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Reverse time migration based on
local Nyquist cross-correlation
imaging condition with accurate
first-arrival traveltimes
correction

Gao LiJun*, Li ZongJie, Li HaiYing, Yang Wei and Zhang Qing

Sinopec Northwest China Petroleum Bureau, Urumqi, Xinjiang, China

The selection of imaging conditions is one of the most critical factors
determining the quality of reverse time migration (RTM) images. Among the
widely used imaging conditions, the cross-correlation imaging condition (CCIC)
consistently delivers high-resolution images. However, it is accompanied by
substantial calculational costs and I/O tasks, particularly in 3D scenarios. In
contrast, the excitation amplitude imaging condition (EAIC) offers advantages
in computational efficiency, low storage requirements, and high precision.
Nevertheless, it suffers from image distortion when dealing with multi-path
propagation or strong reflection interfaces. The local Nyquist cross-correlation
imaging condition (LNCIC) effectively combines the advantages of the two
aforementioned imaging conditions. It uses the local wavefield near the time
corresponding to the maximum amplitude at each grid point for imaging, and
introduces the Nyquist sampling theorem to establish the search time step.
This approach offers the benefit of high imaging quality while maintaining low
storage cost. In this paper, we adopt an adaptive finite difference operator to
solve the eikonal equation and calculate the accurate first-arrival traveltimes,
thereby modify LNCIC and further enhancing the imaging accuracy. The
effectiveness of the proposed method is demonstrated through numerical
examples, including the Marmousi model, noise-resistance tests, and field data
applications.

KEYWORDS

reverse time migration, adaptive finite- different method, eikonal equation, first-arrival
traveltimes, imaging conditions

1 Introduction

As oil and gas exploration continues to advance, the focus of petroleum exploration
has shifted towards complex geological formations and lithological exploration. As one
of the most advanced techniques for using seismic data to describe subsurface structures
and properties, reverse time migration (RTM) demands increasing imaging accuracy and
computational efficiency in its algorithms. Since its inception in 1983 (Baysal et al., 1983;
Loewenthal andMufti, 1983;Whitmore, 1983), RTMhas gained widespread acclaim among
scholars due to its advantages, such as the no dip angle limitations, high imaging accuracy,
and the ability to handle various events (Xie et al., 2021; Lv et al., 2022; Huang et al., 2023).
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FIGURE 1
The grid shows the traveltimes and slowness distributions.

Thepre-stack RTMmainly involves three steps: first, the forward
simulation to obtain the source wavefield; second, using the seismic
records as boundary conditions to backpropagate and obtain the
receiver wavefield; and finally, applying the imaging condition
for imaging (Li et al., 2019).

Imaging conditions are a key step in influencing the quality
of RTM images. The role of imaging condition is to select
the optimal match between the wavefield predicted from the
model space and the wavefield extrapolated from the data space
to generate the image (Zhou et al., 2018). Claerbout (1971)
proposed that images are generated by multiplying two wavefields
at each time step, known as the zero-lag cross-correlation imaging
condition (ZLCCIC). However, this approach distorts the amplitude
relationships of subsurface structures. To address this limitation,
Kaelin and Guitton (2006) introduced the source-normalized
cross-correlation imaging condition (SNCCIC), which normalizes
the image using source illumination intensity. This method
enhances imaging resolution while preserving reflectors, without
introducing additional calculational costs. Although the SNCCIC
can consistently deliver high-resolution images, its implementation
requires storing the source wavefield at each time step to
disk and subsequently reading it back during application. This
approach imposes significant storage demands and severely impacts
computational efficiency, particularly in 3D scenarios. Sun and
Fu, (2013) summarized two strategies to reduce RTM storage
requirements: the first one, the Nyquist method, which performs
cross-correlation between source and receiver wavefields at Nyquist
time intervals, and the second one, data compression techniques
based on lossless compression algorithms. While these approaches
can partially alleviate storage burdens, they still fall short of meeting
practical application demands.

