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Classification of gas wells is an important part of optimizing development
strategies and increasing the recovery. The original classification standard of
gas wells in the Sulige gas field has weak regularity of each parameter, large
overlapping range of classification results, serious discrepancy between the
dynamic and static, and low efficiency of manual classification. Aiming at
this problem, this paper establishes a set of dynamic and static integrated
classification model of tight sandstone gas wells in Sulige based on XGBoost
algorithm. After comparison and verification, it is proved to be accurate
and reliable. The model can be substituted into the static and dynamic
characteristic parameters at the same time to complete the importance ranking
of classification features and model training, and realize the dynamic and
static integration classification of Sulige gas well. The model is applied to 553
gas wells in S block, and it is concluded that the main factors affecting the
classification of gas wells are initial daily production, effective thickness of
a gas layer, formation permeability, original formation pressure, and porosity.
The main factors affecting the classification of class I and class II wells are
initial daily production and permeability, and the main factors affecting the
classification of class III wells are initial daily production and the effective
thickness of the gas layer. This method improves the effectiveness of gas
well classification, reduces subjectivity, and the classification results are in line
with the actual situation of the field, which has guiding significance for the
classification management of gas wells and the formulation of development
countermeasures.

KEYWORDS

gas well classification model, static and dynamic integration, XGBoost algorithm, tight
sandstone gas reservoir, correlation analysis of characteristics

1 Introduction

Sulige tight sandstone gas reservoirs are characterized by low porosity, low permeability,
and strong heterogeneity, which leads to low production and large differences in production
between wells (Lu et al., 2015), so it is necessary to study the classification of tight
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sandstone gas wells in order better to guide the later production of
tight gas wells. Many scholars have concluded that the classification
methods of Sulige gas wells include: the traditional single static
reservoir parameter method and test gas non-resistance flow
method, single production dynamic classification method, and
water production status classification (Li et al., 2011; Clarkson, 2013;
Li and Huang, 2017; Sun et al., 2019; Wang et al., 2022; Zhu et al.,
2024). The reservoir parameter method is based on the effective
reservoir thickness to classify gas wells, which cannot dynamically
reflect the actual gas wells production. The non-resistance flow is
calculated by the one-point method before production, and the
stable well test is rarely carried out in tight gas production, hence,
this method reflects the seepage characteristics of the near-well
formation fracture zone in the early stage of production, and it
cannot accurately reflect the gas well production capacity. The
daily gas production method does not consider the influence of
production time on gas production capacity, and the unit pressure
drop gas production method is affected by large fluctuations
during the discontinuous production of gas wells, so it has great
limitations. In the actual production, the single dynamic and static
classification method has low manual classification efficiency, and
the classification results of dynamic and static parameters are very
different. In addition, the current mathematical processing methods
of classification include the fuzzy mathematics method, grey
correlationmethod, cumulative deviation coefficient, and so on (Jin,
2019; Zhu et al., 2019; Liu et al., 2020; Feng et al., 2021; Liang et al.,
2021), but the setting of weight coefficients in these methods has a
certain degree of human factors and is not sufficiently objective.

In terms of oil and gas well classification techniques, in
the early days, traditional statistical and empirical formulae
methods were mainly used in combination with static geologic
parameters, such as porosity, permeability and gas saturation
to carry out classification studies (Archie, 1942; Garb, 1985;
Arps, 1945) divided oil and gas wells into different production
types by analyzing the production decline curve. Ershaghi and
Omorigie (1978) evaluated the production dynamics of oil and

FIGURE 1
XGBoost algorithm flow diagram.

gas wells by examining the relationship between water content
and cumulative production. Sharma et al. (2010) performed
linear regression analysis within the identified cluster analysis
and compared it with Arps empirical correlation; the study
showed that geological and engineering parameters are correlated,
and both are important for oil and gas well classification and
recovery prediction. However, traditional statistical techniques
make it difficult to handle complex nonlinear relationships and
do not effectively combine static data with dynamic production
data. With the development of computer technology, (Li et al.,
2010) used SVM to classify the production dynamics of oil
and gas wells, and the results showed that SVM has high
classification accuracy when dealing with nonlinear data. Al-Anazi
and Gates (2010b), Al-Anazi and Gates (2010a) applied SVM to
the production capacity prediction of tight gas reservoirs and found
that it outperformed the traditional regression model. Ahmadi
and Chen (2019) used random forests to classify the production
data of oil and gas wells and successfully identified high-
yield wells and low-yield wells. Although machine learning
methods have demonstrated strong performance in oil and gas
well classification, model training requires a large amount of
high-quality data with limited ability to handle missing and
noisy data.

In recent years, with the development of big data and
deep learning techniques, the classification methods of oil
and gas wells have become more accurate and sophisticated
(Mohammadpoor and Torabi, 2020; Ibrahim et al., 2022;
Zhao et al., 2024) proposed a gas well type prediction method
based on two-dimensional convolutional neural network (2D-
CNN) to solve the problem of low prediction accuracy of tight
sandstone gas well type evaluation method. Sun et al. (2020),
Hu et al. (2023) used a convolutional neural network (CNN) to
classify seismic data and successfully identified the distribution
characteristics of oil and gas reservoirs. Song et al. (2020)
applied the Long Short-Term Memory Network (LSTM) to
classify the production dynamics of oil and gas wells, which was
able to capture the long-term dependency in time series data
effectively. XGBoost, as an efficient integrated learning algorithm
(Chen and Guestrin, 2016), excels in handling high-dimensional
data, nonlinear relationships, and missing data by integrating
multiple weak classifiers. It can efficiently capture the nonlinear
relationship and importance between features, and reduce bias
and variance. However, 2D-CNN is difficult to accurately fit
the classification boundary without sufficient data or feature
engineering support. Wang et al. (2021) combined XGBoost with
LSTM to construct a hybrid model for classifying gas wells in
tight sandstone, and the results showed that it outperformed a
single model. Liu et al. (2021) combined Random Forest with
Deep Learning to construct a multi-task learning model for shale
gas capacity prediction and classification. Zhang et al. (2023a),
Zhang et al. (2023b), Lin et al. (2025) predicted the capacity
of different classes of gas wells by constructing a segmented
production model.

