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The fundamental cause of leakage in grouting curtains of dams in karst areas
lies in the localized damage induced by performance degradation of the
curtain under seepage-induced erosion. This work investigated the degradation
mechanisms of grouting curtains exposed to karst water erosion by analyzing
the mechanical and microstructural evolution of cement-grouted stone (CGS)
and cement-clay-grouted stone (CCGS). The results indicate that bothmaterials
experience progressive deterioration in mechanical properties, with CCGS
demonstrating significantly higher vulnerability. After 120 days, the compressive
strength of CGS decreased from 32.89 MPa to 20.03 MPa, while the strength
of CCGS declined sharply from 3.89 MPa to 2.03 MPa. Porosity increased from
26.06% to 33.91% for CGS and from 58.04% to 77.01% for CCGS. Microstructural
analysis revealed that karst water induced chemical erosion and structural
damage in both materials, with CCGS exhibiting accelerated degradation due
to weaker cementitious bonding and higher initial porosity, which facilitated ion
penetration and reaction-induced damage. The findings highlight the inferior
durability of cement-clay composites under karst water conditions and provide
critical insights for optimizing grouting materials in karst-prone environments.

KEYWORDS

karst, grouting curtain, erosion effect, performance degradation, grouted stone

1 Introduction

Grout curtain grouting is the preferred construction method for anti-seepage
reinforcement of dams in karst regions. However, the karst stratum contains interconnected
fissures and conduits with mineral-rich groundwater, where the synergistic effects
of hydrostatic pressure, chemical interactions, and geostress can readily induce
deterioration and structural damage to the grouting curtain (Liu, 2004; Yu et al.,
2020). Extensive engineering projects have demonstrated that the cause of seepage
incidents in dam grouting curtains within karst areas lies in the performance
degradation of curtain structures under seepage-induced erosion, ultimately leading
to localized failures, as evidenced by the Tangab Dam (Mozafari et al., 2021),
Logan Martin Dam (Bruce et al., 2017), and Teton Dam (Verma et al., 2023).

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2025.1603845
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2025.1603845&domain=pdf&date_stamp=2025-05-20
mailto:xhfang95@163.com
mailto:xhfang95@163.com
https://doi.org/10.3389/feart.2025.1603845
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2025.1603845/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1603845/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1603845/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1603845/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Tang et al. 10.3389/feart.2025.1603845

Currently, scholars primarily characterize the performance
degradation of grouting curtains by investigating changes in
the physical-mechanical properties of grouted stones under
karst water erosion (Ahmad et al., 2019; Wei et al., 2025),
a method whose feasibility has been validated. For instance,
Liu (2019) conducted accelerated dissolution tests to obtain
the compressive strength, cohesion, internal friction angle,
permeability coefficient, and microstructural characteristics of
grouted samples at different curing ages. Recent work also
emphasizes the temperature field evolution in backfill materials,
which could correlate with chemical and mechanical degradation
pathways in similar subsurface environments (Ahmad et al.,
2021). Feng (2015) compared the soft-water erosion resistance of
cement-clay grouts with varying mix ratios through orthogonal
experiments, analyzing the degradation patterns of cement-clay
reinforcements under different erosion media and durations
using strength and mass loss as performance indicators. Sha
and Fan (2021) investigated the early impermeability, flexural
strength, unconfined compressive strength, corrosion resistance
coefficient, volume/mass variations, fracture surface characteristics,
corrosion minerals, microstructure, and pore size distribution of a
novel high-efficiency micro-cement grouting material in corrosive
environments. Tu (2012) evaluated the durability of cement-based
grouting materials in seawater using fuzzy analytic hierarchy
analysis based on seawater erosion resistance tests. Wang et al.
(2021) andWang et al. (2020). addressed grouting design challenges
in sand layers under seawater erosion by conducting accelerated
degradation tests, establishing quantitative relationships between
seawater exposure time and grouted reinforcement strength,
and proposing a constitutive model for degradation damage,
providing theoretical guidance for sand-layer grouting in marine
environments. Fu et al. (2013) enriched durability prediction
frameworks by comparing erosion rates of cement grouting
curtains under low-alkalinity soft water at varying permeation
pressures.

