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With the rapid development of deep mining and geothermal exploitation, the
influence of high-temperature environment on the mechanical properties of
rocks has become a core challenge for engineering safety. This study focuses
on gneiss (a common rock type in deep mining environments) to systematically
investigate the thermal effects (25°C–800°C) on multiscale structural damage
and permeability evolution. Through integrated experimental approaches
including high-temperature treatment, uniaxial compressive strength tests,
micro-CT scanning, scanning electron microscopy (SEM) analysis, and digital
seepage simulations, we comprehensively characterize the temperature-
dependent structural alterations and fluid transport properties. The results
indicate that as the temperature increases, the mass loss rate and porosity
of gneiss significantly increase, and the heterogeneity of pore distribution
intensifies. Thermal cracks gradually coalesce and form macroscopic fracture
surfaces above 600°C, leading to an increase in volumetric porosity from
1.87% to 6.78%. Seepage simulation reveals that the absolute permeability
increases by approximately 135% at 800°C, showing a linear positive correlation
with the total porosity. Microscopic analysis reveals that the evaporation of
intercrystalline bound water and differential thermal expansion of minerals are
the main causes of crack propagation, and the compressive strength of the
rock decreases by 35.6% at high temperatures. This study innovatively combines
X-CT scanning technology with digital core analysis to establish a three-
dimensional quantitative evaluation system for gneiss fractures under high-
temperature conditions, offering theoretical and technical support for deep
mining engineering.

KEYWORDS

deep mining, high-temperature, gneiss, mechanical properties, damage mechanism,
seepage simulation

1 Introduction

Rock engineering is ubiquitously integral to national infrastructure and closely
intertwined with societal development and the national economy. The construction and
planning of deep mining operations are tightly linked to the mechanical properties
of rocks (Yang et al., 2017; Brady and Brown, 2006; Li et al., 2015; Lei et al., 2025;
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Gao H. et al., 2024). Fractured rocks are considered the most
common heterogeneous brittle materials in nature, characterized by
the presence of numerous discontinuities such as joints, fractures,
and weak interlayers, resulting from millions of years of geological
activity (Nian et al., 2024). The complex compositional structure
of fractured rock bodies and the development of joints render
their mechanical properties susceptible to external influences such
as thermal, hydraulic, and stress factors. In the context of the
increasing prevalence of deep geological engineering projects,
including the extraction of deep mineral resources (Ranjith et al.,
2017), geothermal resources (Jolie et al., 2021), underground
coal gasification (Bhutto et al., 2013), and the construction of
storage facilities for high-level radioactive materials (Keerthi et al.,
2025), the rock mechanics issues involved in the construction and
protection of deep geological structures have become a focal point
of research among scholars both domestically and internationally.

With increasing mining depths, high geothermal temperatures
have emerged as a significant factor affecting the fundamental
mechanical properties of rock (Zhang et al., 2014; Rossi et al.,
2018; Zhang et al., 2017). The domain of high-temperature
rock mechanics has witnessed extensive scholarly exploration,
encompassing rock rheology and rock fracture mechanics, thereby
establishing a robust theoretical and experimental framework for
subsequent investigations (Luo and Wang, 2011). A multitude of
engineering observations has underscored the profound structural
degradation that elevated geothermal temperatures can inflict
upon rock formations, necessitating heightened attention from the
research community. In recent years, the mechanical behavior of
fractured rock masses subjected to high-temperature conditions
has garnered widespread academic interest (Yin et al., 2019;
Zuo et al., 2017; Zhang et al., 2016; Ghassemi, 2012). XI et al.
(Xi et al., 2020) performed high-temperature triaxial shear tests on
granite from the Qinghai Gonghe region, observing that increases
in temperature (ranging from 25°C to 300°C) led to increased
rock strength indices and significantly reduced shear strength
parameters. Wu et al. (Wu et al., 2022) further extended this line
of inquiry by conducting uniaxial compression tests on fractured
rocks following high-temperature treatment, and compared the
mechanical responses under varying cooling conditions. Their
results indicated that heating treatment coupled with water-cooling
processes led to diminished strength and elastic modulus, along
with an augmentation in failure strain. Additionally, Ma et al. (2020)
used a real-time high-temperature true triaxial shear system to
test the strength attenuation of granite at 400°C, discovering that
horizontal stress and real-time high temperatures have a coupled
effect on rock structure damage. Although significant progress
has been made in understanding the macroscopic mechanical
damage effects of fractured rock bodies in high-temperature
environments, the understanding of the micromechanical
evolution mechanisms of thermal fracturing under geothermal
high temperatures remains inadequate (Chen et al., 2017;
Kristinsdóttir et al., 2010; Masri et al., 2014; Tian et al., 2014).
Thus, there is still a lack of in-depth knowledge regarding the
degradation patterns of permeability under high-temperature
conditions.

