
TYPE Original Research
PUBLISHED 02 July 2025
DOI 10.3389/feart.2025.1601615

OPEN ACCESS

EDITED BY

Shailesh Kumar Singh,
National Institute of Water and Atmospheric
Research (NIWA), New Zealand

REVIEWED BY

Ying Liang,
Guilin University of Electronic
Technology, China
Yali Zhu,
Chinese Academy of Sciences (CAS), China

*CORRESPONDENCE

Zhu Liu,
zhuliu@hhu.edu.cn

Xiaoling Wu,
freebir7237@hhu.edu.cn

RECEIVED 28 March 2025
ACCEPTED 11 June 2025
PUBLISHED 02 July 2025

CITATION

Xiang X, Li Y, Wu X, Liu Z, Wu L, Wu B, Jin C
and Zeng Z (2025) Future variation and
uncertainty source decomposition in deep
learning bias-corrected CMIP6 global
extreme precipitation historical simulation.
Front. Earth Sci. 13:1601615.
doi: 10.3389/feart.2025.1601615

COPYRIGHT

© 2025 Xiang, Li, Wu, Liu, Wu, Wu, Jin and
Zeng. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Future variation and uncertainty
source decomposition in deep
learning bias-corrected CMIP6
global extreme precipitation
historical simulation

Xiaohua Xiang1, Yongxuan Li1, Xiaoling Wu1*, Zhu Liu1*, Lei Wu2,
Biqiong Wu3, Chuanxin Jin3 and Zhiqiang Zeng3

1College of Hydrology and Water Resources, Hohai University, Nanjing, China, 2Jiangsu Water
Conservancy Engineering Technology Consulting Co., Ltd., Nanjing, China, 3China Yangtze Power Co.
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Global circulation models (GCMs) serve as pivotal tools in climate science
research. Despite their critical role in understanding and predicting climate
change, GCMs often exhibit significant discrepancies with observational data
due to systematic and random errors, which has driven the progress of bias
correction (BC) techniques. This study explores a bias correction approach
based on convolutional neural networks (CNNs) to improve the accuracy of
Expert Team on Climate Change Detection and Indices (ETCCDI) extreme
precipitation indices calculated from the Coupled Model Intercomparison
Project Phase Six (CMIP6) daily predictions. Specifically, this research employs
historical period data (1950–2014) for eight ETCCDI extreme precipitation
indices from 10 GCMs to train eight individual CNN-based bias correction
models, using the HadEX3 reference dataset for evaluation. All corrected data
showing mean absolute percentage error (MAPE) were consistently reduced
to below 0.1. Subsequently, these well-trained models are further utilized
to predict ETCCDI extreme precipitation for the future under four Shared
Socioeconomic Pathway (SSP) scenarios, and the projections of extreme
precipitation changes are investigated across global continents. In addition,
this study endeavors to separate and quantify three different components of
uncertainty (model uncertainty, scenario uncertainty, and internal variability)
associated with ETCCDI extreme precipitation indices and evaluate the impact
of bias correction on uncertainty variation. The results indicate that CNNs are
effective in correcting historical precipitation extremes. In the future period,
extreme precipitation shows an increasing trend in general. The degree of
change in R10mm is relatively small and reaches its peak in the medium
term, whereas the variation in Rx1day is more pronounced and increases
over time. Further analysis reveals that model uncertainty is the predominant
source of uncertainty in ETCCDI extreme precipitation indices, accounting
for more than 80% of total uncertainty. Implementation of CNNs as a BC
method could significantly reduce model uncertainty but at the cost of
increasing the proportion of scenario uncertainty and internal variability. This
research not only highlights the potential of the CNN-based deep learning
technique in enhancing the accuracy and reliability of extreme precipitation
predictions but also provides insights into uncertainty decomposition and
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variation to better understand various sources of uncertainty within climate
projections.

KEYWORDS

extreme precipitation, convolutional neural network, CMIP6, uncertainty
decomposition, bias correction

Highlights

1. Convolutional neural networks (CNNs) could effectively
correct biases in CMIP6 extreme precipitation predictions.

2. R10mm shows minor changes and peaks in the mid-term
future, whereas Rx1day consistently increases over time.

3. Model uncertainty accounts for more than 80% of total
extreme precipitation prediction uncertainty.

4. The reduction of model uncertainty with CNN-based bias
correction comes at the cost of increased scenario uncertainty
and internal variability.