However, the initial performance of grouted stones is closely
tied to grouting environments of karst dams, construction
parameters, and material properties-factors often overlooked in
existing studies. This oversight leads to significant discrepancies
between the performance of laboratory-tested grouted stones
and the behavior of real-world karst dam grouting curtains,
limiting the practical applicability of experimental findings.
Thus, this work simulated the erosion environment of karst
dam grouting curtains by preparing high-concentration karst
water curing solutions and controlling curing temperatures
based on accelerated erosion principles. Specimens cured for
varying durations undergo tests for compressive strength, porosity,
mass loss, and microstructural morphology to elucidate the
performance degradation mechanisms of karst dam grouting
curtains under aggressive environmental conditions. Modeling
approaches have also been applied to understand cemented
geomaterial behavior under similar erosive and structural loading
conditions (Rizvi et al., 2020a).

2 Methods

2.1 Raw materials and preparation

The experiment used pure cement grout and cement-clay
grout to create grouted stone samples, with mix proportions
corresponding to standard practices for grouting curtains in karst
areas. The cement utilized was again 42.5R Ordinary Portland
Cement, adhering to the national standard of normal Portland
cement in China. The clay component consisted of specialized
calcium-based clay from Lingshou County, Hebei Province, China.
The water-cement ratio for the pure cement slurry was 1:2, while
the mixing ratio for the cement-clay slurry was 2:1, with the
clay content making up 50% of the cement weight. The grouting
process parameters, such as pressure and duration, play a critical
role in ensuring uniform penetration and minimizing head losses
during injection, as highlighted in prior fluid dynamics studies
(Haroon et al., 2017). During the preparation process of grouting
stone bodies, a grouting pressure of 1 MPawas applied for a duration
of 6 s. The samples were cured under standard conditions of 20°C ±
1°C and ≥95% humidity. Figures 1–3 illustrate the test preparation
process, test equipment and grout stone samples.

2.2 Design of accelerated degradation test

The critical challenge in conducting laboratory accelerated
degradation tests lies in constructing an accelerated erosion
environment that effectively replicates the long-term service
conditions of grout curtains. In this work, the degradation process of
grouted specimenswas accelerated by controlling the concentrations
of aggressive ions in simulated karst groundwater and adjusting
the curing temperature. The transport mechanisms governing the
ingress of aggressive ions into grouted matrices typically include
adsorption, diffusion, pressure-driven permeation, and dispersion.
Among these, the diffusion of aggressive ions is generally considered
to be the most important migration mechanism (Yu and Sun, 2006).
When neglecting the binding capacity of aggressive ions within
grouted matrices and the influence of time-dependent structural
defects on diffusion coefficients, the theoretical model for ion
diffusion can be derived from Fick’s Second Law (Yu and Sun, 2006;
Wang, 2016), as shown in Equation 1 and Equation 2.

c = c0 + (cs − c0)(1− erf
x

2√Dt
) (1)

er fu = 2
π
∫
u

0
e−t

2
dt (2)

where c0 and cs are the initial erosive ion concentration in the
grouted stone and the erosive ion concentration on the exposed
surface, respectively. And erf is the error function.

According to the test design, it can be considered that c0 = 0,
then Equation 1 can be simplified to Equation 3:
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FIGURE 1
Flowchart of grouted stone samples preparation.

c = cs(1− erf
x

2√Dt
) (3)

Therefore, the diffusion of aggressive ions in the experiment
exhibits direct proportionality to the surface concentration
cs. When the erosive ion concentration at the exposed
surface of grouted matrices increases by a factor of 20, the
corresponding acceleration factor s1 for the test duration also
increases by 20 times.

