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Accurate prediction of crown convergence in Tunnel Boring Machine (TBM)
tunnels is critical for ensuring construction safety, optimizing support design,
and improving construction efficiency. This study proposes an interpretable
machine learning method based on Bayesian optimization (BO) and SHapley
Additive exPlanations (SHAP) for predicting crown convergence (CC) in TBM
tunnels. Firstly, a dataset comprising 1,501 samples was constructed using
tunnel engineering data. Then, six classical ML models, namely, Support Vector
Regression, Decision Tree, Random Forest, Light Gradient Boosting Machine
(LightGBM), eXtreme Gradient Boosting, and K-nearest neighbors—were
developed, and BO was applied to tune the hyperparameters of each model
to achieve accurate prediction of CC. Subsequently, the SHAP method was
adopted to interpret the LightGBM model, quantifying the contribution of each
input feature to the model’s predictions. The results indicate that the LightGBM
model achieved the best prediction performance on the test set, with root
mean squared error, mean absolute error, mean absolute percentage error, and
determination coefficient values of 0.9122 mm, 0.6027 mm, 0.0644, and 0.9636,
respectively; the average SHAP values for the six input features of the LightGBM
model were ranked as follows: Time (0.1366) > Rock grade (0.0871) > Depth
ratio (0.0528) > Still arch (0.0200) > Saturated compressive strength (0.0093)
> Rock quality designation (0.0047). Validation using data from a TBM water
conveyance tunnel in Xinjiang, China, confirmed the method’s practical utility,
positioning it as an effective auxiliary tool for safer andmore efficient TBM tunnel
construction.

KEYWORDS

TBM tunnel, crown convergence prediction, machine learning, model explanation,
bayesian optimization

1 Introduction

Tunnel Boring Machines (TBMs) are highly efficient and automated excavation
equipmentwidely used in urban subways, hydraulic engineering, and transportation tunnels
(Gao et al., 2021; Fu et al., 2023; Zhang et al., 2024). However, the deformation of
surrounding rock during TBM construction remains a critical concern in the engineering
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community (Mahdevari et al., 2012). Crown convergence (CC)
is a key indicator of tunnel stability, and excessive settlement
can not only compromise the structural safety of the tunnel but
also lead to construction delays and increased costs (Feng et al.,
2019). Therefore, accurate prediction of crown convergence in
TBM tunnels is crucial for ensuring construction safety, optimizing
support design, and improving construction efficiency (Adoko
and Wu, 2012).

Traditional methods for predicting tunnel convergence
predominantly rely on empirical formulas and numerical
simulations. For instance, Arora et al. (Arora and Gutierrez, 2021)
presents a visco-elastic-plastic solution for deep circular tunnel
under squeezing conditions, which can be used to determine
the viscous behavior of tunnel wall convergence with time.
Asadollahpour et al. (2014) determined the closure parameters
of Panet Equation associated with face advance and time effect
of a rock tunnel in six different monitoring stations. Huang et al.
(2017) introduces a detailed numerical simulation to reveal the
probabilistic response of tunnel convergence in spatial verified
soils. Chen et al. (2018) proposed a case study on the stress and
deformation characteristics of tunnels induced by close distance
earth pressure balance shield under-crossing in sandy soil stratum.
Empirical formulas are often based on limited engineering data and
may not accurately reflect the deformation behavior of surrounding
rock under complex geological conditions (Wang et al., 2021).
Numerical simulations, despite their ability to model multi-factor
interactions, are constrained by high computational costs and
parameter sensitivity, hindering real-time engineering applications
(Hu et al., 2024). With the rapid development of machine learning
(ML) techniques, data-driven approaches have emerged as effective
tools for solving complex engineering problems (Bo et al., 2023).
ML methods can learn complex nonlinear relationships from large
amounts of historical data, providing more accurate predictions. In
recent years, ML methods have been widely applied in underground
engineering due to their excellent feature analysis capabilities
(Mahmoodzadeh et al., 2021; Ray et al., 2021; Kim et al., 2022;
Xu et al., 2022; Zhang et al., 2022).