As experimental testing techniques continue to advance,
an increasing array of high-precision testing technologies have
been successfully applied to the study of rock fractures, such

as acoustic emission, nuclear magnetic resonance, atomic
force microscopy scanning, micro-CT scanning, and digital
speckle techniques (Du et al., 2020; Golsanami et al., 2016;
Gurgurewicz et al., 2019; Yang et al., 2021; Zhao et al., 2020).
The adoption of these new technologies has facilitated the
transition from macroscopic to microscopic analysis of rock
defects (Rao et al., 2001). Micro-CT scanning, in particular,
has become widely utilized in the analysis of rock structure
damage, due to its capacity to visually display and reconstruct
the three-dimensional fracture patterns within rocks, coupled
with image analysis software that quantitatively characterizes
fracture distributions, thereby revealing the micro-mechanisms
behind macroscopic fracture phenomena (Yang et al., 2021).
However, current research has yet to clearly define the thermal
fracture patterns and microstructural damage mechanisms of
fractured rocks under the complex and unique conditions of deep
geological layers (Yu et al., 2015).

This study focuses on gneiss, a common rock type in deep
mining, and initially conducts heating treatments under various
high-temperature conditions. By integrating strength testing,micro-
CT scanning, seepage simulation, and scanning electronmicroscopy
results, it reveals the patterns of structural damage evolution
across different scales and deeply analyzes the mechanisms by
which high geothermal temperatures affect the physical and
mechanical properties of rocks. The findings aim to provide
technical guidance for deep mining operations, addressing the
challenges posed by high geothermal temperatures in deep rock
engineering construction.

2 Materials and methods

2.1 Rock materials

The gneiss used in this study appears grayish with densely
packed crystal grains and contains numerous micro-fractures
internally. The primary mineral components of the gneiss
are quartz (66.6%), plagioclase (15.9%), sodium feldspar
(11.8%), and biotite (5.7%). Through basic physical property
tests of the rock, the average dry density of the gneiss is
determined to be 2.78 g/cm3, with a longitudinal wave velocity
ranging from 3890.2 to 4,437.3 m/s, and an average velocity of
4,014.8 m/s.

2.2 Experimental method

2.2.1 Specimen preparation
The experimental procedure, as illustrated in Figure 1, follows

standardized rock sample preparation methods used in engineering
rock body experiments. The process involves coring, cutting, and
polishing bulk rock samples to produce cylindrical specimens with
a diameter of 50 mm and a length of 100 mm. Specimens with
anomalous wave velocities were discarded based on their wave
speed measurements. This ensures that the research results are
only related to the test conditions and not caused by the sample
itself, ensuring the reliability and repeatability of the research
structure.
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FIGURE 1
The experimental flow of the study.