Scholars have conducted extensive and in-depth research on
oil and gas well classification, promoting the transformation
of classification methods from traditional statistical analysis to
modern machine learning methods. However, the conventional
static geological model and dynamic production data analysis
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TABLE 1 Statistical table of characteristic parameter description.

Feature name Total N Mean value Standard
deviation

Variance Minimum
value

Maximum
value

h (m) 450 9.75600 5.03843 25.38577 0 33.300

φ (%) 452 4.20884 2.25925 5.10421 0 17.170

k (mD) 452 0.33234 2.34235 5.48662 0 41.200

Sg (%) 450 2.30811 7.08046 50.13298 0 76.000

Pi (MPa) 449 24.99069 4.74037 22.47114 0 30.300

QAO (104m3) 445 10.26682 8.88944 79.02208 0.228 78.880

Qi (104m3/d) 448 1.20359 0.67003 0.44893 0.020 5.732

Pc (MPa) 448 20.18667 2.34558 5.50173 11.800 25.680

FIGURE 2
Box line diagram.

are often independent of each other, which makes it difficult
to reflect the real situation of gas wells fully. Moreover, Sulige
gas wells have weak regularity to the parameters in the original
classification standard (mainly based on the effective thickness
of gas wells, test gas non-resistance flow rate, initial daily
gas production, porosity, and permeability), which leads to a
large range of overlapping classification results. The situation of
dynamic and static inconsistency is more serious. Therefore, it

is urgent to construct a classification model for tight sandstone
gas wells that can combine dynamic and static data to improve
the field development efficiency and optimize the production
strategy.

In this paper, to address the problems of inconsistency between
dynamic and static and low time efficiency of manual classification,
a set of dynamic and static integrated classification models for
tight sandstone gas wells is established based on the XGBoost
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FIGURE 3
Scatter plot of the matrix of characteristic parameters.

algorithm by combining static geological parameters (as thickness
of the gas layer, permeability) and dynamic production data (as
production rate, pressure). The model is accurate and reliable, can
effectively overcome the defects of a single classification method,
can improve the timeliness of the classification work, and can
provide powerful support for the countermeasures of gas field
development.

2 Model establishment

This chapter first introduces the principle and process of the
XGBoost algorithm. Then, it selects the input feature parameters
substituted into the model training through correlation analysis
and data standardization of the collected feature data, and
the gas well classification features are ranked of importance.
Then, the standardized data are divided into training sets
and test sets to classify the gas wells, respectively, and the
indexes of the three classification results are evaluated. Finally,
a reliable classification model of Sulige tight sandstone gas wells
is obtained.

2.1 Principle and process of XGBoost
algorithm

2.1.1 Algorithm principle
The XGBoost algorithm (Chen and Guestrin, 2016) can

effectively use the extracted features to integrate several weak
classifiers into a strong classifier throughmultiple rounds of iteration
and residual fitting, which has good generalization performance
and high computational efficiency. The XGBoost algorithm is a
gradient-boosting decision tree (GBDT) algorithm, which starts
from the second tree during training and learns the residual sum
of all previous tree conclusions. This residual sum is the amount
of cumulative error obtained through the predicted values of all
previous trees, which can make the expected results closer to the
correction of the true value. Compared with other commonly used
machine learningmethods [such as support vectormachine (Li et al.,
2010) and random forest (Ahmadi and Chen, 2019)], XGBoost has
better classification performance and is not easily affected by the
quality of training data.

The XGBoost algorithm improves the overall classification
performance by combining multiple weak classifiers through
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FIGURE 4
Heat map of characteristic parameters.

weighted summation, the expression is (Equation 1) (the formula
is derived in Supplementary Appendix):

̂yi =
K

∑
k=1

fk(xi), ( fk ∈ F) (1)

2.1.2 Modeling process
Using the XGBoost algorithm to carry out machine learning

modeling for the classification of tight gas wells, which mainly
contains four steps of data preprocessing, feature selection, model
construction and analysis, and evaluation of the training model,
the specific process is shown in Figure 1. Firstly, the field data
are collected, the data correlation analysis is carried out, and the
data set is standardized. The characteristic parameters substituted
into the model training are screened. Then, the data is divided
into a training set (80%) and a test set (20%) to classify gas
wells respectively, and the importance of gas well classification
features is ranked. Finally, the index of the three classification
results is evaluated. A reliable XGBoost classification model
is obtained.

According to the commonly used gas well classification indexes
in the Sulige gas field, eight dynamic and static characteristics of
gas layer thickness h, porosity ϕ, permeability k, gas saturation Sg,
original formation pressure Pi, non-resistance flowQAO, initial daily
productionQi , and casing pressure before productionPc are taken as
the input characteristics of the classificationmodel to form a training
data set.The classification results of gas wells are taken as the output
characteristics for training.

2.2 Data processing and analysis

This study uses the data of 450 gas wells in Sulige tight sandstone
gas reservoir. These gas wells are located in the northeastern end
of Sulige gas field, with an area of 615 km2. The geographical
location is located in Wushenqi, Inner Mongolia Autonomous
Region. The surface environment is mostly desert and grassland.
The static geological characteristic parameters, dynamic production
parameters and field classification results were collected. When
conducting sample learning, the field classification results are used
as evaluation samples for performance evaluation and verification of
the XGBoost algorithm.

Descriptive statistical analysis of the original data collected
on site to clarify the characteristics of the data set. The
characteristic parameters are input, and the mean, standard
deviation, maximum value, minimum value, are taken as the output
to obtain the descriptive statistical table (Table 1) and the box
line diagram (Figure 2).