In the field of tunnel engineering, numerous studies have
attempted to predict tunnel convergence using ML methods. For
example, Adoko and Wu (2012) used an Adaptive Neuro-Fuzzy
Inference System (ANFIS) to predict tunnel convergence, achieving
satisfactory results. Mahdevari and Torabi (2012) employed
an Artificial Neural Network (ANN) model to predict tunnel
deformation, demonstrating that ANN models can achieve high
prediction accuracy under complex geological conditions. Pan et al.
(2012) combined the Firefly Algorithm (FA) with a Nonlinear Auto-
Regressive (NAR) dynamic neural network to construct a dynamic
nonlinear model for predicting surrounding rock convergence.
Mahmoodzadeh et al. (2022) developed 5 ML models—Deep
Neural Network (DNN), Gaussian Process Regression (GPR),
K-Nearest Neighbors (KNN), Decision Tree (DT), and Support
Vector Regression (SVR)—to accurately predict tunnel convergence.
Zhou J. et al. (2023) collected 142 samples of highway tunnel
deformation data and constructed six reliable ML models to predict
tunnel convergence, using the Jellyfish Search Optimizer (JSO) for
hyperparameter tuning. Sheini Dashtgoli et al. (2024) used FLAC3D
to create a dataset of 954 samples from shallow-buried tunnels and
developed five tree-based ML algorithms to accurately predict the

maximum convergence of unsupported shallow tunnels. An et al.
(2024b) collected tunnel convergence data to build a dataset and
used KNN, SVR, DT, RF, Extreme Gradient Boosting (XGBoost),
Categorical Boosting (CatBoost), and Automated ML models to
accurately predict tunnel convergence, and evaluated tunnel stability
based on the prediction results in actual tunnel projects.

Despite the progress made in tunnel convergence prediction,
several limitations still remain. Firstly, most studies focus solely on
model prediction accuracy, neglecting model interpretability. The
“black-box” nature of ML models makes their internal decision-
making mechanisms difficult to understand, thus limiting their
practical application in engineering (Adadi and Berrada, 2018;
Naser, 2021). Secondly, many studies rely on limited datasets, which
may not fully capture the deformation behavior of surrounding
rock under complex geological conditions. Thirdly, the intelligent
convergence prediction of TBM tunnels is very limited so far.
SHapley Additive exPlanations (SHAP) is an explanation technique
for ML models, which has been widely used in tunnel issues,
such as explanation of tunnelling induced surface settlement
prediction model (Li and Dias, 2024), tunnel squeezing prediction
model (Bo et al., 2023), and tunnel convergence prediction
model (An et al., 2024b). To address these issues, this study
proposes a ML method based on Bayesian Optimization (BO)
and SHAP for predicting crown convergence in TBM tunnels
considering the successful application of SHAP in tunnel issues.
A set of six classical ML models (SVM, DT, RF, LightGBM,
XGBoost, and KNN) were adopted for CC prediction in TBM
tunnels considering their successful application in tunnel issues
(Zhou J. et al., 2023; An et al., 2024b; Guan et al., 2025). At
the beginning, six input features were selected from geological,
design, and time factors to construct a dataset containing 1,501
samples. Then, BO was adopted to tune the hyperparameters of
six classical ML models (SVR, DT, RF, LightGBM, XGBoost, and
KNN) to improve their prediction performance. Finally, the SHAP
method was used to interpret the optimal model (LightGBM),
quantifying the contribution of each input feature to the model’s
predictions. The novelties of this research are as follows: (1)
It constructs a large-scale dataset with 1,501 samples, covering
the deformation behavior of surrounding rock under complex
geological conditions, which offers a solid data foundation for
model training and testing. (2) It employs six classical ML models
(SVR, DT, RF, LightGBM, XGBoost, and KNN) for CC prediction
and uses BO to optimize the hyperparameters of each model,
thereby improving prediction accuracy and generalization ability.
(3) It applies the SHAP method to interpret the optimal model
(LightGBM), quantifying the contribution of each input feature to
the model’s predictions and enhancing model interpretability. (4)
The study validates the proposed method using data from a TBM
water conveyance tunnel in Xinjiang, China, demonstrating that the
approach can serve as an auxiliary tool for promoting safer and
more efficient construction of TBM tunnel projects. This study not
only helps engineers better understand the mechanisms of tunnel
deformation but also provides a scientific basis for tunnel support
design and construction decision-making, enabling safer and more
efficient tunnel construction processes.

The remainder of this paper is organized as follows: Section 2
introduces the TBM tunnel crown convergence dataset constructed
in this study; Section 3 presents the proposed method for predicting

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2025.1608468
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Hu et al. 10.3389/feart.2025.1608468

CC; Section 4 provides a detailed analysis of the prediction results;
Section 5 displays the application of the proposed method in tunnel
engineering; and Section 6 concludes the study and outlines its
limitations.