2.2.2 Heating experiment
The specimens were subjected to a heat treatment using

a programmable temperature control chamber manufactured
by Shanghai JIANHU Instrument Equipment Co., Ltd. The
temperature was increased at a rate of 50°C/min to a predetermined
temperature, which was then maintained for the duration of
the experiment. After the completion of the experiment, the
specimens were allowed to cool to room temperature under natural
conditions. Based on a series of enclosed fire tests, the RABT
temperature curve (Qiao et al., 2019) suggests that the internal
temperature of a mine increases sharply to over 800°C within the
first 5 min following a fire outbreak and remains constant for at
least 60 min. Consequently, the heating temperature set for this
study was set as 25°C–800°C, with durations of high-temperature
exposure set at 180 min. After the heating processing, the mass
loss rate of the gneiss sample was measured to quantitatively
evaluate the rock integrity. Five groups of heating experiments
at diverse temperatures were conducted in this study. Each
group of experiments contained 3 rock samples. The mass loss
rate was determined by calculating the average values of the
three samples.

2.2.3 Micro-CT scanning
Scans were performed using a micrometer-scale X-ray CT

scanner. The operational voltage and current of the device were
120 kV and 235 mA, respectively, with an image resolution of
approximately 50 μm. Throughout the scanning process, 525
transverse grayscale slices were acquired from top to bottom

for each specimen. Given the prevalence of scanning noise in
the raw 2D CT images, which can interfere with image clarity
and the differentiation of various components, it is customary to
preprocess the CT images to eliminate noise. In this experiment,
image processing software was utilized to perform smoothing
and filtering on the raw CT images, followed by trimming and
smoothing the rough edges to minimize statistical errors caused
by redundant areas. Finally, a binarization segmentation algorithm
was employed to extract fractures from the grayscale images,
adjust image contrast to enhance the visibility of pores and
fractures, and import the 2D images into software for three-
dimensional reconstruction to obtain a stereoscopic distribution of
the pores (Gao H. D. et al., 2024).

2.2.4 Uniaxial compression test
To systematically evaluate the mechanical degradation of

gneiss under high-temperature conditions, uniaxial compression
tests were performed on cylindrical specimens (50 mm diameter
× 100 mm height). A servo-controlled digital compression
testing machine was utilized, with a displacement-controlled
loading rate of 0.5 mm/min to ensure quasi-static conditions.
Prior to testing, specimens subjected to heating treatments at
25°C–800°C were cooled to ambient temperature (25°C) naturally
to avoid thermal shock effects. During the loading process,
axial force and displacement data were synchronously recorded
at a sampling frequency of 10 Hz. To ensure reliability, three
replicates were tested for each temperature condition, and the
average values were reported. The failure modes of the specimens
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FIGURE 2
Appearance of samples under high-temperature conditions.

FIGURE 3
Mass loss rate under high-temperature conditions.

(e.g., axial splitting, shear failure) were visually documented,
and post-failure fragments were collected for subsequent
microstructural analysis.

2.2.5 Microstructural observation
The microstructural evolution of thermally treated gneiss was

investigated using aTESCANVEGA3 scanning electronmicroscope
(SEM) equipped with a secondary electron detector. Prior to
scanning, fracture specimens approximately 2 cm in thickness were
prepared. To enhance electrical conductivity, a 10-nm gold layer
was sputtered onto the fracture surfaces using a Quorum Q150R ES
coater under vacuum conditions. Representative regions of interest
(e.g., mineral boundaries, crack tips) were selected to analyze crack
propagation paths, pore connectivity, and mineralogical alterations.
Additionally, energy-dispersive X-ray spectroscopy (EDS) was
employed to semi-quantitatively identify elemental compositions
near thermally induced cracks.

FIGURE 4
Uniaxial compressive strength of gneiss at different temperatures.

3 Test results

3.1 Macroscopic properties of gneiss under
high-temperature conditions

3.1.1 Mass loss rate
As illustrated in Figure 2, the appearance of the gneiss specimens

under high-temperature conditions initially presents a smooth outer
surface with no noticeable porosity. Upon heating treatment, the
color of the gneiss surface progressively shifts from dark gray to
light gray as the temperature increases, accompanied by minor
particulate detachment; above 600°C, the surface of the gneiss
exhibits pores and defects, with a marked lightening in color.
This phenomenon indicates that high temperatures cause internal
moisture evaporation and mineral crystallization to undergo
carbonization, resulting in mass loss of the rock. During the heating
process, the mass loss rate of the gneiss specimens was calculated
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FIGURE 5
Scanned images of two-dimensional microcosmic feature at various temperatures.