1 Introduction

Extreme climate events often lead to significant social and
economic losses, especially in vulnerable countries (Otto et al.,
2015). In recent decades, anthropogenic climate warming has
increased atmospheric moisture content and intensified the
hydrological cycle, creating conditions conducive to heavy and
extreme precipitation events (de Medeiros et al., 2022). Global
circulation models (GCMs) are widely recognized as effective tools
for climate prediction and research (Parsons, 2020). Given the large
number of GCMs worldwide, the World Climate Research Program
(WCRP) coordinates international intercomparison projects known
as CoupledModel Intercomparison Projects (CMIPs) to standardize
and compare these models’ outputs (Dufresne et al., 2013). Recently,
the IPCC released CMIP6 simulation datasets, which improve
spatial resolution and physical parameterization and include
additional earth systemprocesses, such as nutrient limitations on the
ice sheet dynamics and terrestrial carbon cycle (Eyring et al., 2016).
However, CMIP6 outputs are subject to uncertainty, with potentially
greater variations across future scenarios (Liu and Merwade, 2018;
Liu et al., 2021; Liu et al., 2023). Uncertainties in climate projections
primarily arise from three sources: first, model uncertainty, which
arises from the incompleteness of parameterization schemes for
atmospheric moist convection and cloud processes in GCMs,
leading to differences in predictions among various models (Song
and Zhang, 2009; Zhang and Song, 2010; Oueslati and Bellon,
2013; Deng et al., 2016; Cao and Zhang, 2017; Peters et al., 2017;
Song and Zhang, 2018); second, scenario uncertainty, caused
by the uncertainties in radiative forcing under different future
socioeconomic pathways (Hawkins and Sutton, 2009); and third,
internal variability, referring to natural fluctuations in the absence
of external radiative forcing (Marotzke and Forster, 2015). It is,
therefore, essential to evaluate the accuracy of CMIP6 predictions
in representing extreme events and decompose the associated
uncertainties to understand their variation and impact on themodel
predictions in both historical and future periods.

Considering the profound impact of extreme weather on
human activities and safety, the Expert Team on Climate
Change Detection and Indices (ETCCDI) was established by
the World Meteorological Organization (WMO) and the World
Climate Research Program (WCRP). These indices focus on
standardizing methodologies to quantify the frequency, intensity,
and duration of extreme weather and climate events. This
standardization facilitates comparisons among different models
across regions and time periods (Zhang et al., 2011). Statistical
analysis of ETCCDI extreme precipitation indices using CMIP6
daily precipitation simulations could help reveal trends in
extreme climatic events in the context of global change and
assess their impact on socio-economic activities. Nevertheless,
significant uncertainties exist in climate predictions due to
the inherent systematic and stochastic model errors in GCMs,
which lead to significant discrepancies between model outputs
and actual observations (Wu et al., 2021; Kharin et al., 2013;
Tebaldi et al., 2021). In recent years, numerous bias correction
(BC) methods, such as quantile mapping, delta change, and
machine learning-based approaches, have been developed to
adjust biases in original GCM outputs (Wu et al., 2022; Maurer
and Pierce, 2014). However, research on the investigation and
decomposition of uncertainty for extreme precipitation and
figuring out proper bias correction techniques remains limited,
making it a key research hot spot in climate science (Wu et al.,
2022; Maurer et al., 2016; Sangelantoni et al., 2019). With
the advancement in deep learning technology and its growing
application in hydrometeorological studies, these methods present
promising new alternatives for correcting extreme precipitation bias
(Huang et al., 2024; Huang et al., 2023).

In this study, we first assess the performance of eight
ETCCDI extreme precipitation indices calculated from 10
CMIP6 models’ historical predictions with HadEX3 datasets as
references. Then, the convolutional neural network-based deep
learning model is employed for extreme precipitation index
bias correction and the well-trained CNN models are further
applied to predict eight extreme precipitation indices under
four distinct Shared Socioeconomic Pathway (SSP) scenarios
for the future period. Finally, we decompose the sources of
uncertainty in CMIP6 future ETCCDI projections and quantify
the relative contribution of each uncertainty source. In addition,
we examine and compare the changes in uncertainty components
before and after bias correction. Specifically, the objectives of this
study are to

(1) Assess the effectiveness of CNNs in correcting historical
extreme precipitation indices.

(2) Investigate the spatiotemporal variations in bias-corrected
extreme precipitation indices across global continents under
different future scenarios.
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(3) Decompose the sources of uncertainty in future extreme
precipitation projections and examine the impacts of bias
correction on changes in uncertainty components.

2 Study area and data

2.1 Study area

The global land surface (excluding Antarctica) is divided into
six parts, each distinguished by unique geographic and climatic
features.They are named based on the location of each continent and
its abbreviation (as shown in Figure 1): Asia (ASI) is known for its
complex climate types, ranging from tropical monsoon to temperate
continental and highland mountain climates. Africa (AFR), on
the other hand, has a predominantly tropical climate, including
tropical rainforest, savannah, and tropical desert climates, along
with areas of Mediterranean climate. Europe and Siberia (ERU)
has a mild and humid climate, with a temperate oceanic climate, a
Mediterranean climate, and a predominantly temperate continental
climate, especially the subarctic coniferous forest climate. North
America (NAM) has a variety of climates, ranging from tropical
to temperate and polar. The climate of South America (SAM) is
predominantly tropical, with tropical rainforests dominating the
Amazon Basin in particular.The climate of Australia (AUS) is semi-
annular, with a humid east and an arid interior. The various climate
types of the continents make them ideal test beds for this study.