2 Database

The selection of input features has a significant impact on the
training effectiveness of ML models (An et al., 2024b). Proper
selection of input features can enhance the prediction performance
of ML models. In this study, nine input features were selected from
geological, design, and time factors, including depth ratio (DR),
rock grade (RG), saturated compressive strength (SCS), saturated
tensile strength (STS), Rock Quality Designation (RQD), friction
angle (FA), cohesion (C), steel arch height (SA), and time (T) since
initial support completion. The output of the ML models is the CC
of the tunnel. The dataset of this study is available via https://github.
com/Unic1124/data.

The depth ratio reflects the relationship between the tunnel
depth and diameter. A higher depth ratio indicates more complex
stress conditions in the surrounding rock, which can affect
tunnel deformation (Zhou J. et al., 2023). The depth ratio is
calculated using Equation 1.

R = H
D

(1)

where R is depth ratio, H is the depth of the tunnel roof, D is the
diameter of the tunnel.

Geological factors (RG, RQD, FA, C, SCS, and STS) directly
reflect the integrity, stability, and strength of the surrounding
rock, which are decisive factors in tunnel deformation. The lower
the RG, the better the engineering properties of the rock mass,
and the higher the stability of the tunnel’s surrounding rock,
resulting in a relatively lower likelihood of deformation. A higher
RQD value implies fewer internal rock fractures, better integrity,
and stronger self-stability of the surrounding rock after tunnel
excavation, thus limiting the extent of deformation. Greater values
of FA and C enhance the rock’s shear strength, improving its
overall integrity and stability. Rocks with higher SCS and STS
can better withstand various stresses generated during tunnel
excavation, reducing the likelihood of deformation. Design factors
(DR, SA) influence stress distribution and support effectiveness.
The steel arch height reflects the stiffness of the initial support.
Higher stiffness leads to better support effects and smaller tunnel
deformation. A rational steel arch design can effectively disperse the
stress of the surrounding rock and mitigate deformation caused by
localized stress concentration (An et al., 2024b). Temporal factor
(T) accounts for time-dependent deformation processes. Tunnel
deformation is caused by the creep of surrounding rock, especially
after the completion of initial support, where the creep effect
significantly impacts tunnel stability.Therefore, the time since initial
support completion is also an important factor influencing tunnel
deformation (Adoko et al., 2013).

Sample data were extracted from tunnel sections of a TBMwater
conveyance tunnel in Xinjiang, China, to construct a dataset for
model training and validation. Feature information was extracted
from geological reports, design materials, construction schemes,

and monitoring reports to form a dataset of 1,501 samples. This
comprehensive dataset captures diverse geological and engineering
conditions, ensuring robust model training. The data encompasses
a wide range of geological and engineering conditions, reflecting
the complex and diverse nature of TBM tunneling environments.
It includes various input features as articulated above, which
are critical factors influencing tunnel stability and deformation.
The quality of the dataset is ensured through rigorous data
cleaning and preprocessing steps, removing any inconsistencies
or errors that could affect the ML model’s performance. The
dataset’s representativeness is further validated by its alignment
with the actual geological and engineering characteristics of
the tunnel, making it a reliable benchmark for evaluating the
predictive models.

Feature selection can avoid data redundancy and reduce the
computational load of ML models (An et al., 2024b). Pearson
correlation coefficients were calculated for each feature in the
dataset using Equation 2 to perform feature selection. A correlation
coefficient (COR) greater than 0.6 indicates a strong correlation
between two variables. As shown in Figure 1a, the COR values
between FA and DR, SCS, STS, RQD, and C were −0.61, 0.85,
0.73, 0.79, and 0.92, respectively, indicating strong correlations
between FA and these five variables. The COR values between C
and SCS, RQD, and FA were 0.71, 0.82, and 0.93, respectively,
suggesting strong correlations between C and these three features.
The COR values between STS and SCS and RQD were 0.77 and 0.61,
respectively.Therefore, STS, FA, and Cwere removed from the input
features to avoid computational burden caused by data redundancy.
After feature selection, the data distribution and correlations
of the input and output features are shown in Figures 1b,2, ,
and the statistical characteristics of the dataset are presented in
Table 1.