FIGURE 6
Quantitative analysis results of two-dimensional porosity.

using Equation 1, and the impact of high temperatures on the
integrity of the rock was analyzed, with results depicted in Figure 3.
After 12 h of heating, the final mass loss rates of the rock at
temperatures of 25°C, 200°C, 400°C, 600°C, and 800°C were
respectively 0.18%, 0.49%, 1.02%, 1.64%, and 1.76%. The curve
of mass loss rate shows an initially rapid then slow trend; this
can be attributed to the evaporation of free water and anisotropic
expansion of crystals causing particle detachment during the initial
0–8 h of heating. After 8 h, the mineral composition within the rock
stabilizes, and the evaporation of bound water diminishes, resulting
in a gradual leveling off of the mass loss rate.

φT =
m0 −mT

m0
× 100% (1)

Wherein, φT represents the mass loss rate at temperature T, with
m0 andmT denoting the mass of the specimen at room temperature
and at temperature T, respectively.

3.1.2 Mechanics characteristics
Figure 4 presents the results of uniaxial compressive strength

tests of gneiss under various heating treatment conditions. The

standardized uniaxial compressive strength of gneiss reached
78.77 MPa. Throughout the heating treatment process, the
compressive strength of the rock gradually decreased. After
exposure to a temperature of 800°C, the compressive strength of
the gneiss ultimately diminished to 51.35 MPa, with a strength
attenuation rate of 36.83%. The observed changes in mass and
strength of gneiss under high geothermal temperatures indicate
that structural damage to the rock mass significantly affects its
macroscopic mechanical behavior. Notably, previous research has
shown that at lower temperature ranges (generally below 100°C),
an increase in temperature causes evaporation of fracture water and
further hydration of the cementing materials, thereby enhancing
rock strength. However, when the temperature reaches a certain
level (typically above 200°C), the porosity structure of the rock
changes significantly with temperature increase, and the formation
of cracks along with the gradual decomposition of hydrates begins
to negatively impact the ultimate strength of the fractured rock
mass (Zhang et al., 2016; Kristinsdóttir et al., 2010). Therefore, in
deep mining engineering, it is crucial to consider the effects of
temperature on the load-bearing and deformation performance
of the surrounding rock, optimize design, and implement timely
measures to strengthen rock support to ensure the durability and
safety of structures.

3.2 Examination of pore distribution

3.2.1 Distribution characteristics of
two-dimensional pores

Based on the CT scanning experiments, grayscale scan slices
of the gneiss specimens were obtained, revealing the evolution
of two-dimensional (2D) pores within these specimens, as shown
in Figure 5. Taking a typical scan slice from the central part of
the specimen as an example, it is evident that the changes in
porosity during the heating process exhibit significant heterogeneity.
In specimens of gneiss that have not undergone thermal process,
the internal arrangement of particles is relatively compact. After
heating at 200°C for 12 h, micro-fractures begin to appear within
the specimen. At a heatingtemperature of 400°C, both the number
and length of internal fractures significantly increase. When the
temperature reaches 600°C, under thermal damage, the number,
length, and width of fractures markedly increase, with a concurrent
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TABLE 1 CT testing statistical data of gneiss.

Temperature
(°C)

Mass loss rate
(%)

2D porosity
(%)

Variance (%) Maximum
value (%)

Minimum
value (%)

3D porosity
(%)

25 0.18 1.74 9.01 2.87 0.91 1.87

200 0.49 2.90 17.13 3.95 2.13 2.81

400 1.02 4.54 25.68 4.85 3.63 3.75

600 1.64 5.83 31.23 6.14 3.91 5.52

800 1.76 6.28 40.92 8.23 5.85 6.78

FIGURE 7
Three-dimensional pore model of gneiss.