2.2 Data

2.2.1 CMIP6 climate data
In this study, the daily precipitation data from 10 CMIP6

models (see Table 1; data can be downloaded from https://aims2.
llnl.gov/search/cmip6) are used to calculate eight ETCCDI extreme
precipitation indices, including the maximum length of a dry spell,
the maximum number of consecutive days with precipitation <
1 mm (CDD), the maximum length of a wet spell, the maximum
number of consecutive days with precipitation ≥1 mm (CWD), the
annual total precipitation in wet days (PRCPTOT), the annual count
of days when precipitation ≥10 mm (R10mm), the annual count of
days when precipitation ≥20 mm (R20mm), the monthly maximum
1-day precipitation (Rx1day), the monthly maximum consecutive
5-day precipitation (Rx5day), and the simple precipitation intensity
index (SDII).The simulation of the historical period is from 1950 to
2014, and the projection of the future period is from 2015 to 2100.
Four Shared Socioeconomic Pathway scenarios (SSP1-2.6, SSP2-4.5,
SSP3-7.0, and SSP5-8.5) representing different emission, population,
economic, and social structure situations are applied in this study.
All the data are regridded to 1° × 1° grids by bilinear interpolation
prior to analysis. The future projections are divided into three
periods in this study: 2020–2026 is defined as the near term,
2060–2066 is the medium term, and 2090–2096 is the long term.
The historical period of 1970–1999 is chosen as the baseline period.

2.2.2 HadEX3 historical climate reference
HadEX3 is the third version of a global griddeddataset providing

information on climate extremes (Dunn and Alexander, 2020;

Babaousmail et al., 2021; Wang et al., 2021; Wu et al., 2021). This
dataset is developed by the Climatic Research Unit (CRU) at the
University of East Anglia in collaboration with other institutions.
HadEX3 contains a variety of indices related to temperature and
precipitation extremes, such as heat waves, cold spells, heavy rainfall
events, and dry spells. Considering its extensive spatial coverage and
long-term records, HadEX3 data are used as the reference dataset
for this study. To facilitate the analysis and evaluation process, the
bilinear interpolation technique is also used to resample theHadEX3
reference data into a 1° × 1° resolution.

3 Methodology

3.1 Expert Team on Climate Change
Detection and Indices

In this study, eight extreme precipitation indices are utilized,
as shown in Table 2. These eight extreme precipitation indices can
be categorized into four types: absolute indices (the maximum
precipitation in a year), threshold indices (the number of days
with precipitation exceeding or falling below a fixed value),
duration indices (the longest spell of consecutive days with
precipitation exceeding or falling below a fixed value), and
relative indices (the ratio of total precipitation to the number
of wet days).

3.2 Bias correction with convolutional
neural networks

CNN is one of the most emblematic network architectures
in deep learning (Guo Q et al., 2024). Compared to other deep
learning methods, CNN exhibits superior capabilities in feature
extraction and information mining. The working principle of CNN
is shown in Figure 2.The key components of a CNNnetwork consist
of three parts, namely, the convolutional layer, the pooling layer,
and the fully connected layer. The convolutional layer is mainly
responsible for extracting features from the input data. Within the
convolutional layer, a set of defined convolutional kernels performs
convolutional operations on the input data to produce a series of
feature maps. This convolution operation can effectively capture
local features and spatial structure information, thus achieving
effective feature extraction and representation of the input data.The
role of the pooling layer is to perform downsampling on the feature
maps generated by the convolution layer to reduce the number of
parameters and computational complexity of themodel. Commonly
used pooling techniques include maximum and average pooling,
which compress data by selecting the maximum or average value
within a region. In this study, we employ average pooling for its
superior performance with climate data: it preserves broad-scale
patterns (e.g., long-term trends) while reducing noise impact, thus
enhancing extreme eventmodeling. Its gradient-balancing improves
training stability, and replacing fully-connected layers reduces
overfitting. These properties make it ideal for climate analysis
that requires noise robustness and regional context integration,
thus justifying our choice of average pooling. In addition, pooling
operations also enhance the robustness of the model to changes in
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FIGURE 1
Layout map of six regions for this study. Globe (a), North America (b), Europe and Siberia (c), Asia (d), Latin America (e), Africa (f), and Australia (g).

position and translation, which, in turn, improve the generalization
performance of the model. The fully connected layer is typically
located at the end of the convolutional neural network, and its role
is to integrate the features extracted from the previous convolutional
and pooling layers. In the fully connected layer, each neuron is
connected to all the neurons in the previous layer to achieve
advanced feature learning tasks on the input data by learningweights
and bias parameters. In the training process, two convolutional
layers are configured. The first convolutional layer utilizes kernels
of size 3 × 1 to generate 16 feature maps, whereas the second
convolutional layer employs kernels of the same size of 3 × 1 to
further produce 32 feature maps.