The fundamental mechanism of aggressive ion diffusion
in grouted matrices involves random thermal motion of ions
through the pore solution within the matrix. The diffusion
coefficient of aggressive ions demonstrates a positive temperature
dependence (Lindvall, 2007). As described by the Arrhenius
equation (Zuo, 2021), the influence of ambient temperature on the
diffusion of aggressive ions within grouted matrices is quantified
by Equation 4:

Dt(T) = D0e
E
R
( 1
T0
− 1

T
) (4)

where: D0 is the diffusion coefficient of aggressive ions at
temperature T0, m2/s; DT is the diffusion coefficient of aggressive
ions at temperature T, m2/s; T1 is the reference temperature,
generally 293 K;E/R is the activation energy,which is taken as 14,242
in reference (Wang, 2019).

According to literature (Jiang et al., 2014; Pan et al., 2023), the
annual averagewater temperature of rivers inChangsha area is about
18°C (290.9 K), and constant temperature 30°C (303 K) was used in

this experiment to maintain the grouted stone test. The acceleration
coefficient s2 is calculated in Equation 5.

S2 =
DT(303)
DT(290.9)

=
D0e

14242( 1
293
− 1

303
)

D0e
14242( 1

293
− 1

291
)
= 6.95 (5)

Therefore, the total acceleration coefficient S of this degradation
test is equal to the product of external erosive ion concentration and
temperature acceleration coefficient, that is, S = 138.94.

Based on the pre-determined 20 times accelerated erosion factor,
the karst water curing solution was prepared at 20 times the
concentration of natural karst water. According to investigations,
chloride (Cl−), bicarbonate (HCO3

−), and sulfate (SO4
2−) are the

primary aggressive ions in karst water affecting grouted matrices.
Referencing groundwater monitoring data from a karst-area dam
in Hunan Province, Table 1 lists the normal and accelerated
concentrations of these three ions.

The curing solution was prepared using sodium chloride,
sodium bicarbonate, and potassium sulfate, with an analytical purity
of ≥ 99%. Based on calculations of ion concentration, each liter of
the prepared karst water curing solution contained 1.52 g of sodium
chloride, 8.91 g of sodium bicarbonate, and 21.61 g of potassium
sulfate. A self-made accelerated curing box was utilized to accelerate
the erosion and deterioration of the stone test block. A small
heater was placed at the bottom of the curing box to control the
temperature of the karst water, which was set to 30°C within a
control range of 20°C–35°C.The accelerated karst water erosion test
is shown in Figure 4.
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FIGURE 2
Grouting stone samples preparation equipment diagram.

FIGURE 3
Two grouted stone samples for the tests: (a) CGS samples; (b) CCGS samples.

2.3 Testing methods

To investigate the degradation of physical and mechanical
performance in CGS (Group A) and CCGS (Group B)
specimens under karst water erosion, we conducted analyses
of compressive strength, porosity, mass loss, and scanning
electron microscopy (SEM) on pre-prepared specimens.
The tests adhered to the technical code for testing in
China (Ministry of Transport of the People’s Republic of China,
2019; Ministry of Construction of the People’s Republic of China,
2019). A summary of the experimental design, including test
conditions, is presented in Table 2. The procedures were as follows.

(1) Specimen preparation and curing. CGS and CCGS specimens
were cast, then placed in water-filled tanks for standard

curing under controlled conditions (temperature: 20°C ± 1°C,
humidity: ≥95%) for 28 days.

(2) Testing. After 28 days of curing, initial properties, including
compressive strength, porosity, mass, and microstructural
morphology, were evaluated.

(3) Accelerated erosion exposure. Specimens were transferred
to a temperature-controlled accelerated erosion chamber
(30°C ± 0.5°C) for grouped curing periods of 30, 60, 90,
and 120 days.

(4) Post-erosion evaluation. Post-curing tests replicated
baseline measurements to quantify degradation
metrics: compressive strength loss (%), porosity
increase (%), mass loss (%), and microcrack
evolution (SEM).
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FIGURE 4
Schematic diagram of accelerated erosion conservation in karst water
environments.