The wavefield reconstruction represents another class of
approaches to address hardware storage limitations, primarily
comprising two strategies. The first is the checkpoint method
(Griewank, 1992), which selects some time steps as checkpoints.
During wavefield propagation simulation, wavefield snapshots
are stored in the computer’s memory or on disk at these

FIGURE 2
The relative errors between numerical solutions and analytical
solutions for different eikonal equation solvers are shown for (A)
Godunov upwind difference method, (B) the hybrid method, and
(C) AFDM.

checkpoints. These snapshots serve as initial conditions for
reconstructing the wavefield through wave propagation between
checkpoints. Griewank and Walther (2000) demonstrated that
when the checkpoint intervals follow a binomial distribution,
the computational efficiency is significantly improved. Symes
(2007) introduced a compute-for-storage strategy to optimize the
checkpoint method, which requires storing only a small number of
cached points to effectively reconstruct the wavefield. However, this
approach necessitates repeated recursive wavefield reconstruction,
with the number of recursions increasing exponentially as the
number of time sampling points grows, resulting in a high
recomputation rate. Chen and Wang (2018) proposed a checkpoint
technique for wavefield reconstruction based on interpolation
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TABLE 1 Comparison of elapsed time and maximum relative error for three different eikonal wave equation solvers.

Methods Godunov upwind difference method Hybrid method AFDM

Elapsed time (s) 6.1e-3 5.6e-3 8.09e-3

Maximum relative error (%) 0.21 4.4e-3 1.5e-4

FIGURE 3
The velocity of Marmousi model.

FIGURE 4
(A) The excitation time used in LNCIC and (B) the single-shot migration image obtained using this excitation time.

principles. Under the condition of satisfying the Nyquist sampling
theorem, they performed regular sampling of the wavefield between
adjacent checkpoints, using the sampled wavefields as interpolation
nodes. Polynomial interpolation algorithms were then applied
to reconstruct the wavefield at any given time, optimizing the
computational efficiency issues caused by the repeated iteration
of the checkpoint technique. Another wavefield reconstruction
approach is the boundary value method (Symes et al., 2008; Feng

andWang, 2012), which stores boundary wavefields during forward
modeling and uses these stored values to propagate the source
wavefield backward from the final time step. While this method
reduces storage requirements compared to full wavefield storage, its
memory demand still increaseswith the order of the finite-difference
operator. The introduction of random boundary conditions (Clapp,
2009; Liu et al., 2010; Shi et al., 2015) alleviates storage issues
but introduces random noise, particularly in shallow regions near
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FIGURE 5
(A) The improved excitation time using AFDM and (B) the single-shot migration image obtained using this excitation time.

receivers. Furthermore, due to numerical instabilities associated
with reverse-time reconstruction, this method cannot effectively
handle attenuating media.

In practical applications, storing the wavefield on a hard drive
or in memory is the simplest and most direct way to address the
time consumption issue. Therefore, Nguyen and McMechan (2013)
proposed the Excitation Amplitude Imaging Condition (EAIC).
EAIC requires storing only the maximum amplitude of the source
wavefield at each grid point as the excitation amplitude, along
with the corresponding time as the excitation time. The imaging
process involves dividing the receiver wavefield amplitude at the
excitation time by the stored excitation amplitude. While EAIC
offers inherent advantages in computational efficiency andwavefield
storage requirements, it comes with certain trade-offs. Specifically,
in scenarios involving multi-path wave propagation or complex
media, the maximum amplitude may become distorted, leading
to artifacts in the migrated images. By replacing excitation time
with first-arrival traveltimes calculation in the improved EAIC,
both imaging resolution enhancement and artifact suppression can
be achieved (Gu et al., 2015; Wang et al., 2025). The improved
EAIC, while effective, remains limited by its utilization of only
a subset of seismic data, resulting in inadequate suppression of
background noise. To achieve both reduced storage requirements
and high-quality imaging, Zhang et al. (2022) proposed a local
cross-correlation imaging condition (LCIC). This approach utilizes
wavefields near the time of maximum amplitude at each grid
point during forward modeling for imaging. Furthermore, they
incorporated Nyquist sampling theory to develop a local Nyquist
cross-correlation imaging condition (LNCIC), thereby further
improving computational efficiency. However, the excitation time
determinationmethod in LNCIC shares the same limitation as EAIC

- both rely on the time corresponding to the maximum amplitude
of the source wavefield. This approach leads to highly disordered
excitation time, which constitutes one of the primary reasons
for EAIC’s poor imaging quality. To address this limitation, this
study introduces a novel approach that employs an adaptive finite-
difference method (AFDM) to accurately solve the eikonal equation
for first-arrival traveltimes calculation (Qiao et al., 2021). Based
on these traveltimes, we propose an enhanced LNCIC (ELNCIC)
that utilizes the first-arrival traveltimes as the excitation time.
This precision-based approach significantly improves the imaging
accuracy of LNCIC.