It can be seen fromTable 1 that except for the number of samples
of h and Sg is 450, the remaining variables are between 445 and 452,
and there may be a small number of missing values.Themean value
of Pi is 24.99MPa, which is close to themaximumvalue of 30.3MPa,
indicating that most of the data are distributed in the high pressures
range. The mean value of k is 0.332 mD, but the maximum value
is 41.2 mD, indicating the existence of extremely high permeability
samples, which may be fractured reservoirs or data errors. However,
the model may regard this abnormal value as a high-permeability or
high-yield gas well, which makes the model unable to distinguish
the geological model of fracture-dominated wells from matrix-
dominated wells. The Sg variance is 50.13 (standard deviation 7.08),
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FIGURE 5
Normal distribution plot of characteristic parameters.

and the dispersion is the highest, indicating that the saturation
distribution is extremely uneven. The Pc variance is 5.50 (standard
deviation 2.35), the data is relatively concentrated and the stability

is good. The minimum values of h, φ, k, Sg, and Pi are all 0,
and check whether they are valid measurements. The data points
distributed outside the 1.5 IQR data range are outliers. From the
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TABLE 2 Model parameters.

Parameter name Parameter value

Training time 0.834s

Data segmentation 0.8

Data Shuffling No

Cross-validation Yes

Base Learning Device (BLD) Gbtree

Number of base learners 100

Learning rate 0.1

L1 regular term 0

L2 regular term 1

Sample collection sampling rate 1

Tree feature sampling rate 1

Node feature sampling rate 1

Minimum weight of samples in leaf nodes 0

Maximum depth of the tree 10

box plot of Figure 2, it can be seen that there are outliers in each
variable, of which Sg andQAO are themost. Next, it is recommended
to process the original data through data standardization methods.

2.2.1 Data correlation analysis
Before importing data, before importing the data, the Pearson

correlation coefficient is used to analyze the correlation of the data,
and the relationship between the two variables can be viewed through
the matrix scatter plot (Figure 3). On the diagonal, the histogram
of each corresponding variable shows the distribution of each input
feature. It can be seen from Figure 3 that there is no obvious linear
relationship between most variables, which increases the difficulty of
analysis. It can be seen from the histogram that each feature does not
showanormal distribution. Before the subsequentmodel training, the
data should be standardized and mapped into normal distribution to
avoid the impact of data distribution on model training.

Thedata samples of the Sulige gas field are drawn into a heatmap,
and the results are shown in Figure 4. The heat map is a statistical
chart that displays data by coloring the color blocks. It consists of
two classification domains and a numerical domain. Among them,
the classification field determines the horizontal and vertical axes,
and divides the chart into regular rectangular blocks; the range
determines the color of the rectangular block.The depth of the color
can represent the value or number of data points, with reddish colors
indicating smaller values and bluish colors indicating larger values.
As can be seen in Figure 4, there is a positive correlation between
non-resistance flow and initial flow and a weak negative correlation
between formation thickness and porosity. Since providing the same
information for the model may result in a confusing model, it is

necessary to consider whether there are features with extremely high
correlation coefficients, that is, collinear features. Figure 4 shows
that each feature provides different information, so all features are
substituted into the model for training.

2.2.2 Data standardization
In the descriptive statistical analysis of the original feature

data, it is found that there are outliers, and the data needs to be
standardized, that is, the attributes of the samples need to be scaled
to some specified range. In addition to the tree-based algorithm, the
other algorithms of the XGBoost algorithm require zero mean and
unit variance of the samples, and need to eliminate the influence of
different attributes and different orders of magnitude of the samples.
After standardization, the optimal value calculation process range
is reduced, the steps are gentle, and it is easier to converge to the
optimal solution correctly.

Data standardization methods include MinMaxScaler method
(Ambarwari et al., 2020), RobustScaler method (Ahsan et al., 2021),
and StandardScaler method (Nabi, 2016). After investigation, it is
found that the MinMaxScaler method needs to strictly limit the
range, which is greatly affected by outliers and destroys the original
distribution. The RobustScaler method is suitable for data with
a large number of outliers, but the standardized data variance is
not 1, which may affect the convergence speed of the linear part
of XGBoost. StandardScaler (based on Z-score normalization) is a
widely used normalization method, especially suitable for XGBoost
or other machine learning algorithms that are sensitive to data
distribution. The data can be converted to a standard normal
distribution with a mean of 0 and a standard deviation of 1. The
expression is Equations 2, 3:

St(X) =
X− μ
δ

(2)

X =

[[[[[[[

[

x1
x2
⋮

xn

]]]]]]]

]

(3)

The advantages and rationality of selecting StandardScaler
are as follows: First, it can be compatible with the numerical
stability requirements of XGBoost.Through the unified dimension,
all features are in the same order of magnitude, so as to avoid some
features dominating model training due to excessive values. Second,
the interpretability of outliers can be retained. After standardization,
outliers will be compressed to a certain range (such as Z-score
>3), but their statistical significance will be retained. If the original
anomaly value of k is 41.2 mD, it may become 15.3 mD (Z-
score) after standardization, but it can still be identified. Third, it
meets the implicit requirements of XGBoost for zero mean and
unit variance. Fourth, it can improve the convergence efficiency of
gradient descent.

For each sample attribute, it is operated by a column, subtracting
the average value and then dividing it by the standard deviation in
order to standardize the data. For missing values, the median and
mode are filled, and the outliers are deleted or replaced with the
mean. The above operation makes the new dataset have a variance
of 1 and an average value of 0. After standardizing the original data,
the data obeys the normal distribution, as shown in Figure 5.
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FIGURE 6
Confusion matrix heat map of training data.

FIGURE 7
Confusion matrix heat map of test data.

TABLE 3 Evaluation results of model indicators.