FIGURE 8
Pore volume distribution in gneiss under different temperature
conditions.

rise in fracture connectivity. At 800°C, the fractures’ length and
width continue to expand, and the complexity of pore distribution
further increases.Quantitative analyses of the two-dimensional (2D)
porosity distribution in gneiss were conducted. Using binarization

techniques, the porosity of the rock surfaces at different sample
heights was extracted, and the results are presented in Figure 6. The
porosity curves of the gneiss surface exhibit significant fluctuations,
with the ordinates of the curves gradually increasing as the heating
temperature rises. The pore content data derived from CT data are
presented in Table 1. With increasing temperatures, the fracture
content in the gneiss increases, with the overall average surface
porosity of the specimens rising from 1.74% to 6.28%.The statistical
data including maximum, minimum, and variance of 2D porosity,
as listed inTable 1.These results indicate thatwith increasing heating
temperatures, the heterogeneity and anisotropy of internal pore
distribution within the specimens significantly intensify.

3.2.2 Evolution characteristics of
three-dimensional pores

Through the stacking and reconstruction of CT images, a three-
dimensional model of the pore structure in gneiss was obtained,
as depicted in Figure 7. Pore categories within the rock were
quantitatively classified based on fracture size parameters into
connected and unconnected pores (Gao H. D. et al., 2024). Analysis
revealed that during the process of increasing heating temperatures,
the proportion of unconnected pores gradually decreased, while
the proportion of connected fractures consistently increased. This
indicates that high temperatures cause small-volume pores to
gradually merge and connect into longer, interconnected fractures.
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FIGURE 9
Seepage model of gneiss at various temperatures.

FIGURE 10
Relationship between absolute permeability and 3D porosity.

At room temperature,most of the pores in the rock are unconnected,
with unconnected pores comprising nearly 80% of the total pore
volume. As the heating temperature increases, the thermal loss
effect on the structure accumulates, and the volume content of
connected fractures rapidly increases. At a heating temperature of
800°C, thermal fracture planes form and extend from the interior to
the exterior, intensifying the thermal damage effect on the structure.
Figure 8 presents the changes in volumetric porosity with increasing
heating temperatures. It is evident that the overall porosity and
connected porosity of the gneiss consistently exhibit an increasing
trend, while the unconnected porosity shows a decreasing trend.
This phenomenon indicates that under high temperatures, fractures
expand and connect, leading to an increase in the overall volume of
pores, while the number of unconnected pores decreases during the
merging process. When the heating temperatures are 20°C, 200°C,

400°C, 600°C, and 800°C, the overall porosity reaches 1.87%, 2.81%,
3.75%, 5.52%, and 6.78%, respectively. The volume proportions
of connected fractures at these temperatures are 39.1%, 53.3%,
63.7%, 75.1%, and 82.3%, respectively. The pattern of pore volume
changes indicates that under the influence of high temperatures, the
mesoscopic structure of the rock undergoes progressive damage,
with the degree of damage continuously compounding. The
formation, expansion, and connectivity of thermal fracture planes
are the intrinsic causes of structural damage and destabilization
in gneiss specimens (Kou et al., 2022). Therefore, by qualitatively
and quantitatively characterizing the two-dimensional and three-
dimensional pores in gneiss, the evolution mechanisms of internal
thermal fracture planes and structural thermal damage are revealed.

3.2.3 Microscopic seepage characteristics
Based on comprehensive information about the internal

structure of the samples provided by CT scanning, including pore
structure and fracture distribution, a three-dimensional fracture
model of the gneiss specimens was extracted.The lattice Boltzmann
method was employed to simulate multiphase seepage through
the rock mass (Li et al., 2022). By simulating the distribution and
movement of fluids within the specimen, the rock’s permeability
coefficient was determined. The experiment used standard
turbulence conditions at room temperature, and the controlling
equations for the seepage simulation are shown in Equation 2.