The remainder of this paper is organized as follows: the section
Ⅱ begins with a theoretical review of wavefield propagation in RTM
and AFDM, followed by a detailed introduction to ELNCIC. In
sectionⅢ, we validate the feasibility of ELNCICusing theMarmousi
model, conduct noise-resistance tests, and demonstrate its practical
applicability through field data examples. The section Ⅳ discusses
the limitations of ELNCIC and an outlook on future developments,
while section Ⅴ summarizes the paper.

2 Theory

2.1 The wavefield extrapolation in RTM

In this study, we only discuss acoustic wave propagation
in isotropic media. The wave propagation is simulated using
the second-order constant-density velocity-stress acoustic wave
equation:

1
v2

∂2P(x,z)
∂t2
=
∂2P(x,z)

∂x2
+
∂2P(x,z)

∂z2
(1)
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FIGURE 6
The stacked RTM images calculated by four different imaging condition, (a) EAIC, (b) SEAIC, (c) ELNCIC and (d) SNCCIC.
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FIGURE 7
The enlarged views of the red rectangular regions corresponding to panels (A–D) in Figure 6.
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FIGURE 8
The waveform plot of traces located at (a) x = 312.5 m and (b) x = 1562.5 m from Figure 6. The green curve represents EAIC, the blue curve represents
SEAIC, and the red curve represents ELNCIC and the black curve represents SNCCIC.

TABLE 2 Comparison of storage cost and elapsed time for the four
imaging conditions.

Imaging
conditions

Storage costs
(Mb)

Elapsed time (s)

EAIC 1.11 101.55

SEAIC 59.90 115.12

ELNCIC 148.56 135.29

SNCCIC 6645.76 615.10

where v is the velocity, x and z are the horizontal and vertical
direction in 2D space, P (x, z) represents pressure, t is time. With
the inclusion of the source term, the wavefield extrapolation in the
forward direction can be expressed by Equation 2:

1
v2

∂2Ps(x,z)
∂t2
=
∂2Ps(x,z)

∂x2
+
∂2Ps(x,z)

∂z2
+ δ(x− xs,z− zs) f(t) (2)

where Ps(x, z) is source wavefield, δ represents Dirac function, xs
and zs denote the source coordinates in the x- and z-directions,
respectively, f (t) is source function. By incorporating seismic

records into Equation 1, we obtain the expression for wavefield
propagation in the reverse-time direction, as shown in Equation 3:

{{
{{
{

1
v2

∂2Pr(x,z)
∂t2
=
∂2Pr(x,z)

∂x2
+
∂2Pr(x,z)

∂z2

Pr(x = xr,z = zr; t) = u(xr,zr; t)
(3)

where pᵣ represents the receiver wavefield, xᵣ and zᵣ denote the
receiver coordinates in the x- and z-directions, respectively, and u
indicates the seismic records.

We employ the finite-difference method to solve the wave
equation, utilizing second-order temporal accuracy and sixth-
order spatial accuracy, with convolutional perfectly matched
layers (CPML) (Komatitsch and Martin, 2007) as the absorbing
boundary condition.

2.2 Review of adaptive finite-difference
method

Under the high-frequency approximation, the seismic wave
equation can be decomposed into an eikonal equation for
traveltimes calculation and a transport equation for amplitude
determination (Zhu and Chun, 1994; Le Bouteiller et al., 2018).
The traveltimes obtained by solving the eikonal equation plays a
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FIGURE 9
Single shot seismic records with Gaussian noise, the left displays the
original seismic record, while the right shows the seismic record
with SNR = 5 dB.

crucial role in seismic imaging (Vidale, 1990; Van Trier and Symes,
1991; Sethian and Popovici, 1999). The eikonal equation, a first-
order nonlinear partial differential equation, can be derived from
the Helmholtz equation in the high-frequency regime:

{
{
{

|∇T(x)| = S(x), x ∈Ω

T(x) = 0, x ∈ ∂Ω
(4)

where ∇ is the Hamilton operator, T(x) is traveltimes, S(x) is
the slowness, Ω ∈Rn. For simplicity, we discretize the finite
computational domain into grid points as illustrated, where the
grid space in the x- and z-directions are denoted by dx and dz,
respectively. To facilitate understanding, we have presented the
distribution of traveltimes and slowness in the grid in Figure 1. Here,
Tᵢ,ⱼ represents the numerical solution of first-arrival traveltimes
at the grid vertices, while Sᵢ,ⱼ denotes the slowness at the grid
cell centers. We adopt the AFDM to solve the eikonal equation.
AFDM comprehensively accounts for all wave propagation modes
by selecting the most accurate local operator—among plane-wave,
spherical-wave, and refracted-wave operators—at each grid point to
compute accurate first-arrival traveltimes.

2.2.1 Plane wave operator
In the finite-difference scheme, the partial derivatives of

Equation 4with respect to the x- and z-directions can be represented
using the following central difference formulas:

dT
dx
=
Ti,j −Ti−1,j +Ti,j−1 −Ti−1,j−1

2dx
dT
dz
=
Ti,j −Ti,j−1 +Ti−1,j −Ti−1,j−1

2dz

(5)

Th = Ti−1,j −Ti,j−1 +Ti−1,j−1

Tν = Ti,j−1 −Ti−1,j +Ti−1,j−1

(6)

where Th and Tv are variables introduced to simplify
subsequent complex expressions. By incorporating Equations 5,
6 into Equation 4, followed by straightforward mathematical
derivation, the first-arrival traveltimes for the plane wave can be
determined as follows:

Ti,j =
−b±√b2 − 4ac

2a
,

a = 1
4
( 1
dx2
+ 1
dz2
),

b = −1
2
(
Th

dx2
+

Tν

dz2
),

c = 1
4
(

T2
h

dx2
+

T2
v

dz2
)− S2i−1,j−1.

(7)

2.2.2 Spherical wave operator
To overcome the singularity in simulating first-arrival

traveltimes near the source, the solution for T(x) can be expressed
as the product of a known solution and a decomposition
factor. The traveltimes and slowness model are decomposed
according to Equation 8:

T(x) = T0(x)τ(x)

S(x) = S0(x)α(x)
(8)

If both T0(x) and S0(x) are known solutions, Equation 4 can be
transformed to numerical evaluation of the factor τ(x), as given by
Equation 9:

T2
0|∇τ|

2 + 2T0τ∇T0 ·∇τ+ (τ2 − α2)S20 = 0 (9)

Equation 10 defines the boundary conditions:

τ(x) =
{
{
{

T(x)/T0(x), T0(x) ≠ 0

α(x), T0(x) = 0
(10)

we can calculate a numerical solution for the factor τ(x), τh and τv
can be obtained by replacing T with τ in Equation 6:

τi,j =
−b±√b2 − 4ac

2a
,

a =
T2
0

4
( 1
d2x
+ 1
d2z
)+T0(

T0,x

dx
+
T0,z

dz
)+ S20,

b = −
T2
0

2
(
τh
d2x
+
τν
d2z
)−T0(

τhT0,x

dx
+
τνT0,z

dz
),

c =
T2
0

4
(
τ2h
d2x
+
τ2v
d2z
)− S2i−1,j−1.

(11)

2.2.3 Refracted wave operator
The refracted wave operator has been developed to accurately

simulate the propagation of refracted or direct waves:

Ti,j =min(Trh,Trν),

Trh = Ti−1,j + dx min(Si−1,j−1,Si−1,j),

Trv = Ti,j−1 + dz min(Si−1,j−1,Si,j−1).

(12)
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FIGURE 10
The stacked RTM images calculated by four different imaging condition, (a) EAIC, (b) SEAIC, (c) ELNCIC and (d) SNCCIC.