Parameters Acc Ree Pre F1 AUC

Training set 1 1 1 1 1

Testing set 0.933 0.933 0.945 0.936 0.995

2.3 Static-dynamic integrated gas well
classification model

2.3.1 Gas well classification model
The standardized data set is divided into 80% for training and

20% for testing, resulting in a training data set of 360 samples and

a testing data set of 90 samples in this study. The model parameters
of the training output as shown in Table 2. The training set contains
77 Class I wells, 198 Class II wells, and 85 Class III wells; the test set
includes 14 Class I wells, 52 Class II wells, and 24 Class III wells.

Using the XGBoost classifier trained on 360 datasets, we
compare predicted and actual values to generate the confusion
matrix heat map (Figure 6). The Confusion matrix is one of the
most commonly used indicators for evaluating the performance of a
multiclassification model. The confusion matrix provides a clearer
understanding of the performance of the classifier on different
categories. Each of its columns represents the predicted category,
and the total number of each column indicates the number of
data predicted to be in that category; each row represents the true
attributed category of the data, and the total numbers of data in each
row indicates the number of data instances in that category.
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TABLE 4 Value range of tuning parameters.

Parameters Tuning range Role

learning_rate [0.01, 0.05, 0.1, 0.2] Control the weight of each tree to prevent overfitting

n_estimators [50, 100, 150, 200] The number of trees affects the complexity of the model

max_depth [3, 5, 7, 9] The maximum depth of a single tree to prevent overfitting

min_child_weight [1, 3, 5] The minimum sample weight of the leaf node prevents overfitting

gamma [0, 0.1, 0.2, 0.3] The minimum loss of node splitting is reduced

subsample [0.6, 0.8, 1.0] Sample sampling ratio to prevent over-fitting

colsample_bytree [0.6, 0.8, 1.0] Feature sampling ratio, enhance diversity

TABLE 5 Comparative analysis of tuning results.

Parameter combinations Training setsF1 Testing setF1 Over-fitting degree

learning_rate = 0.1, max_depth = 7 0.99 0.91 Higher

learning_rate = 0.05, max_depth = 5 0.98 0.93 Moderate

learning_rate = 0.01, max_depth = 3 0.95 0.94 Low

TABLE 6 Evaluation results of indicators for each class of well.

Category Acc Ree Pre F1 AUC

Class Ⅰ 0.765 1 0.765 0.867 0.855

Class Ⅱ 0.904 0.922 0.979 0.949 0.989

ClassⅢ 1 1 1 1 1

The Ⅰ, Ⅱ, and Ⅲ on the axes of the confusion matrix
heat map in Figure 6 represent Class I wells, Class II wells, and
Class III wells, respectively; the numbers on the diagonal of the
matrix indicate the number of correctly categorized wells, and the
remaining numbers indicate the number of misclassified wells.

The 90 test sample data are tested by the formed XGBoost
training model, resulting in the confusion matrix heat
map shown in Figure 7. From the figure, it can be seen that there are
five Class II wells in the real data that are shown to be Class I wells
in the prediction, and one Class I well in the real data that is shown
to be a Class II well in the prediction.

In addition to confusion matrix heat maps, commonly
used classification evaluation indicators include accuracy, recall,
precision, and F1 value.

The accuracy expression is Equation 4:

Acc =
TP+TN

TP+TN+ FP+ FN
(4)

The recall rate expression is Equation 5:

Ree =
TP

TP+ FN
(5)

The accuracy rate is expressed as Equation 6:

Pre =
TP

TP+ FP
(6)

The F1 value is the harmonicmean of precision and recall, which
takes the range of [0,1]. Usually, the higher its value, the better the
performance of the algorithm and its expression is Equation 7:

F1 = 2
PreRec

Pre +Rec
(7)

A classification report is generated from the above classifier
prediction results and true values, which contain indicators such
as precision, recall, F1 value, and AUC support. Table 3 shows the
prediction evaluation indicators for the cross-validation set, the
training set, and the test set to measure the prediction effect of
XGBoost through quantitative indicators. In XGBoost classification
evaluation indicators, the greater the accuracy rate, recall rate, and
precision rate, the better in which the precision rate and recall
rate affect each other. Suppose the precision rate is high and the
recall rate is low, or the recall rate is low and the precision rate is
high. It is necessary to take both into account, which the F1 index
can be evaluated; the closer the AUC value is to 1, the better the
classification effect is.

When constructing the XGBoost classification model, the
selection of hyperparameters has a significant impact on the
performance of the model. The optimal solution is found by
adjusting the parameters through grid search and cross-validation
to ensure a reliable and stablemodel.The range of tuning parameters
is shown in Table 4.

In the tuning process, the initial coarse tuning, fixed learning_
rate = 0.1, adjusted n_estimators and max_depth, and observed the
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TABLE 7 Characteristic boundary values for various classes of gas wells.

Category Qi (10
4 m3/d) h (m) k (mD) Pi (MPa) Φ (%) Sg (%)

Class Ⅰ >2.18 >6 >0.5 >27.0 >10.09 >48.2

Class Ⅱ 0.79-2.18 3.8-6 <0.5 20.35-27.0 <10.09 <48.2

ClassⅢ <0.79 <3.8 <0.5 <20.35 <10.09 <48.2

TABLE 8 Sorting table of gas well classification characteristics.

Feature name Characteristic importance

h (m) 21.2%

Φ (%) 3.5%

k (mD) 15.8%

Sg (%) 1.04%

Pi (MPa) 8.5%

QAO (104m3) 0.7%

Qi (10
4 m3/d) 49.21%

Pc (MPa) 0.05%

performance of the model in the validation set. Then fine tuning,
based on the coarse tuning results, adjust the parameters such
as min_child_weight and gamma to optimize the F1 value. Re-
regularization optimization, adjust subsample and colsample_bytree
to prevent overfitting. Finally, the learning_rate is reduced and n_
estimators are added to further improve the generalization ability.
The comparative analysis of the tuning results is shown in Table 5.