COR =
∑n

i=1
(x− ̃x)(y− ̃y)

n−1

√∑n
i=1
(x− ̃x)2

n−1
√∑n

i=1
(y− ̃y)2

n−1

(2)

where x and y are the values of the two variables, ̃x and ̃y are
the means of x and y, respectively; and n is the number of the
samples.

3 Methods

In tunnel engineering, predicting the convergence of the tunnel
is a complex issue involving the coupling of multiple factors, and
traditional mechanical analysis methods often struggle to accurately
capture its nonlinear characteristics. In recent years, ML methods,
due to their strong data-driven capabilities and advantages in
modeling complex relationships, have gradually become effective
tools for solving such problems. This study develops six distinct ML
models, which are subsequently trained and tested utilizing a dataset
pertaining to TBM tunnel crown convergence.The hyperparameters
of these ML models are meticulously optimized through the
application of BO. Furthermore, the SHAP method is employed to
provide interpretability to the models.The comprehensive workflow
of this research is visually depicted in Figure 3.
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FIGURE 1
The correlation between the features: (a) before feature screening; (b) after feature screening.

3.1 Machine learning algorithms

3.1.1 Support Vector Regression
The Support Vector Machine (SVM) emerged from the

Statistical Learning Theory proposed by Vapnik and colleagues in
the 1990s and stands as a robust supervised learning algorithm
(Zhou et al., 2022). Initially conceived for classification tasks, it
was subsequently adapted for regression problems through the
incorporation of the ε-insensitive loss function, giving rise to
Support Vector Regression (SVR). In regression problems, SVR
seeks to find the optimal regression function (Equation 3) that
minimizes the prediction error (Yin et al., 2023).

f(x) = wTϕ(x) + b (3)

where ϕ(x) is the kernel function that maps the input x into a high-
dimensional feature space, w is the weight vector and b denotes
the bias term.

3.1.2 Decision tree
The DT is a tree-based classification and regression model that

is widely used in the fields of ML and data mining (Liu et al., 2022).
For regression problems, the objective of the DT is to minimize the
MSE for each leaf node. Suppose the input space is partitioned into
M regions, denoted as M = {R1,R2,R3,…,Rm}, where each region
corresponds to a leaf node with an output value cm. The prediction
of the decision tree can be expressed as Equation 4:

̂y =
M

∑
m=1

cm · I(x ∈ Rm) (4)

where I(·) is the indicator function that takes a value of one if x
belongs to Rm and 0 otherwise; cm is typically the mean of the target
values of the samples within region Rm; and ̂y represents the final
prediction value of the decision tree.

3.1.3 Random Forest
RF is an ensemble learning algorithm based on DTs. By

constructing multiple DTs and aggregating their predictions, the
overall model achieves high prediction accuracy and stability
(Zhao et al., 2024). The work process of RF is depicted in Figure 4.
The work process of RF is described by Equation 5.

̂y = 1
T

T

∑
t=1

ft(x) (5)

where T denotes the number of decision trees; ft(x) represents
the prediction result of the t-th DT; and ̂y is the final prediction
value of the RF.

3.1.4 LightGBM
LightGBM is an efficient ML algorithm based on the gradient

boosting framework (Bo et al., 2023). By incorporating techniques
such as the Histogram algorithm and Gradient-based One-
Sided Sampling, it significantly enhances the training speed and
memory efficiency of the model while maintaining high prediction
accuracy (Ke et al., 2017). The principle of LightGBM is based
on Gradient Boosting Decision Trees (GBDT), which aims to
achieve fast and accurate predictions on high-dimensional data.
GBDT iteratively adds new DTs to progressively reduce the
loss value of the objective function, as expressed in Equation 6.
LightGBM optimizes Equation 6 to incrementally improve
prediction performance, ultimately achieving precise predictions.

L =
n

∑
i=1
(yi − ̂y

(t−1)
i − ht(xi))

2
(6)

where L denotes the objective function, n is the number of samples,
yi is the true value of the i-th sample, ̂y(t−1)i is the predicted value after
the t-1-th iteration, and ht(xi) is the prediction of the i-th sample by
the decision tree added in the t-th.
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FIGURE 2
The distribution of the dataset after screening: (a) RG; (b) RQD; (c) SCS; (d) DR; (e) SA; (f) T; (g) CC.

TABLE 1 The statistic characteristic of the dataset.