The implemented CNN architecture consists of two neural
layers utilizing ReLU activation functions for nonlinear feature
extraction. The model employs the Adam optimizer for adaptive
learning rate optimization and uses mean squared error (MSE)
as the loss function for regression-oriented optimization. Training
parameters were carefully configured with a learning rate of 0.01
and a batch size of 100 samples per iteration, and the model
was trained for 800 complete epochs to ensure convergence while
maintaining computational efficiency. This configuration balances
training stability through the moderate learning rate with efficient
resource utilization via the substantial batch size, while the 800-
epoch duration provides sufficient training iterations for parameter
optimization.

3.3 Model uncertainty decomposition

Uncertainty reflects the differences between the model’s
historical simulation and the references (Wu et al., 2022). This
study uses the method introduced by Hawkins and Sutton (2009)
and Hawkins and Sutton (2011) in the uncertainty decomposition
for R10mm and Rx1day data for future periods. These two
indices are chosen because the value of R10mm serves as the
representative threshold indices, whereas Rx1day represents
the absolute indices, which are suitable for providing useful
insights. The combined analysis of both indices provides a more
comprehensive representation. The uncertainty sources are divided
into three components: internal variability (I), model uncertainty
(M), and scenario uncertainty (S). Internal variability refers to
natural fluctuations within the climate system driven by chaotic
dynamics; model uncertainty arises from structural differences,
parameterizations, or incomplete physical representations across
climate models; and scenario uncertainty is linked to future
socioeconomic pathways and emission scenarios that depend
on human choices and policy trajectories. These distinctions are
essential for systematically quantifying uncertainties in climate
projections. Prior to the decomposition of uncertainty, the data are
processed using the 10-year moving average, which attenuates noise
and reduces the effect of variation between data series (Seneviratne
andHauser, 2020).We fit the simulations of 10CMIP6models under
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TABLE 1 List of 10 CMIP6 models used in this study and their original resolutions.

Model Institution Country Spatial resolution (°)

CanESM5 CCCma Canada 2.81 × 2.81

EC-Earth3 EC-Earth-Consortium EU 0.70 × 0.70

EC-Earth3-Veg EC-Earth-Consortium EU 0.70 × 0.70

FGOALS-g3 CAS China 2.0 × 2.25

GFDL-ESM4 NOAA-GFDL America 1.25 × 1.00

IPSL-CM6A-LR IPSL France 2.50 × 1.26

MIROC-ES2L MIROC Japan 2.81 × 2.81

MIROC6 MIROC Japan 1.41 × 1.41

MRI-ESM2-0 MRI Japan 1.13 × 1.13

UKESM1-0-LL MOHC UK 1.88 × 1.25

TABLE 2 Definitions of the extremes indices recommended by the ETCCDI.

ID Indicator name Indicator definition Unit

CDD Maximum consecutive dry days Longest spell of consecutive days with daily precipitation <1 mm in a year Days

CWD Maximum consecutive wet days Longest spell of consecutive days with daily precipitation ≥ 1 mm in a year Days

PRCPTOT Annual precipitation Total annual precipitation on wet days (daily precipitation ≥ 1 mm) mm

R10 mm Heavy rainfall days Number of days with daily precipitation ≥10 mm in a year Days

R20 mm Extreme heavy rainfall days Number of days with daily precipitation ≥20 mm in a year days

Rx1day Maximum daily precipitation Maximum daily precipitation in a year mm

Rx5day Maximum 5-day cumulative precipitation Maximum 5-day consecutive cumulative precipitation in a year mm

SDII Precipitation intensity Average daily precipitation mm/day

the four emission scenarios from 2015 to 2100 using a fourth-order
polynomial ordinary least squares method (Wu et al., 2022).

The raw simulation results for eachmodelm, scenario s, and year
t are presented in Equation 1 as follows:

Xm,s,t = xm,s,t + εm,s,t. (1)

Here, xm,s,t denotes the value obtained from the fourth-order fit;
εm,s,t signifies the residuals from this fitted equation.

Scenario uncertainty (S, Equation 2) is defined as the variance
of the mean of the 10 models under four SSP-RCP scenarios:

S = vars(
1
Nm
∑
m
xm,s,t), (2)

where Nm is the number of models.
The internal variability (V, Equation 3) of each model is

considered the variance of the fitted residuals:

V = 1
Nm
∑
m
vars,t(εm,s,t), (3)

where vars,t(εm,s,t) denotes the variance ofmodelmover all scenarios
and time and Nm is the number of models. V remains constant over
time and is independent of emission scenarios.