The AFDM calculates first-arrival traveltimes at each grid
point using the plane wave operator from Equation 7, the
spherical wave operator from Equation 11, and the refracted
wave operator from Equation 12. It selects the minimum value

among these three as the candidate traveltimes Tcan. If Tcan is
smaller than the previous one, the method updates the traveltimes
accordingly. This process continues until the traveltimes converge
to stable values.
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FIGURE 11
The waveform plot of traces located at (a) x = 312.5 m and (b) x = 1562.5 m from Figure 10. The green curve represents EAIC, the blue curve represents
SEAIC, and the red curve represents ELNCIC and the black curve represents SNCCIC.

FIGURE 12
The velocity of field seismic data.

2.2.4 Accuracy analysis of adaptive
finite-difference method

To validate the accuracy of first-arrival traveltimes computed by
the AFDM, we compare AFDM with Godunov upwind difference

method (Zhao, 2005) and the hybrid method (Noble et al.,
2014). Since the analytical solution for traveltimes from a
source in a homogeneous model can be easily derived, we
construct a 60 × 60 grid homogeneous slowness model with a
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FIGURE 13
The first-arrival travelstimes field calculated using AFDM in the field data.

slowness of 0.0004 s/m. The relative errors between the numerical
solutions and the analytical solution for the three methods are
calculated using the Equation 13:

Re =
|Snum − Sana|

Sana
(13)

where Re is relative error, Snum and Sana represent the numerical
solution and the analytical solution, respectively.

Figure 2 presents the relative errors between the numerical
solutions obtained by the three methods and the analytical
solution. Due to source singularity, Figure 2A shows noticeable
relative errors near the source for Godunov upwind difference
method. In Figure 2B, the hybrid method exhibits smaller
relative errors near the source owing to its windowing scheme;
however, it fails to adequately handle wave propagation
outside the window, resulting in significantly increased errors
in those regions. In contrast, Figure 2C demonstrates that
AFDM achieves substantially smaller maximum relative errors
compared to the other two methods, confirming its accuracy
in computing first-arrival traveltimes. Table 1 presents a
comparative analysis of computational time and maximum
relative errors for three different eikonal equation solvers.
While AFDM requires slightly longer computation time than
the other two methods - owing to its utilization of three
different local operators for eikonal equation solutions - it
achieves significantly smaller maximum relative errors. We
contend that this marginal increase in computational overhead
is well justified by the substantial improvement in first-arrival
traveltimes accuracy.

2.2.5 The ELNCIC based on adaptive
finite-difference method

Although the first-arrival traveltimes computed using the
AFDM are sufficiently accurate, the eikonal equation calculation
inherently ignores the wavelet duration. Additionally, considering
various sources of error in practical applications, this study adopts

the following reference first-arrival traveltimes Tre is determined by
Equation 14:

Tre = TAFDM +
a
fm
, a ∈ [1,1.25] (14)

where TAFDM is first-arrival traveltimes calculated by AFDM,
fm represents dominant frequency of source wavelet, a
is an error factor introduced to account for practical
considerations (Wang et al., 2025).

In the LNCIC framework (Zhang et al., 2022), each grid point
maintains a time window of length 2L+1 to store local wavefield.
During forward and backward propagation, we preserve the source
and receiver wavefield within their respective time windows, which
are subsequently applied to imaging using Equation 15:

ILNCIC(x,z, sj) =
Tmax+L·ts
∑

i=Tmax−L·ts

ps(x,z, ti; sj) · pr(x,z, ti; sj) (15)

where ILNCIC represents the migration image of the LNCIC, sj
denotes the jth shot, Tmax refers to the excitation time, and ti is
the ith time step, ts is the search step length proposed based on the
Nyquist sampling theorem in Equation 16:

ts ≤
1

2( fmax − fmin)
(16)

where fmax and fmin represent the maximum and minimum
frequency of the seismic records, respectively. To demonstrate
that the excitation time used in LNCIC affects the quality of the
migration image, we use the Marmousi velocity model (Figure 3)
and set the source position at 2062.5 m to obtain the excitation time
and single-shot migration image for analysis. Figure 4A shows the
excitation time used in LNCIC, and Figure 4B presents the single-
shot migration image obtained by cross-correlating the wavefield
corresponding to this excitation time. It is evident in the figure that
there is noticeable distortion in the migration image. We have also
used arrows to highlight the locations of distortion in the migration
image, which directly correspond to the disturbed positions of
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FIGURE 14
The stacked RTM images of field data by four different imaging
condition, (a) EAIC, (b) SEAIC, (c) ELNCIC and (d) SNCCIC.