According to the comparison of the optimization results,
the final selection parameter combination is: learning_rate:0.05,
n_estimators:150, max_depth:5, min_child_weight:3, gamma:0.1,
subsample:0.8, colsample_bytree:0.8. Reducing learning_rate and
increasing n_estimators make the model more stable, and the test
set F1 is increased to 0.936. Restricting max_depth and min_child_
weight effectively prevents overfitting, that is, the training set F1 =
1, the test set F1 = 0.933. AUC = 0.995 indicates that the model
classification boundary is clear and suitable for gas well classification
tasks. This tuning process ensures the high accuracy and reliability
of the XGBoost model in gas well classification.

Through analyzing the confusion matrix heat map, 84 of the 90
samples in the test set are correctly classified, and six are incorrectly
classified. The final classification results of the test set are obtained
as shown in Table 6. It can be seen that class III wells can be
completely categorized, and the F1 values of class I and II wells are
all above 0.8, which is a better categorization effect.

The XGBoost classification model is utilized to classify the
characteristics of the sample wells in the Sulige gas field, such as
initial daily production, the effective thickness of the gas layer,
formation permeability, original formation pressure, and porosity.

The boundary values of the characteristics of various classes of gas
wells are shown in Table 7. So far, the dynamic and static integrated
classification model of Sulige tight sandstone gas wells has been
constructed.

2.3.2 Feature importance ranking
Before training the model, the XGBoost algorithm’s ‘feature

importance’ attribute was used to rank the classification features
of the selected eight categories of gas wells, and the results
are shown in Table 8: the initial daily production has the highest
importance on the gas wells classification, followed by effective
thickness of the gas layer. Qi is affected by reservoir energy,
permeability and fluid mobility, and can directly capture the
recoverability of the reservoir. The Qi of high-yield wells and low-
yield wells is significantly different, and the model is easy to classify
by this feature. According to Darcy’s law, the production of gas wells
is proportional to h, and large thickness means higher production
and longer stable production period. The importance of casing
pressure before production is the lowest, and the impact on gas wells
is the smallest. For example, the Pc of constant pressure production
wells is limited to the classification contribution.

3 Model validation

The data of 30 wells in the S block of the Sulige gas field,
which are well classified by experts’ experience, are taken. Eight
dynamic and static characteristics of gas layer thickness, porosity,
permeability, gas saturation, original formation pressure, non-
resistance flow rate, initial daily production, and casing pressure
before production are integrated. The characterization data and
classification results are shown in Table 9, among which there are
9 Class I wells, 13 Class II wells, and 8 Class III wells. The data from
these 30 gas wells are now substituted into the model established
in this paper and the 2D-CNN gas well classification prediction
model (Zhao et al., 2024) to classify the gas wells respectively.
The classification results of each model and empirical classification
results are shown in Table 10 and Figure 8.

The 30 wells classified better by the expert experience are
classified by the model of this paper, which results in 8, 14, and
8 wells of class Ⅰ, Ⅱ, and Ⅲ, respectively, accounting for 26.67%,
46.67%, and 26.67%, respectively.The difference between the model
classification results and the Ⅰ, Ⅱ, Ⅲ class wells classified by
experts’ experience is 1, 1, 0 wells respectively, and the accuracy
of the gas well classification model established in this paper
reaches 93.33%. Through the classification of 2D-CNN model, it
is concluded that there are 11, 12 and 7 wells in class I, II and III
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TABLE 9 Some gas well data of the S block in the Sulige gas field.

Well name h(m) Φ (%) k (mD) Sg (%) Pi (MPa) QAO (104m3) Qi (10
4 m3/d) Pc (MPa) Production

class

S-1-10 3.00 8.75 1.18 9.80 26.27 4.046 0.760 20.00 III

S-12-15 3.00 0.78 0.05 0.00 26.80 2.545 0.632 22.70 III

S-2 8.20 7.41 0.50 7.86 27.90 18.584 2.300 22.00 I

S-3-17 8.60 5.81 0.20 6.28 28.40 31.340 2.362 23.50 I

S-31-9 14.60 5.05 0.15 0.00 30.30 17.340 2.945 22.39 I

S-3-19 4.20 3.30 0.02 10.50 26.70 8.865 1.160 20.20 II

S-32-9 10.20 8.65 0.25 4.27 28.50 41.750 4.604 21.32 I

S-3-31 3.40 5.53 0.08 0.00 25.20 4.559 0.462 12.40 III

S-33-19 5.20 8.15 0.08 2.09 26.70 2.821 1.015 21.49 II

S-33-9 10.20 7.68 0.25 0.00 28.30 25.430 2.234 21.54 I

S-34-4 12.80 6.72 0.23 0.11 29.00 20.100 2.365 21.80 I

S-3-6 3.20 2.13 0.09 0.00 22.69 3.262 0.640 16.87 III

S-36-19 2.60 3.73 0.11 0.00 26.81 4.363 0.780 21.43 III

S-36-25 5.50 2.81 0.02 0.00 26.43 11.645 1.350 21.13 II

S-37-25 4.50 2.24 0.09 0.00 22.86 4.876 0.850 17.01 II

S-37-27 4.00 2.79 0.10 0.00 24.98 6.707 1.040 19.02 II

S-37-8 14.90 5.97 0.13 29.20 28.00 54.489 4.100 22.00 I

S-38-24 5.50 6.30 0.37 0.00 26.80 4.757 0.927 22.61 II

S-39-11 4.30 4.98 0.07 0.00 23.41 7.710 0.850 18.23 II

S-39-19 3.10 0.61 0.06 0.00 22.23 1.011 0.404 21.11 III

S-40-11 6.00 3.99 0.06 0.00 25.84 4.140 0.900 19.50 II

S-40-13 5.50 1.51 0.01 0.00 25.99 3.930 1.000 20.00 II

S-40-23 5.60 3.31 0.08 0.00 25.62 6.269 1.100 20.15 II

S-4-12 2.60 7.91 0.76 10.60 28.31 1.308 0.354 20.00 III

S-41-8 4.80 8.55 0.38 0.00 23.29 8.825 1.066 20.28 II

S-42-1 21.20 4.83 0.10 11.31 28.72 20.345 2.315 22.00 I

S-42-6 4.40 5.42 0.15 0.00 25.80 8.701 1.184 23.00 II

S-4-27 2.60 4.56 0.10 0.00 28.60 2.074 0.602 16.00 III

S-4-41 5.10 1.30 0.03 0.00 25.75 13.400 1.300 21.13 II

S-8-9 7.10 7.80 0.28 2.50 29.06 20.940 2.948 22.00 I
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TABLE 10 Comparison table of model classification results and empirical classification results.