The model uncertainty (M, Equation 4) for a given scenario is
defined as the variance between the differentmodels in this scenario:

M = 1
Ns
∑
s
varm(xm,s,t), (4)

where Ns is the number of scenarios.
We assume that there are no interactive effects among

uncertainties from different sources. Therefore, the total
uncertainty (T, Equation 5) can be simply regarded as the sum of
uncertainties from these three independent sources:

T = V+M+ S. (5)
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FIGURE 2
Schematic plot of the convolutional neural network.

Theaverage prediction of all themodels is obtained by averaging
across multiple scenarios and models (Equation 6):

G = 1
Ns

1
Nm
∑
m,s

xm,s,t. (6)

Following the approach of Hawkins and Sutton (2009), the
fractional uncertainty of a variable is defined as the ratio of
predictive uncertainty to the mean prediction. This ratio helps
eliminate differences between geographic regions to some extent.
For example, even though temperature predictions in equatorial
and polar regions may have the same level of uncertainty, the
significant differences in average temperatures between these
regions result in different patterns of fractional uncertainty.
Fractional uncertainty (F, Equation 7) at the 90% confidence level
can be expressed as follows:

F = 1.65
√T
G
, (7)

where 1.65 is the coefficient corresponding to the 90% confidence
interval of a normal distribution. It should be noted that all models
are given equal weights in this analysis. Proportional variances are
represented by V/T, M/T, and S/T, which reflect the proportion of
each source’s contribution to the total uncertainty.

3.4 Performance measures

In this study, the data are divided into the training period
(1950–2001, 80% of the total data) and validation period
(2002–2014, 20% of the total data), and multiple evaluation metrics,
including mean absolute percentage error (MAPE), root mean
square error (RMSE), R2, mean absolute error (MAE), and mean

bias error (MBE), are applied in both training and validation periods
to compare the ETCCDI extreme precipitation indices calculated
from 10 CMIP6 models and HadEX3 references. The details of the
five metrics are shown below.

3.4.1 Mean absolute percentage error
MAPE (Equation 8) assesses the accuracy of a prediction by

calculating the absolute value of the prediction error as a proportion
of the true value.

MAPE = 1
n

n

∑
t=1
|
At − Ft
At
| × 100%, (8)

where At is the actual value (true value) at moment t, Ft is the
predicted value at moment t, and n is the number of observations.

This formula represents the average of the absolute percentage
of prediction error at each observation. It is important to note that
if some actual value At is 0, the denominator of this formula will be
0, which will result in uncertain or infinite MAPE. Therefore, it is
necessary to ensure that all actual values are non-zero or the data
are pre-processed to avoid this. In this study, linear interpolation is
employed to estimate the values by averaging the data points from
adjacent grid cells. In addition, one of the disadvantages of MAPE
is that it is very sensitive to small values of actual observations,
i.e., when the actual values are close to 0, the value of MAPE may
become very large even if the prediction error is small. Therefore,
the use of other evaluation metrics may need to be considered
in some cases.

3.4.2 Root mean square error
RMSE (Equation 9) is a statistic used to measure the difference

between the predicted and actual values, and it is often used,
especially in regression analyses. RMSE can provide the absolute
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magnitude of the prediction error.

RMSE = √ 1
n

n

∑
i=1
(yi − ̂yi)

2, (9)

where n is the number of samples, yi is the actual value of the ith
sample, and ̂yi is the predicted value for the ith sample.

RMSE ranges from 0 to positive infinity. A lower RMSE
value (closer to 0) indicates a smaller discrepancy between the
model’s predicted values and the actual observations, signifying
better predictive performance. Ideally, an RMSE value of 0 signifies
perfect prediction with no error. However, in practical applications,
achieving perfect prediction (RMSE equals 0) is nearly impossible
due to various factors such as noise and limitations in model
complexity.

3.4.3 Mean absolute error
MAE (Equation 10) calculates the average of the absolute values

of the prediction errors, thereby assigning equal weight to all
types of errors.

MAE = 1
n

n

∑
t=1
|At − Ft|, (10)

where At is the actual value (true value) at moment t, Ft is the
predicted value at moment t, and n is the number of observations.

3.4.4 Mean bias error
MBE (Equation 11) helps evaluatewhether the predictionmodel

exhibits a consistent bias, i.e., whether the predicted values are
generally higher or lower than the actual values.

