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The intense explosive activity of
lava fountain sequences from
Voragine crater at Etna volcano:
new insights through
high-precision borehole strain
recordings

Alessandro Bonaccorso, Luigi Carleo*, Gilda Currenti and
Antonino Sicali

Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Catania, Italy

Mount Etna is well known for its frequent lava fountains, or paroxysms,
characterized by their intense explosive activity. Over the past decades, the
Southeast Crater has been the most prolific, generating over a hundred events.
More recently, three sequences of particularly powerful lava fountains were
erupted from the Voragine Crater: four episodes between 3 and 5 December
2015, three between 18 and 21 May 2016, and six between 4 July and 15 August
2024. This intense eruptive activity, accompanied by significant ash dispersal
and fallout, severely impacted the infrastructure and accessibility of eastern
Sicily, causing disruptions to air services and the temporary closure of Catania’s
international airport. In this study, we investigated these intriguing phenomena
through the high-precision strain data recorded by Etna’s network of borehole
dilatometers. We modelled and interpreted the source of these paroxysmal
events, examining its position, the magnitude of its volumetric change during
the paroxysms, and its relationship with the volcano’s plumbing system, thereby
advancing our understanding of these dynamic processes.

KEYWORDS

Etna volcano, lava fountains, volcano monitoring, borehole strainmeters, eruption
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1 Introduction

Lava fountains are a common eruption style of basaltic volcanism. They are generated
by the rapid exsolution of volatiles from magma during its ascent along the shallow portion
of the plumbing system (i.e., Wilson et al., 1995; Sparks, 2003). The resulting effect is a jet
of gas and pyroclasts that rises vertically into an eruptive column up to several kilometers
high, forming a low-level lava fountain (0–3 km) with fast ascent velocity (∼15 m s-1),
and a higher convective plume reaching a height of several kilometers with lower ascent
velocity and lateral transport driven by wind (i.e., Sparks et al., 1997; Calvari et al., 2018
and references therein). As reported in their classification paper, Bonadonna et al. (2016)
underline that in recent years the lava fountains frequently observed at Etna usually have
been characterized by eruption columns >2 km above the cone (Figure 1a) and so mostly
fit in the violent Strombolian to sub-Plinian field of Walker (1973). The greatest number of
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observations and studies on such eruptions have been conducted at
Kilauea (i.e., Head and Wilson, 1987; Wolfe et al., 1998; Heliker and
Wright, 1991; Mangan et al., 2014; Namiki et al., 2021; Moyer and
Sahagian, 2024 and reference therein) and Etna (i.e., Calvari et al.,
2018; Calvari and Nunnari, 2024 and references thereinafter). In
Iceland, several studies have been carried out on the activities
of lava fountains produced in different eruptions such as that of
Holuhraun during 2014–15 (Witt et al., 2018), Geldingadalir in 2021
(Eibl et al., 2023), and Fagradalsfjall in 2021 (Scott et al., 2023). Lava
fountains can also occur through sequences comprising numerous
events repeating over time, and this aspect further increases the
critical impact on the population, human infrastructure, public
health and air traffic (i.e., Andronico et al., 2008; Martin et al.,
2009; Baxter, 2010; Horwell et al., 2017; Calvari et al., 2018). The
Etna’s lava fountains, also called paroxysms due to their explosive
power, are frequent and often cause problems and dangers for the
infrastructure of the city of Catania and the villages around the
volcano, and above all oftendisrupt air traffic (Calvari et al., 2018 and
references thereinafter). The Etna summit cone is composed of four
main craters: Voragine (VOR), the oldest and also named Central
Crater, North East Crater (NEC), Bocca Nuova Crater (BNC), and
South East Crater (SEC), namely, the youngest one formed in 1971
(Figure 1b). Over recent decades, the SEC was the most active and
generated several sequences of lava fountain events. Since 2011, it
has erupted more than 110 lava fountains of which 44 episodes
took place from January 2011 to December 2013 and 68 episodes
from 13 December 2020 to 1 December 2023 (i.e., Bonaccorso et al.,
2013; Bonaccorso et al., 2021; Calvari and Nunnari, 2022; 2024). In
the past, VOR mainly displayed single sporadic paroxysmal events
rather than eruptive sequences, with previous powerful episodes
occurring on 22 July 1998 (Aloisi et al., 2002; Bonaccorso, 2006) and
4 September 1999 (GPV - Global Volcanism Program, 1999; Harris
and Neri, 2002; Calvari et al., 2002). Besides these two isolated
episodes, more recently VOR generated three sequences of intense
lava fountains: four episodes between 3 and 5 December 2015
(Aloisi et al., 2017; Bonaccorso and Calvari, 2017), three episodes
between 18 and 21 May 2016, and six episodes between 4 July and
15 August 2024 (Calvari and Nunnari, 2024). This last sequence,
due to the significant ash air-dispersal and fall-out, caused major
problems to the infrastructures and disturbances within eastern
Sicily, disruptions to air services and the temporary closure of the
Catania international airport.

