and enhancing hydrocarbon productivity.

The impact of proppant volume on post-fracturing productivity
can be analyzed using predictive models. Sensitivity analysis was
conducted on proppant volume for three fracturing intervals
from three wells using the productivity prediction model,
as shown in Figure 8. Key findings include that proppant volume
exhibits distinct impact patterns on productivity across different
intervals, yet each interval possesses an optimal proppant volume
range. Within this range, fracturing achieves peak production
enhancement for the specific interval.

3.2 Capacity prediction after hydraulic
fracturing

A total of 72 oil wells were randomly selected from out-of-
sample datasets to validate the post-fracturing productivity GBRT
model. The model predicted production rates for the first month
after stimulation, which were then compared with actual field
data. As illustrated in Figure 9, the dashed lines represent actual
daily incremental oil production, while the solid lines denote
predicted values.

The performance metrics across the nine model
categories in Table 7.

4 Conclusion

(1) Based on the physical mechanisms of horizontal fracture
fracturing, relevant characteristic parameters were selected
from geological conditions, production characteristics, and
fracturing techniques to perform clustering analysis on
fracturing intervals in the data sample. Similar intervals were
categorized, and categorical modeling studies were conducted.
This approach allows for matching the best model to
different fracturing intervals according to their corresponding
categories, thereby improving model applicability.

(2) For each category of fracturing intervals, correlation analysis
was performed to identify the dominant controlling factors
influencing post-fracturing productivity in each reservoir type.
The dominant factors affecting post-fracturing performance
differ slightly across interval categories. Machine learning
algorithms such as Random forest, Bagging and GBRT were
used to establish models describing the relationships between
post-fracturing production enhancement effects, dominant
factors, and production time for each reservoir category. The
fracturing well capacity GBRT prediction model can predict
productivity after fracturing in different intervals.

(3) In the era of smart oilfields, data-driven models hold
broad application prospects for horizontal fracture fracturing
productivity prediction. They can fully utilize data assets,
uncover production patterns, compensate for the limitations
of physical models, and improve the accuracy and reliability of
post-fracturing productivity predictions.
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