MBE = 1
n

n

∑
t=1
(Ft −At), (11)

where At is the actual value (true value) at moment t, Ft is the
predicted value at moment t, and n is the number of observations.
A positive value of MBE indicates that the predicted values are
generally higher than the actual values; a negative value of MBE
indicates that the predicted values are generally lower than the actual
values; and an MBE close to 0 indicates that there is no significant
systematic deviation between the predicted and actual values.

4 Results and discussion

4.1 Performance of CNNs in correcting
bias in CMIP6 extreme precipitation indices

Figure 3 shows the performance measures of eight extreme
precipitation indices, namely, CDD, CWD, PRCPTOT, R10mm,
R20mm, Rx1day, Rx5day, and SDII, before and after bias correction.
The results demonstrate substantial improvements across four
key evaluation metrics for CNN-corrected extreme precipitation
indices: the corrected MAPE, RMSE, MAE, and MBE exhibit
convergence toward 0, indicating effective elimination of systematic
biases. This verifies the superior capability of deep learning
algorithms in modeling complex nonlinear relationships inherent
in climate systems. Additionally, validation period metrics slightly
diverged from training results, suggesting robust generalizability
with minor overfitting risks.

4.2 Variation in ETCCDI extreme
precipitation indices for global continents
under different future SSP-RCP scenarios

In this study, the multi-year mean extreme precipitation
indices of the baseline period are subtracted from those
of the near-, medium-, and long-future periods under four
scenarios, respectively, to investigate the spatial variations in
extreme precipitation. Specifically, we select Rx1day and R10mm
indices as representative indices for further analysis due to
their unique and complementary capacities in characterizing
extreme precipitation features. R10mm quantifies the frequency
of moderate-intensity precipitation events (annual count of days
with ≥10 mm precipitation), directly reflecting persistent shifts in
regional precipitation regimes. Rx1day, in contrast, captures the
peak intensity of extreme precipitation (annual maximum daily
precipitation), characterizing the destructive potential of short-
duration deluges and flooding. Figure 4 indicates that the Rx1day
index exhibits an overall increasing trend across all near, medium,
and long future periods. The extreme precipitation becomes heavier
from relatively mild SSP scenarios to severe SSP scenarios. In
contrast, the change in the R10mm index behaves slightly differently.
The overall variation in R10mm index values is relatively smaller.
Although R10mm also increases globally from mild to severe SSP
scenarios, it peaks in the mid-term and decreases slightly less in
the long term.

Figure 4 also indicates that Rx1day is highly sensitivity to
SSP scenarios, with its variations closely aligned with SSPs and
demonstrating a positive correlation over time. Notably, the
magnitude of change in Rx1day is relatively small in high-latitude
regions, showing significant increases only under high-emission
scenarios and in the long-term future period. In contrast, the
increase in Rx1day is more pronounced in low-latitude regions,
indicating a greater impact of changes in Rx1day in these areas.
A pronounced increase in Rx1day at low latitudes can suggest
strengthened convective activity in those regions under future
scenarios. Comparatively, there is a slight increase in R10mm
globally for the near term for all SSP scenarios, with changes
being particularly evident in low-latitude regions. During the mid-
term, the rate of increase in R10mm accelerates in the Northern
Hemisphere, whereas in some regions in the Southern Hemisphere,
it increases very slightly or even decreases. Nevertheless, both the
increasing and decreasing trends become more stable in the long-
term future.

4.3 Change in different uncertainty sources
associated with ETCCDI extreme
precipitation projections

Fractional uncertainty refers to the ratio or fraction of the
uncertainty relative to the measurement value. It can be used
to express the relative error in the measurement result. Figure 5
shows that model uncertainty represents the dominant source of
uncertainty, which consistently exceeds 0.15 for R10mmand 0.27 for
Rx1day prior to bias correction. Model uncertainty becomes higher
as it reaches the peak at 0.16 for R10mmand at 0.3 for Rx1day till the
end of mid-term (approximately in 2060), after which it gradually
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FIGURE 3
Performance of MAPE, RMSE, MAE, and MBE for eight ETCCDI indices (CDD, CWD, PRCPTOT, R10mm, Rx1day, Rx5day, and SDII) during 1950–2014
(training period: 1950–2001; validation period: 2002–2014) before and after bias correction with the CNN. Tra-Ori represents original data for the
training period before bias correction, and Val-Ori represents original data for the validation period before bias correction. Tra-BC represents
bias-corrected data for the training period, and Val-BC represents bias-corrected data for the validation period. (a–d) show the values for four
performance measures mentioned in the methodology section respectively.

decreases. Scenario uncertainty is the second-largest source of
uncertainty and increases slowly over time. Internal uncertainty is
very small compared to model uncertainty and scenario uncertainty
before CNN bias correction.