∂ρ
∂t
+Δ(ρu) = 0

∂(ρu)
∂t
+Δ(ρμu) = Δσ

∂(ρe)
∂t
+Δ(ρue) = σΔu−Δq

}}}}}}}
}}}}}}}
}

(2)

Wherein, ρ represents the fluid density (kg/m3); t denotes time
(s); u is the flow velocity (m/s); μ is the fluid viscosity coefficient
(Pa·s), which is 1.0087 × 10−3 Pa·s at 20°C; σ is the stress tensor (Pa);
e represents internal energy (J/kg); q is the heat flow density (W/m2);
Δ is the Laplacian operator.
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FIGURE 11
Microscopic morphology of rock at different heating temperatures: (a) cast specimen slice at T = 25°C, (b) SEM image at T = 25°C, (c) SEM image at T =
200°C, (d) SEM image at T = 400°C, (e) SEM image at T = 600°C, and (f) SEM image at T = 800°C.

Based on Equation 3, the volumetric flow through the specimen
was calculated by integrating the water flow velocity at the inlet and
outlet boundaries of the seepagemodel.Then, usingDarcy’s Law, the
permeability coefficient K was derived:

k =
QμLγw
μAΔP

(3)

Wherein, Q is the volumetric flow rate (m3/s); L is the length of
the seepage sample (m);A is the cross-sectional area of the flow (m2);
ΔP is the pressure difference between the inlet and outlet (kPa); γw
is the specific weight of water (kg/m3).

The three-dimensional pore model was used for seepage
calculations, resulting in a streamline model of the gneiss, as shown
in Figure 9. The density of the streamlines in the image is positively
correlated with permeability, and the color of the streamlines relates
to fluid pressure. As the number of connected fractures in the gneiss
increased, no significant change in the colors of the streamlines
was observed, but the density of streamline distribution significantly
increased. At heating temperatures exceeding 600°C, through-going
streamline trajectories formed in the gneiss, indicating a significant
improvement in the rock’s permeability. The absolute permeability
K of the rock was calculated from the seepage simulation. The
results show that after the rock body underwent high-temperature
treatment at 800°C, the increase in absolute permeability was
approximately 135%. In this study, multiple cubic models were
extracted from different locations within the three-dimensional
fracture model for seepage simulation, and the permeability
coefficients of the three-dimensional fracture model were calculated

repeatedly. As shown in Figure 10, through data fitting and analysis,
it was found that the total porosity and absolute permeability of
the gneiss exhibited a clear linear correlation, indicating a strong
relationship between permeability and the degree of rock fracturing.

3.3 Microstructural characteristics

As illustrated in Figure 11a, themineral composition of this rock
is mainly composed of quartz, feldspar and biotite. To investigate
the damage characteristics of the microstructure of gneiss under
various heating temperatures, SEM analysis was conducted on the
fracture morphology of rock specimens. The results are displayed
in Figures 11b–f. At the initial room temperature state (25°C), the
distribution of microcracks within the gneiss was uneven, with
poor connectivity between them. The heating treatment at 200°C
led to the evaporation of free water within the rock, causing
thermal expansion in mineral crystals and an increase in the
number of microcracks and pores; the thermal cracks were in a
closed state. At 400°C, the dehydration of biotite minerals caused
thermal expansion, leading to the formation of connected fractures
at the weak cementation faces of the rock specimens. Under the
influence of 600°C, combined with the volatilization of bound
water and expansion of crystals, mica and feldspar underwent
thermal decomposition, resulting in connected cracks within the
mineral crystals. Experimental results demonstrated that when the
temperature exceeded 800°C, thermal cracks were clearly open, and
the cracking scale of rocks increased with the heating temperature.
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FIGURE 12
conceptual schematic diagram of the high-temperature-induced microstructural evolution and mechanical property degradation of gneiss.