Statistic characteristic DR RG SCS (MPa) RQD (%) SA (mm) T (day) CC (mm)

Count 1,501 1,501 1,501 1,501 1,501 1,501 1,501

Average 61.45 3.80 72.58 69.28 94.30 11.95 10.89

Std 4.53 0.85 21.75 16.83 65.01 9.10 4.60

Minimum 51.78 3 55.00 48.00 0.00 0.50 1.10

25% 58.49 3 55.00 48.00 0.00 4.50 7.60

Medium 61.03 4 60.00 70.40 125.00 9.50 10.80

75% 65.26 5 101.00 81.10 150.00 19.50 14.60

Maximum 67.82 5 107.00 94.80 150.00 31.50 21.10
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FIGURE 3
Workflow of the proposed approach.

LightGBM employs the Histogram algorithm to discretize
continuous feature values into multiple bins. Additionally, the
introduction of Gradient-based One-Sided Sampling (GOSS)

and Exclusive Feature Bundling (EFB) algorithms addresses the
issue of excessive sample and feature counts, further optimizing
computational efficiency. These optimization techniques endow
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FIGURE 4
Schematic diagram of the RF

LightGBM with significant advantages in handling large-scale
datasets, making it well-suited for complex data analysis tasks in
tunnel crown settlement prediction.

3.1.5 XGBoost
The principle of XGBoost is similar to that of LightGBM

and is a gradient boosting-based ensemble learning algorithm. By
optimizing the objective function and incorporating regularization
terms, XGBoost further enhances the model’s generalization ability
and prediction accuracy (Chen and Guestrin, 2016). The XGBoost
algorithm constructs DTs sequentially, specifically fitting the
residuals between the predictions of the previous tree and the
actual values, with the aim of progressively approximating the
true values (Tang et al., 2024). This process continues until a
predefined number of iterations is reached or a specific termination
condition is satisfied. After training is completed, the model
aggregates the predictions from all decision trees using a weighted
summation method to generate the final prediction for each sample.

During the optimization of the loss function, XGBoost employs
a second-order Taylor expansion to simplify calculations and
introduces a regularization term into the objective function to
effectively control model complexity and prevent overfitting. The
objective function is formulated as Equation 7.

Obj =
n

∑
i=1
 l(yi, ̂yi) +

K

∑
k=1
 Ω( fk) (7)

where l(yi, ̂y
(t)
i ) is the loss function, yi and ̂yi are the true and

predicted values of the i-th sample, respectively; and n is the number
of samples. Ω( fk) is the regularization term, K is the number of
decision trees, and fk represents the complexity of the k-th tree.

3.1.6 K-nearest neighbors
The KNN algorithm is an instance-based learning method. Its

core concept is to predict based on the label information of the k
nearest neighbors to the input sample, using methods such as voting
or weighted averaging (Bo et al., 2023; An et al., 2024b).

3.2 Bayesian optimization

Hyperparameters have a significant impact on the predictive
performance of ML models. Optimizing the hyperparameters of
ML models can enhance their predictive performance (Chen
and Seo, 2023). BO is an efficient global optimization method
suitable for scenarios where the objective function is non-
analytical, computationally expensive, or noisy (Zhang et al.,
2020). It can address the limitations of grid search, which has a
large computational burden, and random search, which is prone
to getting stuck in local optima. BO constructs probabilistic
models, such as Gaussian processes, to predict the behavior of
the objective function and uses acquisition functions, such as
expected improvement and upper confidence bound, to balance
exploration and exploitation (Frazier, 2018). By doing so, BO can
intelligently select evaluation points and iteratively approach the
optimal solution. Its core idea is to update the posterior distribution
using prior knowledge, thereby guiding the optimization process.

3.3 Performance evaluation metrics

Mathematical models play an indispensable role in
understanding, simulating, and predicting complex environmental
phenomena and systems. In various application domains, the
evaluation of ML prediction results is an essential component
(Feng et al., 2022; Zhou X. et al., 2023; Liu et al., 2024). To accurately
assess the predictive performance of ML models, it is advisable to
consider commonly used statistical metrics such as coefficient of
determination (R2), mean absolute error (MAE), mean absolute
percentage error (MAPE), and root mean squared error (RMSE)
(Li et al., 2023; An et al., 2024a). The calculations for these metrics
are as Equations 8–11.

R2 = 1−
∑n

i=1
( ̂yi − yi)

2

∑n
i=1
(y− yi)

2
(8)

MAE = 1
n

n

∑
i=1
| ̂yi − yi| (9)

MAPE = 1
n

n

∑
i=1
|
yi − ̂yi
yi
| × 100% (10)
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FIGURE 5
Schematic diagram of the SHAP method.