After bias correction, the model uncertainty significantly
decreases for both R10mm and Rx1day. Although there is a
slight increase in the variability of uncertainty for R10mm, the
magnitude of the increase is very little. In addition, neither
scenario uncertainty nor internal variability shows substantial
growth. However, comparatively, both scenario uncertainty and
internal uncertainty increase considerably and exhibit significant
variability for Rx1day after bias correction. Specifically, internal
uncertainty fluctuates over time, reaching a peak of 0.0661 in 2060,
whereas scenario uncertainty initially decreases and subsequently
peaks at 0.1009 in 2060. Thus, bias correction with the CNN
network effectively reduces model uncertainty with minimal impact
on scenario uncertainty and internal variability for R10mm.
Conversely, scenario uncertainty becomes the predominant and
most significant source of uncertainty, followed by internal
uncertainty for Rx1day after correction. Overall, the level of
uncertainty is notably reduced compared to pre-correction levels,
and the mid-term serves as a critical timepoint for changes in
uncertainty.

It needs to be noted that the scenario uncertainty and internal
uncertainty of Rx1day are significantly larger than those of the
R10mm metric. This indicates that Rx1day is more sensitive to
changes in future SSP scenarios and exhibits greater variability than
R10mm. The implementation of bias correction can notably reduce
the discrepancies in predictions among models, thereby decreasing
model uncertainty. However, this approach also exacerbates the
divergence in prediction results across different scenarios, leading to
an increase in scenario uncertainty. Bias correctionmay also disrupt
the inherent regularity of the original model predictions, elevating

the noise level in model outputs, which, in turn, increases internal
uncertainty. Furthermore, bias correction enhances the fluctuation
of both internal and scenario uncertainties over time.

Figure 6 illustrates the proportions of uncertainty components
across the six geographical regions through the end of this century.
It is evident that model uncertainty constitutes a significant portion
of the total uncertainty within all six designated regions, with the
proportion showing a gradual decreasing trend over time. Australia
represents an exception to this pattern. The second-largest source
of uncertainty is scenario uncertainty for R10mm and internal
variability for Rx1day for the future period. In contrast to the
smooth transition of uncertainty in the remaining five regions,
Australia experiences pronounced fluctuations over time, indicating
a higher level of noise. Given the frequent occurrence of extreme
climate events in Australia in recent years, along with the continent’s
relatively small size and its being surrounded by oceans, these
factors contribute to high uncertainties in precipitation patterns
(Katelaris, 2021; Papalexiou and Montanari, 2019). Consequently,
the R10mm and Rx1day indices, which are related to precipitation,
exhibit higher uncertainties in the Australian (AUS) region,
manifesting as pronounced variability in time-series analysis.

Figure 7 shows that the spatial distributions of model
uncertainty for R10mm and Rx1day exhibit generally similar
patterns across near-term, mid-term, and long-term projections.
Given the difficulty in obtaining precipitation data in high-elevation
regions, uncertainty in such areas (such as the Tibetan Plateau) is
large. For mid-high latitude regions (such as central North America,
Europe, and central Siberia), climate uncertainty is influenced
by a combination of geographical locations, topographical
characteristics, atmospheric circulation patterns, and oceanic
influences. Central North America has the extensive Great Plains,
which lack significant topographical barriers, allowing cold and
warm air masses to interact freely. This results in substantial

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2025.1601615
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Xiang et al. 10.3389/feart.2025.1601615

FIGURE 4
Projected change in R10mm and Rx1day over global continents under four SSP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) for the near-
(2020–2026; a–d and m–p), medium- (2060–2066; e–h and q–t), and long-term (2090–2096; i–l and u–x) future relative to the historical baseline
period (1970–1999) with CNN bias correction.

temperature fluctuations and exacerbates climatic uncertainty. In
contrast, Europe and central Siberia exhibit pronounced continental
climate features with significant temperature differences between
summer and winter due to their inland positions that are distant
from maritime influences. Although these regions contain some
mountain ranges, most of the landscape consists of plains or
basins, which facilitates the accumulation and dispersion of
cold air. Additionally, global warming has significant impacts on
Siberia, including the melting of snow and ice and the thawing
of permafrost, which further disrupt local climate systems and
increase climatic uncertainty. Therefore, the discrepancies in
climate projections among various models within these regions
contribute to increased model uncertainty. Regarding the scenario
uncertainties and internal variabilities of both indices, the areas
characterized by higher values show slight difference from those
where model uncertainties are more pronounced. The increasing
trend of scenario uncertainty changes in a relatively regular

manner, whereas the internal variability exhibits notable increase
during the mid-term. This indicates that there is considerable
internal fluctuation in the projected values of each model during
this period.