Category Empirical classification This paper model classification 2D-CNN model classification

Numbers/wells Wells
proportion/%

Numbers/wells Wells
proportion/%

Numbers/wells Wells
proportion/%

Class Ⅰ 9 30 8 26.67 11 36.67

Classification
difference

— — 1 3.33 2 6.67

Class Ⅱ 13 43.33 14 46.67 12 40.00

Classification
difference

— — 1 3.33 1 3.33

ClassⅢ 8 26.67 8 26.67 7 23.33

Classification
difference

— — 0 3.33 1 3.33

Total 30 — 30 — 30 —

Total difference — — 2 6.67 4 13.33

FIGURE 8
Comparison of classification results.

respectively, accounting for 36.67%, 40% and 23.33% respectively.
The classification results of the model are different from those of
class I, II and III wells classified by expert experience by 2, 1 and 1
respectively. The accuracy of 2D-CNN gas well classification model
reaches 86.67%. In contrast, the accuracy of the model in this
paper is higher.

The classification of I, II and III types of gas wells depend on
complex nonlinear relationships. XGBoost algorithm can efficiently
capture the nonlinear relationship and importance between features,
and reduce deviation and variance. However, 2D-CNN is difficult to
accurately fit the classification boundary without sufficient data or
feature engineering support, such as misjudging 2 Class I wells and
1 Class II and Class III wells. Compared with the high-dimensional

calculation of 2D-CNN, XGBoost is more efficient in the training
and reasoning stages and is more suitable for field applications.

4 Discussion and analysis of results

4.1 Discussion of model classification
method

Based on the gas well dynamic and static integration
classification model constructed above, 553 gas wells in block S
of the Sulige gas field are now classified according to the model
classification rules, and the results are shown in Table 11. The

Frontiers in Earth Science 12 frontiersin.org

https://doi.org/10.3389/feart.2025.1605793
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhang et al. 10.3389/feart.2025.1605793

TABLE 11 S block gas well classification results.

Category Well
numbers/mouth

Proportion of
wells/%

Class Ⅰ 134 24.23

Class Ⅱ 263 47.56

ClassⅢ 156 28.21

Total 553

classification indexes of different class of gas wells are obtained,
and are shown in Table 12.

According to the order of feature importance, the main factors
are initial daily production, the effective thickness of a gas layer,
formation permeability, original formation pressure, and porosity.
Class I wells have high original gas content, good seepage conditions,
and large effective gas layer thickness. The reservoir physical
properties of class II wells are slightly worse, and the original
gas content is lower; the characteristic parameters affecting the
classification of class I and class II wells are initial daily production
and permeability. The reservoir physical property of class III well is
poor, and the effective reservoir thickness is the smallest. Compared
with class I and class II wells, themain factors affecting class III wells
are initial daily production and the effective thickness of a gas layer.

In the practice of S block, the model has a high recognition
accuracy (F1-score >0.85) forClass I andClass IIwells,mainly due to
the ability to capture nonlinear relationships; the feature importance
ranking (initial daily Qi > h > k) is consistent with the geological
understanding, which verifies the physical rationality. However, the
recall rate ofClass III wells is low (about 0.72), because of its dynamic
data noise, such as intermittent production, resulting in production
fluctuations.Themodel classificationmethod successfully integrates
geological static and production dynamic parameters, and solves
the problem of dynamic and static inconsistency in traditional
classification. The classification boundary values in Table 10 can be
directly used for on-site production allocation decision. However,
there are also some limitations. The model is not embedded in
the seepage equation constraint, which may lead to anti-physical
interpretation. In the later stage, it can be considered in the direction
of ‘XGBoost + physical constraint’ hybrid modeling.

4.2 Discussion on the characteristics of
various gas wells

The production pressure change curve (Figure 9) is drawn by
drawing the production date of the gas well in the S block. From the
production pressure change curve, it can be seen that the average
production in the first 3 years is 0.66 × 104 m3/d, and the average
casing pressure at the end of the 3 years is 8.42 MPa. In the early
stage, the pressure drop rate was 0.0286 MPa/d, and the production
was gradually stable in the later stage, and the pressure drop rate was
0.0020 MPa/d. At present, the average cumulative gas production of
a single well is 1,229 × 104 m3.There is no obvious stable production
period for the wells, and it decreases rapidly at the initial stage

and shows a decreasing trend year by year with the extension
of the production time. The production characteristics of various
classified gas wells and typical well characteristics are discussed
and analyzed, and corresponding development countermeasures are
given as follows:

4.2.1 Class I well production characteristics and
development countermeasures

There are 134 Class I wells in Block S, accounting for
24.23% of the total number of wells. The production pressure
change curve (Figure 10) is drawn by the production date of class I.
It can be seen that the average production of the first 3 years is 1.11
× 104 m3/d, and the average casing pressure at the end of the 3 years
is 7.35 MPa. The pressure drop rate is 0.0398 MPa/d in the early
stage, and the pressure drop rate is 0.0025 MPa/d in the later stage.
At present, the average cumulative gas production of a single well is
2,346 × 104 m3. This kind of gas well can be produced continuously
and has a certain stable production capacity. Still, it is necessary to
control the pressure drop rate to delay the stable production period.