the excitation time. Therefore, using a more continuous and
accurate first-arrival traveltimes as the excitation timewill effectively
improve the accuracy of the migration image. At the same time, to
demonstrate the feasibility of replacing the excitation time with the
first-arrival traveltimes calculated by AFDM, we set the source at
the same location to obtain the first-arrival traveltimes calculated by
AFDM (Figure 5A) and the single-shot migration image calculated
using this time (Figure 5B). We can observe that, due to the stability
and continuity of the calculated first-arrival traveltimes, there is no
distortion in the migration image in Figure 5B.

By incorporating Tre into LNCIC, we can obtain the following
expression for the ELNCIC from Equation 17:

IELNCIC(x,z; sj) =
Tre+L·ts
∑

i=Tre−L·ts

ps(x,z, ti; sj) · pr(x,z, ti; sj) (17)

where IELNCIC represents migration image of the ELNCIC. The
stacked migration image is obtained by stacking the migration
images from each shot.

3 Numerical examples

In the numerical examples, we compare the performance of
ELNCIC with three methods: the traditional EAIC, the stable
EAIC (SEAIC) (Wang et al., 2025) and SNCCIC.These comparisons
are conducted using theMarmousimodel, noise-contaminated data,
and field data to evaluate imaging quality and robustness.

3.1 Marmousi model example

TheMarmousi model has a grid size of 663 × 234 with a spatial
sampling interval of 6.25 m (Figure 3). A total of 100 shots are evenly
distributed along the surface, with a shot spacing of 37.5 m. A Ricker
wavelet with a dominant frequency of 20 Hz is used as the source,
and the recording duration is 3 s with a temporal sampling interval
of 0.5 m. For the selection of the timewindow size, we use the period
of the source wavelet, tsource, as a measure. Through our tests, we
found that choosing a timewindow size of 3.0tsource provides high-
quality imaging while maintaining relatively small computational
time and disk storage requirements. The numerical examples in this
paper all use this window size.

In Figure 6, we present the migration results obtained using
four different imaging conditions. The images generated by EAIC
(Figure 6a) exhibit significant distortion in the red rectangular
region. This artifact arises from the inherent limitations of
EAIC, where the maximum amplitude values in these areas may
become distorted because the stored excitation amplitudes do
not correspond to first-arrival waves but rather to other wave
types, such as reflected or refracted waves. The resulting amplitude
inconsistencies introduce severe interference during multi-shot
stacking. Figure 6b demonstrates that SEAIC, which employs
precise first-arrival traveltimes as excitation times, significantly
reduces the distortion within the red rectangle. The migration
image generated by ELNCIC (Figure 6c) not only completely
resolves distortion in complex structural areas but also effectively
suppresses background noise, demonstrating comparable quality to
the SNCCIC result (Figure 6d). However, ELNCIC achieves this
while significantly reducing storage requirements and improving
computational efficiency, as it only utilizes the local source
wavefield and receiver wavefield, unlike SNCCICwhich requires full
wavefield storage.

To facilitate clearer comparison and observation, we provide an
enlarged view of the red rectangular region in Figure 7. Additionally,
we extract two waveform traces from the migration images at x =
312.5 m and x = 1562.5 m (Figure 8). These traces provide a more
intuitive comparison of the four imaging conditions. The ELNCIC
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FIGURE 15
The enlarged views of the red rectangular regions corresponding to those in Figure 14.

results show excellent agreement with SNCCIC, while black arrows
highlight the distorted regions in the EAIC and SEAIC results.

Table 2 shows the disk storage space and computation time
required for the four imaging conditions. From the data in the table,
it is evident that ELNCIC requires only 2.23% of the storage and
21.99% of the computation time compared to SNCCIC. Although
the storage requirements and computation time for ELNCIC are
slightly higher than those for EAIC and SEAIC, the resulting image
quality more than justifies the increase.