3 Results

3.1 Analysis of compressive strength test
results

The compressive strength test results for grouted stones under
accelerated karst water erosion are summarized in Figure 5.
With prolonged curing time, the compressive strength of CGS
(Group A) decreased from 32.89 MPa to 20.03 MPa, while CCGS
(Group B) declined from 3.89 MPa to 2.03 MPa. Notably, Group
A exhibited significantly higher strength than Group B. This
difference stems from the charge interaction in cement-clay grout:
positively charged cement hydration particles partially exchange
charges with clay particles, inducing clay agglomeration to form
a gel-structured skeleton. However, this skeleton demonstrates
inferior mechanical performance compared to the robust particle
skeleton created by cement hydration (Feng, 2015). Furthermore,
both groups experienced progressive strength reduction over time
due to chemical erosion from karst water. The dissolution of
calcium hydroxide and degradation of hydration products (e.g.,
calcium silicate hydrate and calcium aluminate hydrate) into less
cohesive compounds gradually compromised the structural integrity
of the grouted stones, diminishing their load-bearing capacity
(Zhou et al., 2022).

Figure 6 illustrates the reduction rates of compressive strength
for Groups A and B grouted stones. After 120 days of curing
in a karst water environment, Group A exhibited a strength
reduction rate of 39.10%, while Group B showed a higher
reduction rate of 47.67%, indicating that Group A experienced
less strength degradation compared to Group B. This disparity
arises because cement particles, with their coarser size and
superior cementation properties, form a more stable granular

skeleton structure in cement grout (Xie et al.,2025). This enhanced
stability mitigates strength deterioration in cement grout stones
relative to cement-clay grout, where the weaker clay-cement
matrix is more susceptible to karst water erosion. These results
further confirm that cement-clay materials exhibit inferior
resistance to karst water erosion compared to pure cement
materials (Bai, 2001).

Additionally, Figure 7 depicts the compressive failure
morphology of grouted stone specimens cured in karst water
for varying durations. Unconfined compressive strength tests
revealed that failure occurred through a progressive crack
propagation process: cracks initiated at the base and outer
surfaces, extended upward and inward, and ultimately coalesced
to cause specimen failure. The crack orientation aligned
predominantly with the axial loading direction. Notably,
no significant shear failure was observed during the entire
unconfined compression process, demonstrating that structural
disintegration was driven primarily by tensile splitting rather than
shear mechanisms.

3.2 Analysis of porosity test results

Figure 8 shows the porosity test results of grouted stone
specimens under different accelerated karst water erosion
conditions. With the increase in curing time, the porosity of Group
A increased from 26.06% to 33.91%, while that of Group B increased
from 58.04% to 77.01%. The porosity of Group B was significantly
higher than that of Group A. This is because the cement-based
grouting material used in Group A exhibited better fluidity and
higher density compared to the clay-cement grouting material in
Group B.The porosity of bothGroupsA and B increasedwith curing
time. The primary reason is that in the karst water environment,
calcium hydroxide (Ca(OH)2) within the grouted stones dissolves
and reacts with erosive ions, reducing its concentration in the
surrounding water. This process accelerates the decomposition and
dissolution of other hydration products, resulting in continuous loss
of chemical substances and gradual enlargement of pores within the
grouted stones (Tang, 2019).

As shown in Figure 9, after 120 days of curing in the karst
water environment, the porosity increase magnitude of Group A
reached 30.12%, while that of Group B was 32.68%. The smaller
variation in Group A’s porosity aligns with its lower strength
reduction compared to Group B, and the underlying mechanisms
are similar. Additionally, it was observed that the porosity growth
rates of both groups were relatively slow during the first 90 days
of curing. However, after 90 days, the rates accelerated. This
phenomenon can be attributed to calcium hydroxide being the
primary dissolved component in the early stage. As pores enlarged
and increased, the contact area between various hydration products
and karst water increased, accelerating the dissolution and erosion
rates of calcium hydroxide and other hydration products, thereby
hastening porosity growth (He, 2019). Pore structure and thermal
behavior of subsurface materials have been extensively modeled
to assess effective thermal conductivity and degradation behavior
(Rizvi et al., 2020b).
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TABLE 1 Ion concentration of karst water curing solution.