Numerous multidisciplinary studies have been undertaken on
the lava fountains generated by the SEC (a complete overview
and full list of references can be found in Calvari et al., 2018;
Calvari and Nunnari, 2022; Corsaro et al., 2024). Despite its
explosive nature, a single lava fountain usually produces ultra-
small volumetric deformation (<1 microstrain = 10−6 m3/m3)
that is difficult to detect by GNSS (Global Navigation Satellite
System) or InSAR (Interferometric Synthetic Aperture Radar)
techniques. Instead, the borehole dilatometers provided valuable
information thanks to the instruments’ high sensitivity (∼10−12,
Roeloffs and Linde, 2007). Since 2011, these instruments have
revealed strain changes accompanying the lava fountains. These
changes allowed modelling the source that discharged the gas-
magma mixture during the explosive activity (a detailed description
and review of the results can be found in Bonaccorso et al., 2013;
Bonaccorso et al., 2016; Bonaccorso et al., 2020; Bonaccorso et al.,

2021). Moreover, recently, the strain changes also enabled better
characterization of the lava fountains by identifying different clusters
(Carleo et al., 2023) and inferring the total volumes erupted from
this crater (Bonaccorso et al., 2023).

On the other hand, fewer studies have been made on the activity
of lava fountains from the VOR, such as the episodes taking place
on 22 July 1998 (Aloisi et al., 2002; Bonaccorso, 2006), 4 September
1999 (GPV - Global Volcanism Program, 1999; Calvari et al., 2002),
the sequences of 3–5December 2015 (Aloisi et al., 2022; Bonaccorso
and Calvari, 2017; Cannata et al., 2018), and of 18–21 May 2016
(Edwards et al., 2018). Recently, the July-August 2024 sequence
has been investigated by permanent thermal cam images to obtain
insights into the evolution of its paroxysmal episodes (Calvari and
Nunnari, 2024). However, for the paroxysmal activity of theVOR, an
overall picture of these sequences of lava fountains is still incomplete.
Above all, interpreting the source that generated these paroxysmal
events, mainly in terms of position and dimension of its volumetric
change during the paroxysms and its relation to the plumbing
system, remains to better explore. In this study, we investigated
these open issues through the high precision strain recorded by the
borehole dilatometers network operating on Etna by addressing two
main points: i) considering the observation time interval strictly
related to the paroxysmal phase and ii) by using advanced numerical
modelling.

In thiswork, first we introduce the characteristics of the borehole
dilatometer network and its high data accuracy, and we present the
data and the strain changes revealed by the dilatometers during
the lava fountain sequences in December 2015 May 2016 and
June-August 2024. Then, the strain changes are modelled using
a numerical finite element method (FEM) to infer the source
producing the lava fountains and investigate itsmechanisms. Finally,
in the discussion, we comment on the obtained results that providfe
an improved picture of the intermediate-shallow plumbing system
of Etna volcano.

2 Network

Sacks-Evertson dilatometers (Sacks et al., 1971) are borehole
instruments thatmeasure the volumetric deformation of the ground.
They are usually installed in deep drilled holes (depths >100 m)
to attenuate the environmental noise and detect strain changes
mainly induced by volcanic and tectonic activity. Expansive cement
is poured between the strainmeter and the walls of the hole to create
close coupling between the sensor and the surrounding rock. Sacks-
Evertson dilatometers are powerful instruments since they operate
in a wide frequency band (10−7 – >20 Hz) and have the highest
resolution (10−12) among geophysical sensors (Roeloffs and Linde,
2007). Thanks to these characteristics, borehole strainmeters are
employed in many volcanic areas worldwide (e.g., Linde et al., 1993;
Johnston et al., 2001; Voight et al., 2006; Bonaccorso et al., 2012;
2016; 2020).