3.2 Noise resistance analysis

In practice, seismic data are often severely contaminated by
noise, and denoising during preprocessing may result in the loss of
valuable signals. To preserve the original seismic data as much as

possible, we add random Gaussian noise to the seismic records to
reduce the signal-to-noise ratio (SNR). The Equation 18 gives the
expression for SNR:

SNR = 10× lg(
Psignal
Pnoise
) (18)

where, Psignal and Pnoise are represent the signal power and
noise power, respectively. We set the SNR of the seismic
records to 5 dB. Figure 9 compares the original seismic records
and seismic records with SNR = 5 dB, revealing that some valuable
signals in the seismic records are severely contaminated.

Figure 10 demonstrates the imaging performance of the four
imaging conditions on noise-contaminated seismic data. EAIC
exhibits poor noise resistance, causing severe contamination in
the migration images, particularly in deeper layers. Although
SEAIC has been improved by utilizing the highest SNR portions
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of the seismic data for imaging, it still fails to adequately suppress
background noise. In contrast, both ELNCIC and SNCCIC
significantly outperform the former two methods. ELNCIC,
which not only effectively suppresses noise and enhances image
quality but also substantially reduces storage requirements and
improves computational efficiency compared to SNCCIC, which
uses wavefields from all time steps.

Similarly, we extracted waveform traces at x = 312.5 m and
x = 1562.5 m (Figures 11a,b), using the black curve representing
SNCCIC as the reference. Under noise contamination, both EAIC
(green curve) and SEAIC (blue curve) exhibit significantly distorted
waveforms that fail to match the reference, whereas ELNCCIC (red
curve) maintains good agreement with SNCCIC, demonstrating its
superior noise resistance capability.

3.3 Field data example

Next, we evaluate the performance of ELNCIC on field data.The
velocity profile, shown in Figure 12, spans a width of 15.61 km and
a depth of 5.5 km. The computational domain is discretized into a
1561 × 550 grid with a spatial sampling interval of 10 m. A total of
88 shots are unevenly distributed along the surface, with each shot
recorded for 6 s at a temporal sampling interval of 0.5 m.

Figure 13 demonstrates the application of AFDM in field
data. The calculated first-arrival traveltimes do not exhibit any
disturbances, indicating that this method is also effective in field
data. Figure 14 demonstrates the performance of the four imaging
conditions on field data. The regions within the red and blue
rectangles provide a clearer comparison of the differences among
the four methods. Due to their reliance on wavefields only at
excitation times, EAIC and SEAIC produce migration images with
weaker event amplitudes, particularly below 4 kmdepth, where their
performance is unsatisfactory. In contrast, ELNCIC, as theoretically
predicted, generates images with continuous and clear stratigraphic
features, achieving imaging quality comparable to SNCCIC. For a
more detailed observation, enlarged views of the red rectangular
regions in Figure 14 are presented in Figure 15.

4 Discussion

TheELNCICproposed in this study, similar to EAIC and SEAIC,
belongs to a specific category of cross-correlation-based imaging
conditions. While EAIC and SEAIC utilize wavefield information
only at excitation times for cross-correlation imaging, ELNCIC
employs locally effective wavefield information.Theoretically, richer
wavefield information used for cross-correlation leads to higher-
quality migration images, but this comes at the cost of substantial
storage requirements and high computational expenses. EAIC
and SEAIC, which utilize limited wavefield information, achieve
computational efficiency but offer virtually no noise resistance.
Therefore, ELNCIC represents an effective compromise, delivering
high-quality imaging and strong noise resistance while maintaining
reasonable computational efficiency.

When addressing multi-path issues, ELNCIC can adapt by
appropriately increasing the time window length, trading some
computational efficiency for improved performance in complex

wave propagation scenarios. While this study focuses on isotropic
media, future work will extend the application to more complex
media, including attenuative and anisotropic media.

5 Conclusion

The ELNCIC uses the first-arrival traveltimes, calculated by
AFDM, as the excitation time. A time window is set around the
excitation time, and the Nyquist sampling theorem is applied to
establish the search time step. By storing the local source and receiver
wavefields for imaging, it achieves low storage requirements while
maintaining high-quality imaging. Through numerical experiments
on the Marmousi model, noise-contaminated data, and field data,
we have demonstrated ELNCIC’s superior imaging capabilities in
complex geological settings and its robustness against noise.
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