Number Ions Normal concentration (mmol/L) 20x concentration (mmol/L)

1 Chloride (Cl−) 1.3 26

2 Bicarbonate (HCO3
−) 5.3 106

3 Sulfate (SO4
2−) 6.2 124

TABLE 2 Design of physical-mechanical tests for grouted stone under accelerated erosion by karst water.

Number Test type Test method Test conditions

1 Compressive strength Hydraulic testing machine (1) Tests were conducted after 28 days
of maintenance under standard
conditions (initial state)
(2) Based on the first condition, place
the specimens into a karst water
accelerated erosion environment for
testing at the following intervals:
30 days, 60 days, 90 days, and 120 days

2 Porosity Weighing

3 Mass loss Weighing

4 Microstructure testing Scanning electron microscope (SEM)

Note: For the mass loss test, clear water curing for 30d, 60d, 90d and 120d were added for comparison test.

FIGURE 5
Compressive strength results of grouted stones under karst water erosion: (a) CGSs (Group A); (b) CCGSs (Group B).

3.3 Analysis of the results of the grouted
stone mass test

The experimental study on grouted stone body specimens
cured in clear water and karst water environments revealed
distinct mass variation trends over different periods (as shown
in Figure 10). Prior to 60 days of curing, the mass change rates
of Groups A and B showed minimal differences between the two
environments. However, beyond 60 days, specimens in karst water
exhibited significantly greater mass variations compared to those in
clear water, with the divergence amplifying over time, indicating
accelerated deterioration effects from karst water. At 150 days,
Group A specimens demonstrated mass change rates of 3.00%

(clear water) and 4.50% (karst water), while Group B reached
4.63% and 6.44%, respectively. Notably, Group B consistently
displayed higher mass variation rates than Group A. Early-stage
chemical reactions between erosive ions in karst water and hydration
products (e.g., calcium hydroxide dissolution) initially reduced
specimen mass. However, subsequent formation of expansive
minerals like gypsum and ettringite partially filled pore structures,
temporarily offsetting mass loss through physical expansion
while retarding further dissolution. For Group A specimens, this
expansive filling initially outweighed dissolution effects, causing
a slight mass gain. Prolonged exposure ultimately weakened
cementitious bonding, inducing surface softening and edge spalling
in both groups, thereby gradually reversing the mass trends.
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FIGURE 6
Degradation trends of compressive strength in grouted stones under karst water erosion: (a) CGSs (Group A); (b) CCGSs (Group B).

FIGURE 7
Failure mode of grouted stones under compression: (a) CGS cured for 28d under standard conditions; (b) CCGS cured for 28d under standard
conditions; (c) CGS after 60 days of karst water erosion; (d) CCGS after 60 days of karst water erosion.

FIGURE 8
Porosity results of grouted stones under karst water erosion: (a) CGSs (Group A); (b) CCGSs (Group B).
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FIGURE 9
Porosity variation of grouted stones under karst water erosion: (a) CGSs (Group A); (b) CCGSs (Group B).

FIGURE 10
Mass loss rate of grouted stones under fresh and karst water erosion: (a) CGSs (Group A); (b) CCGSs (Group B).

Underground structural performance also varies with geometric
and geomechanical parameters, as seen in tunnel stability studies
(Alsabhan et al., 2021).

4 Discussion

Microstructural morphology serves as a critical indicator for
reflecting changes in the internal composition and pore structure
of grouted stones. SEM analysis was conducted on specimens cured
for varying durations under karst water erosion. As shown in
Figures 11, 12, the cement-grouted stone specimens (Group A)
exhibited a dense structure with sufficient hydration, abundant
C-S-H gels, and layered calcium hydroxide (irregular hexagonal
flakes), along with minor calcium carbonate (blocky formations).