Figure 8 illustrates the comparison of uncertainty contributions
before and after bias correction for global continents. Prior to bias
correction, model uncertainty is the dominant source of uncertainty
for both indices: R10mm and Rx1day. The average contribution of
model uncertainty for R10mm and Rx1day across near-term, mid-
term, and long-term periods reached 98.5% and 92.5%, respectively.
In contrast, scenario uncertainty plays a relatively minor role in
the early stages but increases toward the long term, and internal
uncertainty is very small for both indices. After bias correction with
a CNN-based deep learning network, there is a significant reduction
in model uncertainty for both indices, with scenario uncertainty
exhibiting more dynamic behavior over time. Specifically, the
contribution of scenario uncertainty decreased over time for the
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FIGURE 5
Fractional uncertainties of different sources in the inter-decadal CMIP6 model mean projections of (a) R10mm and (b) Rx1day for the global continents
(except Antarctica).

FIGURE 6
Proportions and variance of different uncertainty sources in decadal mean projection of ETCCDI extreme precipitation indices for R10mm (left) and
Rx1day (right) over the global continents (unit: %; NAM, North America; SAM, South America).

R10mm index, accompanied by an increase in the contribution
from internal variability. Scenario uncertainty increases from the
near term to the mid-term for Rx1day but decreases from the mid-
term to the long term, indicating that the mid-term serves as a
critical juncture for changes in uncertainty dynamics. Figures 5–8
demonstrate that bias correction using the CNN could effectively

reduce the overall uncertainty by mitigating dominant model
uncertainty. However, this process may lead to an unavoidable
increase in scenario uncertainty and internal variability, enhancing
their temporal variability. Nonetheless, the extent of this increase is
moderate and follows a discernible pattern for different ETCCDI
extreme precipitation indices. Overall, CNN-based bias correction
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FIGURE 7
Uncertainty from different sources in the decadal mean projections for R10mm and Rx1day over global continents. The figure shows the near term
(2020s; a–d and m–p), medium term (2060s; e–h and q–t), and long term (2090s; i–l and u–x). This graph shows four columns of uncertainty: total
uncertainty (first column), model uncertainty (second column), scenario uncertainty (third column), and internal variability (fourth column).

represents an effective strategy for reducing uncertainties in climate
predictions.

5 Conclusion

In this study, we utilize the CNN deep learning BC approach
to correct eight ETCCDI extreme precipitation indices calculated
from 10 CMIP6 models with HadEX3 references in the historical
period. The well-trained CNN structure is further applied for
future projections, and the variation in two representative extreme
precipitation indices (Rx1day and R10mm) across global continents
is evaluated and compared with the baseline period. In addition,
three sources of uncertainty associated with the predictions of
ETCCDI, including model uncertainty, scenario uncertainty, and
internal variability, are decomposed and assessed. Specifically, the
following conclusions are drawn:

1. CNN exhibits great capability for reducing model uncertainty
through bias correction. The eight ETCCDI extreme
precipitation indices from 10 CMIP6 models exhibited
satisfactory alignment with reference datasets during training
and validation periods after undergoing bias correction via
CNN. This finding assures the feasibility of employing CNNs
for bias correction for future projections.

2. The spatial distribution analysis of uncertainty sources for
the indices Rx1day and R10mm revealed that irrespective
of whether it is model uncertainty, scenario uncertainty, or
internal variability, the magnitudes tend to be larger in high-
altitude regions and mid-to-high latitude continental interiors
(such as central North America, Europe, and central Siberia).
Temporally, model uncertainty remains relatively invariant.
Conversely, scenario uncertainty increases for future periods,
whereas internal variability reaches its peak in the mid-
term future.
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FIGURE 8
Proportion of uncertainty for three different sources in the decadal mean projections for R10mm (a–c) and Rx1day (d–f) before and after bias
correction (BC) over global continents (unit: %). Internal variability, scenario uncertainty, and model uncertainty are represented in orange, green, and
blue, respectively. The darker colors show the results before BC, and the lighter colors show the results after BC. The results shown in this figure use
the CNN as the BC method. The horizontal axis of each subplot: Globe (GLO), Africa (AFR), Asia (ASI), Australia (AUS), Europe and Siberia (EUR), North
America (NAM), and South America (SAM).

3. Compared to the raw ETCCDI extreme precipitation indices
calculated from CMIP6 models, CNNs can effectively reduce
R10mm model uncertainty by 98.40% and Rx1day model
uncertainty by 92.47% on average over a long term. However,
the CNNmethod tends to reducemodel uncertainty at the cost
of simultaneously increasing the proportion of internal and
scenario uncertainties.

4. Analysis of the spatiotemporal distribution of R10mm
and Rx1day indicates that the increase in R10mm is most
pronounced and exhibits higher sensitivity to different
scenario models during the mid-term future period. As for
Rx1day, it shows a monotonically increasing trend with the

enhancement of the scenario and the progression of time. The
uncertainty characteristics observed in the Australian region
are primarily attributed to its unique geographical conditions,
which have further exacerbated the region’s volatility in
extreme precipitation.
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