At Etna, four Sacks-Evertson strainmeters have been installed
over time (Figure 1b). The first installation was done in
October–November 2011 when two sensors were installed at Mt.
Ruvolo (DRUV) and Mt. Egitto (DEGI). The other two dilatometers
(DPDN and DMSC) were installed in October-November 2014.
In this work, we use the signals recorded by the DRUV, DEGI
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FIGURE 1
(a) Photo of the lava fountain from the South, taken early morning on 4 August 2024. (b) Etna borehole dilatometer network. The DPDN station was out
of order in the period of this study. The inset shows the main summit craters: Voragine (VOR), Bocca Nuova (BN), NE crater (NEC) and SE crater (SEC).

and DMSC stations as DPDN strainmeter was malfunctioning
during the analyzed periods. These three strainmeters have
different sensitivities to ground deformation because of the diverse
mechanical properties of the surrounding rock and the rock-sensor
couplings. Three calibration methods were used to estimate the
in-situ sensor response (Bonaccorso et al., 2013; Bonaccorso et al.,
2016; Currenti et al., 2017). The calibration showed that the DRUV
strainmeter is themost sensitive, with a stable calibration factor over

time of 0.005 nstrain/counts (Bonaccorso et al., 2016). DEGI and
DMSC are less sensitive than DRUV. The DEGI strainmeter has a
stable calibration factor over time of 0.1 nstrain/counts. In the period
2015-2016, the DMSC strainmeter showed a calibration factor of
0.2 nstrain/counts (Bonaccorso et al., 2016), which decreased in
subsequent years up to 0.075 nstrain/counts (Bonaccorso et al.,
2020) indicating an improvement of the rock-sensor coupling at
the station. The signal recorded by the strainmeters is affected by

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2025.1606006
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Bonaccorso et al. 10.3389/feart.2025.1606006

rock deformation, largely due to Earth tides and barometric pressure
variations which reduce the signals’ capacity to detect strain changes
related to volcanic activity. However, we estimate that, at time scales
of 3 h, which represents a typical duration of an Etna lava fountain,
the noise of the strain signal recorded by the DRUV strainmeter
is in the order of 10−9 (Carleo et al., 2022). At DEGI and DMSC
stations, whose strainmeters are less sensitive than the DRUV one,
we estimate a noise value of 10−8. During VOR lava fountains, the
signals at all the stations recorded strain variations in the range of
10−6-10−7 (see Sect. 3), much larger than the estimated noise.We can
therefore efficiently retrieve the strain amplitudes induced by VOR
lava fountains from the recorded signals, preserving the precision of
the recorded estimates at all the stations.

3 High precision strain recording
during lava fountain sequences from
VOR

After the two powerful single paroxysms of 22 July 1998 and
4 September 1999, VOR was in a quiescent state with regular
degassing until the sudden activity of four powerful lava fountains
that occurred unexpectedly in just 3 days between 3 and 5December
2015. This sequence was investigated using images from cameras
and strain data (Bonaccorso and Calvari, 2017). The most powerful
event–with the shortest duration of one and a half hours–was the
first (3December)with amaximumheight of the lava fountain above
the rim of the VOR of 4.100 m. During this event, strain variations
at dilatometer stations were also recorded (Figure 2 top-left). The
following three other events decreased in power, as evidenced
by the decreasing heights of the fountain and the amplitude of
the strain (Bonaccorso and Calvari, 2017). In 2016, another short
sequence of three consecutive events occurred between 18 and 21
May (Andronico et al., 2021). Also for this sequence the most
powerful event, with associated larger strain variations, was the first
one on 18 May with a duration of about 3 hours (Figure 2 top-
middle), while the subsequent ones haddecreasing amplitudes. After
8 years, a sequence of 6 events took place between 4 July and 14
August 2024 (Calvari andNunnari, 2024).This sequence had amore
complex evolution (Figure 2 bottom), characterized by a powerful
first event with a prolonged duration of over 8 h, 3 subsequent
events with decreasing amplitude and then a fifth event on 4 August
lasting about 6 h and producing a lava fountain with a greater strain
amplitude (Figure 2 top-right).

The three events of 3December 2015, 18May 2016, and 4August
2024, namely, the most intense events in their respective sequences,
have strain amplitude variations that show a high degree of similarity
between the shape of each signal (Figure 2 top). Therefore, they
can be associated with a similar source that fed the fountains from
the VOR. These events were on average more intense than those
emitted by the SEC in the 2011-2013 and 2021–2023 sequences. In
particular, if we consider the DRUV station–the most precise and
considered the reference one–the three largest events of the VOR
sequences recorded an average variation of about 0.3 microstrain,
about double the average value of the variations recorded during the
SEC fountains (Bonaccorso et al., 2013; Bonaccorso et al., 2021).