Typical Class Ⅰ well (S12-6-9 well): this well box eight single
pressing single testing, the non-resistance flow rate of 20.94
× 104 m3/d, initial daily production of 2.95 × 104 m3/d, the
initial casing pressure of 20.99 Mpa, the current daily output of
0.31 × 104 m3/d, the current casing pressure of 3.34 Mpa, the
cumulative gas production of 7,903 × 104 m3. This well was put
into production on 9/27/2007; the continuous production time
is a long 7-year pressure drop rate of 0.0035 MPa/d; later, into
the naturally decreasing intermittent production, the production
effect is good (Figure 11).

Class Ⅰ wells have a large thickness of gas layer, with a non-
resistance flow rate of 20.94 × 104 m3/d, which is much higher than
the average value, reflecting the high permeability characteristics
of the reservoir, and high reservoir physical properties. Although
Class I wells have good reservoir conditions, with the extension of
production time, fracture heterogeneitymay lead to insufficient local
energy supply, and permeability decreases with production (such as
the permeability of S12-6-9 well decreases by 35% after 7 years). If
the initial production is high, it is easy to cause pressure drop rate
differentiation (0.0025∼0.04 MPa/d), which affects the prediction
of stable production period. If multi-layer commingled production
technology is used in production, it will lead to low permeability
layer inhibiting the productivity of high permeability layer.

Development countermeasures should be optimized in stages
to address geological, dynamic and engineering uncertainties. Early
high production stage: optimized production allocation, adjusted
to 0.8∼1.5 × 104 m3/d; adjust the pressure data in real time, slow
down the pressure drop rate and prolong the stable production
period; for wells with large differences in fracture development,
gradient pressurization is adopted, and the initial production is
limited by 50%, and the production is gradually increased after
3 months. Medium-term stable production stage: using layered
mining technology to reduce interlayer interference; for wells with
a pressure drop rate greater than 0.04 MPa/d, nitrogen is injected to
delay energy depletion. Late decline stage: based on the Arps decline
model and economic factors, the intermittent production system is
formulated.
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TABLE 12 S block gas well classification results.

Category Qi (10
4 m3/d) h (m) k (mD) Pi (MPa) Φ (%) Sg (%)

Class Ⅰ >1.8 >8 >0.5 >28 >10 >60

Class Ⅱ 0.8-1.8 5-8 >0.5 18-28 <10 <60

ClassⅢ <0.8 <5 <0.5 <18 <10 <60

FIGURE 9
Production pressure change curve of vertical well in S block.

4.2.2 Class Ⅱ well production characteristics and
development countermeasures

There are 263 Class II wells, accounting for 47.56% of the total
number of wells; the average production in the first 3 years is 0.61 ×
104 m3/d, and the set pressure at the end of 3 years is 8.74 MPa. The
pressure drop rate in the early stage is faster 0.0283 MPa/d, and the
production in the later stage is gradually smooth, and the pressure
drop rate is 0.0020 MPa/d. At present, the average cumulative gas
production in a single well is at 1,042 × 104 m3. This kind of well
can basically be produced continuously, and the stable production
capacity is general (Figure 12).

Typical Class Ⅱ well (well S10-5-3): this well box eight upper
box eight lower hill two three-layer split-pressing and combined
testing, non-resistance flow rate of 7.6716 × 104 m3/d, initial
daily production of 1.17 × 104 m3/d, the initial casing pressure
of 19.47 Mpa, the current daily output of 0.15 × 104 m3/d, the
current casing pressure of 5.40 Mpa, the cumulative production of
2,090 × 104 m3. This well was put into production on 10/8/2014,
with an initial continuous production pressure drop rate of
0.030 MPa/d and intermittent output after 2 years, with zigzag

fluctuation of the casing pressure and better production effect
(Figure 13).

Class II wells have small reservoir thickness, poorer physical
properties than Class I wells, and lower production. There are
geological uncertainties in the development, and local abrupt
changes in reservoir thickness can lead to insufficient energy
supply in some wells, as well as uneven fracture development,
affecting the effect of fracturing and reforming. The fluctuation
of pressure drop rate is large (0.005∼0.015 MPa/d), and it is
difficult to stabilize production with conventional production
allocation. Liquid-carrying capacity is poor, and the risk of wellbore
fluid accumulation increases with the decrease of production.
There is a risk of gas flaring in gas injection and development
projects.

In view of the geological, dynamic and engineering uncertainties
of such gas wells, in the early production stage: adjust the nozzle
size to modulate the pressure drop rate of ≤0.01 MPa/d; for
reservoirs <5 m in thickness, the initial production rate is reduced
by 20%. In the middle stable production stage: by means of foam
drainage, for wells with oil casing differential pressure > 2MPa,
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FIGURE 10
Production pressure change curve of class I well in S block.

FIGURE 11
Production curve of Well S12-6-9.

inject foaming agent (concentration 0.5%∼1%) to improve fluid-
carrying efficiency; restore the pressure by injecting nitrogen;
and for the combined wells, use layered modulation to reduce
the interlayer interference. Late decreasing stage: screening
wells with cumulative gas production >1,500 × 104 m3 and
permeability decline >30% (such as S10-5-3), repeat fracturing
using low-injury fracturing fluids to explore the remaining
potential.

4.2.3 ClassⅢ well production characteristics and
development countermeasures

There are 156 Class III wells, accounting for 28.21% of the total
number of wells; the average production in the first 3 years is 0.30
× 104 m3/d, and the casing pressure at the end of the 3 years is
8.90 MPa. The rate of pressure drop in the early stage is faster at
0.0202 MPa/d, and then the production in the later stage gradually
stabilizes, with the rate of pressure drop being 0.0014 MPa/d. The

Frontiers in Earth Science 15 frontiersin.org

https://doi.org/10.3389/feart.2025.1605793
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhang et al. 10.3389/feart.2025.1605793

FIGURE 12
Production pressure change curve of class II well in S block.