In contrast, the CCGS (Group B) showed reduced cement content
due to clay incorporation. Their microstructure revealed cement
hydration products enveloped by clay particles, limited exposed
cementitious materials, and sparse calcium hydroxide crystals and
ettringite (needle-shaped). Notably, Group B specimens displayed
distinct pores and microcracks, resulting in higher porosity and
lower strength compared to Group A,macroscopic analysis revealed
that Group A exhibited a compact microstructure, whereas Group
B demonstrated pronounced porosity, consistent with macroscopic
test results. Lattice element methods further enable accurate
simulation of thermal transport and its relationship to geomaterial
integrity (Rizvi et al., 2018).

Figures 12, 13 illustrate that after 60 days of karst water
erosion, chemical reactions within the grouted stones generated
secondary products such as calcium carbonate, gypsum, and
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FIGURE 11
Micro-morphology of grouted stones for 28d under standard conditions (initial state): (a) CGSs (Group A); (b) CCGSs (Group B).

FIGURE 12
Micro-morphology of CGSs for 60d under karst water erosion.

FIGURE 13
Micro-morphology of CCGSs for 60d under karst water erosion.

ettringite. Compared to the initial state after 28 days of standard
curing, the 60-day eroded specimens developed pores and cracks.
This deterioration arises from erosive ions reacting with calcium
hydroxide to form gypsum, which subsequently interacts with
aluminum phases to produce expansive ettringite. The growth of
ettringite generates swelling stress at pore interfaces, fracturing the

cementitious matrix. As erosion products dissolve or detach, the
grouted stones become increasingly porous and fragile, leading to
altered physical-mechanical properties (e.g., compressive strength,
porosity) (Yu, 2017). Environmental fluctuations such as heat
and moisture changes significantly influence the microstructural
evolution of underground materials (Ahmad et al., 2025).
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FIGURE 14
Micro-morphology of CGSs for 120d under karst water erosion.

FIGURE 15
Micro-morphology of CCGSs for 120d under karst water erosion.

Figures 14, 15 demonstrate that after 120 days of karst water
erosion, the grouted stones exhibited significantly increased
crack density and width, indicating severe structural degradation.
While calcium carbonate and gypsum continued to form, no
chloride-containing compounds (e.g., calcium chloride) were
detected. This absence is attributed to the low chloride ion
concentration in the simulated karst water and the competitive
reaction between sulfate ions (prioritized due to their higher affinity
with C3A phases) and chloride ions. Consequently, chloride-related
erosion products were negligible and undetectable in the sampled
specimens (Wang et al., 2022).

5 Conclusion

Compressive strength and porosity tests were conducted on
cement and CCGS specimens under varying curing durations
to investigate the evolution of their mechanical and structural
properties. Results demonstrated that under karst water curing,
both groups exhibited progressive compressive strength reduction
and porosity increase. Within 120 days, CGS specimens showed

a strength decline from 32.89 MPa to 20.03 MPa, while CCGS
specimens experienced a more pronounced deterioration,
decreasing from 3.89 MPa to 2.03 MPa. Similarly, porosity values
for CGSs rose from 26.06% to 33.91%, whereas CCGSs displayed a
significantly higher porosity increase from 58.04% to 77.01% over
the same period, confirming that CCGS suffered greater degradation
in both strength and porosity.

Mass variation and microstructural morphology analyses were
performed on cement and CCGS specimens under different curing
durations and environments. Experimental findings revealed that
karst water induced chemical and structural alterations in both
groups through erosive effects. However, CCGSs exhibited more
severe deterioration, characterized by higher mass variation rates
and more drastic internal structural changes. The cement-clay
matrix in CCGSs proved more vulnerable to karst water erosion,
likely due to its inherently weaker cementitious bonding and higher
initial porosity, which accelerated ion penetration and reaction-
induced damage. The findings highlight the inferior durability of
cement-clay composites under karst water conditions and provide
critical insights for optimizing grouting materials in karst-prone
environments.
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