4 Data modelling

The strain variations observed during the lava fountain events
reflect the decompression associated with the magma release. The
volcano edifice is affected by the decompression due to the emptying
of the source that feeds the lava fountains, and the strainmeters are
able to measure the associated deformation (Roeloffs and Linde,
2007; Bonaccorso et al., 2013). The pattern of the strain changes
at the three dilatometer stations, both in sign and in amplitude,
remains consistent across all events (Supplementary Figure S1;
Supplementary Table S1), with clear step-like changes, positive at
DMSC and negative at DRUV and DEGI (Figure 2 top). Also the
ratio between the strain amplitudes at the stations is almost constant
over time (Supplementary Figure S1). Given this recurring pattern
and the similar dynamics of the eruptive events at the VOR, it
is reasonable to conclude that the source of decompression has
not changed position over time. As reported in Bonaccorso et al.
(2020), at shallow depths the strain pattern for a decompression
source is almost concentric going from contraction (positive strain
dilatometer changes) in the centre to dilatation (negative strain
dilatometer changes) toward the lower flank of the volcano. The
transition from contraction to dilatation is mainly regulated by the
source depth (Bonaccorso et al., 2020).TheDEGI station, positioned
about 6 km away from the VOR crater and on the mid flank,
therefore provides important constraints on the source depth. Due
to the limited number of available observations, we simplified the
modelling to provide a first-order estimate of the source that may
explain the observed strain changes. We computed the expected
strain changes by simulating the contraction of a spheroidal magma
chamber located at different depths. Finite element computations
were performed to consider the topographic profile of the Etna
western flank, which may influence the deformation (Currenti et al.,
2008). A simple 2D axial symmetry model was used whose
symmetry axis is centered at the VOR crater and whose profile runs
from the summit toward the DRUV station (Bonaccorso et al., 2013;
2021). The domain is meshed into isoparametric and arbitrarily
distorted triangular elements. Around the source, a finer mesh is
built up, which then gradually increases going toward the external
boundaries, where infinite mapped elements are used to force
the displacement to vanish toward infinity and avoid numerical
artifacts. Quadratic elements are used to warrant a good accuracy
in the computations of the strain tensor, obtained as first spatial
derivative of the displacement fields. From the simulation results
it emerges that the source should lie at a depth between −500 and
– 1,000 m below the sea level in order to explain the positive and
negative strain changes recorded at DMSC and DEGI, respectively
(Figure 3). Simulations were performed by varying the shape of
the source from oblate to prolate spheroids. The results show that
the source shape has a minor effect. However, prolate sources are
preferred because they engender lower vertical displacements in
accord with the absence of significant displacements from GNSS
signals. The results in Figure 3 refer to the major events, i.e., 3
December 2015, 18 May 2016, and 4 August 2024 (Figure 2),
but similar findings are obtained for the other events since the
strain amplitudes scale linearly with the intensity of the source
(Supplementary Figure S1).
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FIGURE 2
Top: Strain changes recorded at the three stations DRUV, DEGI and DMSC during the lava fountains of 3 December 2015 (left), 18 May 2016 (center), 4
August 2024 (right). A negative strain change corresponds to an expansion of the surrounding medium. Bottom: Strain recorded during the sequence
of six lava fountain paroxysms from VOR in July-August 2024 at the DRUV station. For each eruptive event the dilatometer records a clear ultra-small
change lasting from the start to the end of the eruption. The DRUV signal is filtered from the barometric and the tidal components (Carleo et al., 2022).

5 Discussion

5.1 Previous results on Etna’s
intermediate-shallow plumbing system

On Etna, mid-term deformation from geodetic and satellite
measurements in the periods (months to years) that preceded and
accompanied the numerous major effusive flank eruptions were
interpreted as a response to an intermediate storage at 4–8 km
below the sea level (b.s.L.) in which magma can accumulate before
the eruptions, deforming the volcanic edifice (e.g., Bonforte et al.,
2008; Aloisi et al., 2011; Bonaccorso and Aloisi, 2021; Palano et al.,
2024).The intermediate storage level found coincides approximately
with the separation between the Hyblean carbonate platform and
the upper flyshoid units of the Apennine chain (Lentini, 1982).
In particular, Aloisi et al. (2018) noted that the mean centroid
of the recharging/inflation sources is located at ∼ 6.5 km b.s.L,
and the mean centroid of the discharging/deflation sources is
located at ∼ 4.5 km b.s.L. Furthermore, Aloisi et al. (2018)
highlighted that the position of these two different source positions

are coincident with the depths of different levels of magmatic
environments (Figure 4) as constrained by petrological analysis of
olivine content (Cannata et al., 2018).