FIGURE 13
Production curve of Well S10-5-3.

casing pressure is increased in the last stage due to the influence of
liquid discharge. At present, the average cumulative gas production
of a single well is 584 × 104 m3, and this kind of well has low
production, fast pressure dropping, and a short period of stabilized
production (Figure 14).

Typical Class III well (well S6-40-12): this well box eight uphill
one combined testing, non-resistance flow rate 1.4 × 104 m3/d, initial
daily production 0.59 × 104 m3/d, initial casing pressure 13.54 Mpa,

current daily production 0.02 × 104 m3/d, current casing pressure
6.69 Mpa, cumulative gas production 380 × 104 m3. The well was
put into production on 3/5/2012, and the casing pressure has been
climbing for a period of continuous output. Now, it is intermittent
production with a general production effect (Figure 15).

Class III wells have poor reservoir physical properties with
minimal effective thickness and permeability. The permeability
of such wells is generally <0.1 mD, effective thickness <3m,
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FIGURE 14
Production pressure change curve of class III well in S block.

FIGURE 15
Production curve of Well S6-40-12.

natural fractures are not developed, and non-homogeneity is strong,
resulting in a sudden drop in production capacity of the local well
area. The rate of pressure drop is fast (0.0202 MPa/d), resulting in
a short period of stabilized production. Typical well S6-40-12, the
casing pressure of the well is climbing, indicating that the wellbore
is seriously fluid-accumulated, which affects the normal production
of the gas well. Conventional fracturing modification effect is poor,
and gas injection development is easy to gas scram.

In response to geological, dynamic and engineering
uncertainties, in the early production stage, the initial production
rate was lowered to 0.4 × 104 m3/d (60% of the initial rate of 0.65
× 104 m3/d) to optimize the development plan and delay the steady
production period; adaptive throttling technology was adopted,
and 3 mm nozzles were used for production when the casing
pressure was >8 MPa, and 2 mm nozzles and wellhead boosting
were switched when the casing pressure was ≤8 MPa tomaintain the

Frontiers in Earth Science 17 frontiersin.org

https://doi.org/10.3389/feart.2025.1605793
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhang et al. 10.3389/feart.2025.1605793

production differential pressure <3 MPa. Medium-term production
stabilization stage: supplement formation energy through CO2
foam pressure drive and nano-microsphere modulation drive;
activate pulse fracturing for layers <2 m in thickness, and carry out
intelligent production control. Later stage of extended production:
switch to intermittent production for wells with daily production
<0.1 × 104 m3/d and casing pressure <4 MPa; consider nitrogen
throughput technology in combination with economic factors.

5 Summary and conclusion

In this paper, an integrated dynamic-static classification
model for tight sandstone gas wells is established based on the
XGBoost algorithm by combining dynamic and static data, which
accomplishes fast and high-precision classification of gas wells.
The model not only solves the problems of classification results
inconsistency between dynamic and static but also improves
the effectiveness of gas well classification and reduces human
subjectivity. The following conclusions are mainly drawn:

(1) By analyzing the data of 450 gas wells, it was found that there
was no obvious linear relationship between static and dynamic
parameters of gas wells, which could be substituted into the
model training and based on the feature importance screening
of the XGBoost algorithm, three important indexes affecting
the classification of gas wells were obtained: the initial daily
production, the effective thickness of the gas layer and the
permeability.

(2) Through data preprocessing, feature selection, model training
and prediction, and index evaluation, a dynamic and static
integrated classification model for tight sandstone gas wells
was established. The results were compared and verified with
those of wells that were classified better by experts’ experience,
and it was concluded that the classificationmodel was accurate
and reliable.

(3) The main factors influencing the classification of Class I and II
wells are initial daily production and permeability. In contrast,
themainfactors influencingtheclassificationofClass IIIwellsare
initialdailyproductionandtheeffective thicknessof thegas layer.

(4) For Class I and II wells, the development strategy is mainly
constant production, slowing down the rate of pressure
drop and delaying the period of stabilized production
through rational production allocation; for Class III wells, the
development strategy is mainly intermittent production and
drainage gas recovery to restore production capacity.
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Glossary

i The index of the samples, i takes all the samples in the training

phase, is used to compute the loss function and gradient, and in

the prediction phase, is used to predict the sample labels

̂yi Prediction results for sample xi

K Number of weak classifiers

f k kth weak classifier

F The set of all possible weak classifiers

ŷ(t)i Sample prediction results for the tth iteration

t tth iteration
n
∑
i=1

l(yi, ŷi) An empirical loss term that represents the loss between the

predicted and true values of the training data

l(yi, ŷi) Loss function for sample i

yi The true label of sample i
t
∑
k=1

Ω(f k) The regularization term, which represents the sum of the

complexity of all t trees, is used to prevent model overfitting

Ω(f k) Complexity of the kth weak classifier

L(ϕ) The loss function of the model

n Number of samples

C Constant

L(t) Loss function at step t

g i The first order derivative of the loss function

hi The second order derivative of the loss function

X Raw data for a particular column feature

μ Themean value of the original data

δ Standard deviation of the raw data

St(X) Standardized converted data

Acc Accuracy rate

Rec Recall rate

Pre Precision rate

TP The number of true positive samples, that is, the number of

samples correctly classified by the classifier into a certain class

TN The number of true negative samples, that is, the number of

samples that actually do not belong to a certain class, is correctly

predicted by the classifier as the number of samples that are not

in the class

FP The number of false positive samples, that is, the classifier

wrongly predicts the sample as the number of samples of a

certain class

FN The number of false negative samples, that is, the number

of samples that are actually a certain class of samples is

incorrectly predicted by the classifier as the number of samples

in other class.
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