4 Discussion

The fracture connectivity primarily involves changes in
the physical and mechanical properties of gneiss under high-
temperature conditions. When rock is subjected to high
temperatures, a series of physical and chemical changes occur within
it, significantly affecting its mechanical properties. Figure 12 shows
a conceptual schematic diagram of the high-temperature-induced
microstructural evolution and mechanical property degradation of
gneiss. Rock inherently contains numerous micro-pores and micro-
defects (Yin et al., 2019). As temperature increases, themicro-defects
gradually develop and even connect into macroscopically visible
fractures. When temperatures rise above 600°C, high temperatures
cause minerals such as biotite and feldspar to decompose, undergo
phase transformations, or even melt in gneiss. These changes in
mineral composition disrupt the originalmicrostructure and further
promote the formation and extension of fractures (Costa et al.,
2021). Under the sustained high-temperature heating, cracks within
deep rocks gradually extend and connect, eventually forming a
macroscopically visible network of cracks and achieving fractured
permeability. With the expansion of rock cracks, the microstructure
becomes increasingly loose and fragile, and it is more prone
to fractured under the influence of external stress (Xu et al.,
2020). Consequently, the mechanical properties of rock, such as
compressive strength, elastic modulus, and cohesion, gradually
decline with the rise in heating temperature.

Based onmacroscopic andmicroscopic experimental results, the
multiscale effects of thermal fracturing of gneiss in high geothermal
temperature environments and their severe impact on the stability of
the rock mass were revealed. Specifically, high temperatures cause
rapid expansion and connectivity of internal fractures, forming
large-volume through-going fractures (Jayawickrama et al., 2021).

These fractures become the primary regions for groundwater
leakage, directly resulting in reduced impermeability and strength
of the rock. Given the severe impact of mesoscopic fractures on
the rock, timely and effective measures must be taken to seal these
fractures. The specific operations are as follows: Firstly, enhance
advanced geological forecasting and horizontal drilling ahead to
preemptively assess the geothermal and water-rich conditions
ahead of the tunnel face. Secondary grouting sealing technology
is a feasible solution, where forming a grouting curtain fills
the fractures, restoring the integrity of the fractured rock mass,
thereby enhancing its engineering stability (Zheng et al., 2023). For
areas that are severely damaged, chiseling out and recasting is an
effective repair method, ensuring the integrity and safety of the
structure. For superficial and shallow microcracks, although they
have a minor impact on the overall stability of the fractured rock
mass, they are also potential channels for groundwater leakage.
It is recommended to use surface patching and surface bonding
methods for localized repairs. These methods are simple to operate
and low in cost but can significantly enhance the rock’s surface
impermeability, reducing the likelihood of engineering accidents
such as water and mud inrush, mine water inflow, and roof fall in
deep mining processes involving surrounding rock in deep mining
engineering.

5 Conclusion

Themain conclusions are as follows:

(1) As the heating treatment temperatures increase, the mass loss
rate and surface porosity of the gneiss specimens progressively
rise. Additionally, the heterogeneity in pore distribution also
intensifies. This suggests that high temperatures lead to
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increased heterogeneity in the distribution and arrangement of
fractures.

(2) The dynamic evolution of mesoscopic fractures under high
temperatures is vividly illustrated by three-dimensional pore
models. As the heating treatment temperature rises, the non-
connected pores within the rock continuously expand and
become interconnected, forming distinct thermal fracture
planes at temperatures above 600°C.Themesoscopic structure
of gneiss progressively fractures as the temperature increases,
with structural damage accumulating gradually.

(3) With increasing heating treatment temperatures, the
streamlines in the seepage models of gneiss become denser,
and the absolute permeability significantly improves. At a
heating temperature of 800°C, the compressive strength loss
rate of gneiss reaches as high as 35.6%, indicating that high
geothermal temperatures severely impact the macroscopic
performance of the fractured rock mass.

(4) The analysis of the microscopic morphology of gneiss reveals
that the evaporation of inter-crystalline bound water, thermal
deformation differences, and severe thermal damage effects
lead to the formation of mesoscopic thermal cracks between
mineral crystals, ultimately affecting the macroscopic physical
and mechanical behavior of gneiss.

(5) The high geothermal temperature environment causes
multiscale damage effects on gneiss. The fracture connectivity
primarily involves changes in the physical and mechanical
properties of gneiss under high-temperature conditions. In
deep mining engineering, it is necessary to adopt measures
such as secondary grouting sealing or surface bonding
methods to seal fractures in deep formations.
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