Since 2011, Etna has shown a more explosive eruptive style
characterized by lava fountain sequences emitted from the summit
craters. The strain changes recorded during the SEC lava fountain
events indicated the response to a decompression of the volcano
edifice due to the magma release and emptying of the source
during these explosive events. The depressurizing source was
inferred approximately at sea level below the SEC. This depth
level fits the structural discontinuity between the Apennine-
Maghrebian chain and the volcanic edifice positioned at about
sea level (Monaco et al., 2011).

At Etna, the geochemistry of volcanic gases measured during
lava fountains from remote sensing spectroscopy (Allard et al.,
2005) supports the interpretation that the lava fountains are driven
by the separate ascent of a gas layer previously accumulated at
shallow depth. This scenario concurs with the “foam collapse”
model of Jaupart and Vergniolle (1988), Jaupart and Vergniolle
(1989), who consider the lava fountains as generated by the ascent
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FIGURE 3
FEM modelled volumetric strain changes (colored lines) caused by a depressurizing prolate source positioned below the VOR, with a 0.5 aspect ratio
and 4 × 106 m3 volume change calculated for different depths of the source along a profile running westward from the summit crater area. Volumetric
strain changes (black circles) observed at the dilatometer stations during the three main events at VOR are also reported (see Figure 2). The recorded
strain changes are almost overlapping (Supplementary Table S1).

FIGURE 4
Sketch section of Etna’s plumbing system based on the Vp changes seismic tomography obtained by De Gori et al. (2021), where the pink colour
indicates a significant reduction of seismic wave velocity related to the presence of new melt. The picture shows an intermediate storage zone (SINT)
centred at – 6 km b.s.L., as inferred by the deformation sources modeled for the mid-long term recharging-discharging phases investigated in several
previous studies. Inside the intermediate storage, Aloisi et al. (2018) noted that the zone comprising the sources of the recharging phases (Ric+) is
deeper than the one of the eruptive discharging phases (Dis-). Two shallower storages have been inferred by strain changes for short-term lava
fountain eruptions, in previous studies for SEC activity (SSEC) and in this study for VOR activity (SVOR). Levels of different kinds of olivine types are
also reported (Giuffrida et al., 2023).
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of magma forming a bubble foam layer that remains trapped
in a shallow portion of the plumbing system and whose final
collapse generates the explosive phase. Therefore, this shallower
source represents a sort of accumulation/discharge valve through
which the magma, previously resident in the intermediate storage,
is released and re-balanced through violent episodes of lava
fountains (Bonaccorso et al., 2013). This picture fits with the
seismic tomography (De Gori et al., 2021) that revealed two seismic
anomalies in the plumbing system at approximately 6/4 km b.s.L.
and 1/0 km b.s.L., respectively.

GNSS measurements do not detect the micro-deformation
induced by single lava fountains. However, it is interesting to note
that GNSS is able to detect the cumulative effect over time on
multiple events, such as in the first phase of February–March
2021 sequence, when 17 lava fountain episodes (Bruno et al., 2022)
occurred. In the case of a progressive and cumulative effect, these
measurements are able to record a deflation that extends over the
entire volcano with a depressurization centroid of approximately
2 km b.s.L., deeper than that constrained for the single lava fountain
episode. To reconcile these two results, it can be deduced that
the single valve-source action event generating the lava fountain
has a centroid with depth at about sea level, while the effect of
multiple closely spaced events, which cumulatively decompresses
even the deeper plumbing system, results in a lowering of the
depressurizing centroid. This interpretation is also supported by
the strain variations during the lava fountain phase of February-
March 2021 that showed a decrease in amplitudes over time,
indicating a progressively lower efficiency of the eruptive source
leading to the waning of the explosive sequence (Bonaccorso et al.,
2021). In general, this is consistent with the ‘magma collection’
model proposed by Harris and Neri (2002), which considers the
depressurization of a shallow reservoir as a possible mechanism
of a paroxysmal sequence. This causes decreasing volumes erupted
over time by the lava fountains, which are generated by the foam
collapse at the reservoir roof. Here, an important aspect comes to
light, namely, that the source feeding the fountain is constrained by
the single paroxysmal event, while the accumulation of a sequence
of events gradually contributes to amore extensive depressurization,
i.e., involving a larger portion of the plumbing system, which is
related to a deeper depressurization centroid.

5.2 Evidences of Etna’s shallow plumbing
system from VOR activity

The VOR sequences of 3–5 December 2015, 18–21 May
2016 and June-August 2024, had fewer eruptive events spanning
shorter time intervals than the SEC ones. Regarding the eruptive
activity from the VOR crater, several questions have yet to be
answered regarding the depth of the source and its volumetric
decompression. Aloisi et al. (2017) considered the entire period
comprising the four events of the December 2015 sequence and
found a depressurization centroid at about 4.5 km b.s.L. Similar to
whatwas discussed for the SEC eruptions, we believe that this greater
depth of the source is determined by considering the cumulative
effect of more eruptive events than that of the single one. In the
case of 2015, the cumulative effect over time provides a more
extensive final depressurization, which also involves the response

and gradual re-equilibrium of the plumbing system, providing a
deeper centroid than the source of the individual fountains. Also
in this case, the interpretation is supported by the strain variations
that during 3–5 December 2015 sequence showed an exponential
decrease in amplitudes, indicating a progressive waning of the
eruptive sequence (Bonaccorso et al., 2021).

With reference to the VOR source modelling, from the
strain variations recorded during the event of 3 December 2015,
Calvari et al. (2002) provided evidences that the decompression
source has a greater depth, inferred at 3.3 km below the reference
surface of the homogeneous half-space medium used in the
application of the centre of pressure model (Mogi, 1958).
Considering the reference surface at the mean altitude of the
dilatometer stations of 1.5 km above sea level, the depth constrained
by the simple analytical model for a single eruption of 3 December
2015 would be about 1.8 km b.s.L. However, the simple Mogi model
does not take account of the topographic cover of the volcano
and this tends to amplify the expected deformation, hence the
modelling leads to a lowering of the source (for the comparison
between simple analytical and numerical FEM models see Figure 3
in Bonaccorso et al., 2013). We used the FEM approach to overcome
the limit of the simple analytical model of the depressurizing
spherical source. For each of the three sequences of December 2015
May 2016 and July-August 2024, we focused on the event of greatest
intensity. The three events show a good overlap, highlighting that
the variations associated with the three cases come from the same
source. This robust information allows modelling the source for
the part strictly related to the paroxysmal phase. A source located
below the VOR at a depth of about 1 km b.s.L. is able to generate
the strain changes recorded during the single lava fountains ejected
from this crater. This result matches the picture provided by the
recent seismic tomography (De Gori et al., 2021).The time-repeated
tomography showed evidence of freshmelts accumulated since 2019
in reservoirs located at different depths in the central feeding system
(Figure 4). A broad volume with a strong Vp reduction, centred at
6 km b.s.L., coincides well with the intermediate storage inferred by
geodetic measurements over the last decades (i.e., Bonforte et al.,
2008; Bonaccorso and Aloisi, 2021). Moreover, a small volume with
clear Vp reduction is centred beneath the summit craters at about
1 km b.s.L. indicating fresh melt storage in a shallower reservoir.
This depth is in agreementwith the superficial storage level indicated
by the olivine component Fo74-76 for the period 2015–2022 during
which both SEC and VOR erupted (Giuffrida et al., 2023). This
shallower storage level, highlighted by the recent tomography, isW-E
elongated spanning between the position of the VOR and the SEC.

6 Conclusion

The modelling of the strain changes during the VOR and the
SEC lava fountains helps constraining shallow reservoirs located
in the recently inferred seismic anomaly zone between 1 and
0 km b.s.L. (Figure 4). A picture of the Etna plumbing system
therefore emerges in which there are two ponding zones: the well-
known intermediate one where the largest storage is located and a
shallower one, slightly elongated in the W-E direction, where the
smaller storages are located, that rapidly empty and feed the lava
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fountains from the SEC and the VOR. The new results from the
modelling of the data collected by the high precision strainmeters
provide a picture that correlated well with the information coming
from geodesy, seismic tomography and petrology. Our findings
thus enrich the description of the shallower plumbing system and
advance the knowledge of the eruptive dynamics involved in VOR
lava fountains.
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