FIGURE 6
The BO process of the 6 ML models.

RMSE = √ 1
n

n

∑
i=1
( ̂yi − yi)

2 (11)

3.4 SHAP

Owing to the black-box nature of ML models, comprehending
their output results presents a significant challenge (Ribeiro et al.,
2016). In order to enhance the transparency of ML models,
interpretability methods for these models have garnered substantial
attention from researchers (Li et al., 2019; Love et al., 2023;
Longo et al., 2024). The SHapley Additive exPlanations method is
an additive explanation approach that interprets model output by
calculating the contribution of each input variable to the prediction
result, known as the SHAP value (Lundberg and Lee, 2017). SHAP
method analyzes the impact of each feature to explain the model’s
prediction and sums the SHAP values of all features to obtain the
final prediction result (Lundberg et al., 2019; Qu and Zhang, 2025).
The calculation of SHAP values is given by Equation 12.

yi − ybase = f(xi1) + f(xi2) +⋯+ f(xik) (12)

TABLE 2 The performance metrics of tunnel convergence
prediction models on training set.

Model RMSE (mm) MAE (mm) MAPE R2

SVR 1.5246 1.2680 0.1509 0.8900

DT 1.0221 0.6319 0.0661 0.9505

RF 0.8769 0.5296 0.0540 0.9636

LightGBM 0.8170 0.4773 0.0506 0.9673

XGBoost 0.7506 0.5158 0.0537 0.9744

KNN 1.3118 0.8825 0.0995 0.9185

where f(xik) represents the contribution of the k-th feature xik in
the i-th sample to the model prediction yi; ybase is the baseline
value. When f(xik) > 0, the feature has a positive impact on the
model prediction; conversely, when f(xik) < 0, the feature has a
negative impact.

For a prediction problem involving three parameter variables,
the SHAP method is illustrated in Figure 5. Here, f(xi1) indicates
the change in the current prediction value caused by input
variable 1, which is a positive impact leading to an increase
in the prediction value. Similarly, the addition of input variable
two increases the current prediction value, while the addition
of input variable 3 decreases the current prediction value by
f(xi3). SHAP method can effectively explains the model’s prediction
results, enhancing the understanding of how the model operates
(Fu et al., 2022; Wang et al., 2023).

4 Result analysis

4.1 Model development and
hyperparameter optimization

The TBM tunnel crown convergence dataset was standardized
and randomly divided into training and test sets in an 8:2 ratio for
training and testing of the 6 ML models. After data standardization
and train-test splitting, the training set and test set are divided into
input data and output data, respectively. The input data and output
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FIGURE 7
Optimization curves of LightGBM model using GWO, BWO, and GA: (a) GWO; (b) BWO; (c) GA.

TABLE 3 Comparison of hyperparameter tuning for LightGBMmodel using GWO, BWO, and GA.

Optimization
method

Hyperparameter Search space Population NMSE (mm) Time
consumption (s)

GWO

n_estimators
max_depth

learning_rate
num_leaves

[10, 100]
[3, 50]

[1e-3, 1e-1]
[5, 50]

20 −0.0028 311

50 −0.0028 578

100 −0.0028 1,246

150 −0.0028 1,977

BWO

20 −0.0028 94

50 −0.0028 233

100 −0.0028 390

150 −0.0028 592

GA

20 −0.0028 301

50 −0.0028 665

100 −0.0028 1,270

150 −0.0028 8,299

TABLE 4 The performance metrics of tunnel convergence prediction
models on test set.

Model RMSE (mm) MAE (mm) MAPE R2

SVR 1.5971 1.2990 0.1682 0.8805

DT 1.5250 0.9001 0.0940 0.8910

RF 1.1279 0.8028 0.0938 0.9211

LightGBM 0.9122 0.6027 0.0644 0.9636

XGBoost 1.2192 0.7760 0.0802 0.9227

KNN 1.6904 1.1675 0.1388 0.8661

data are input into the ML models using a function ‘.fit ()’, which
is used to train the models. Similarly, the input data of the test set
are input into the well-trained models to yield the output using the
function ‘.predict ()’. The model development is conducted using the
scikit-learn, xgboost and lightgbm packages with Python.

In this study, to achieve precise prediction of CC in TBM
tunnels, six classical ML models—SVR, DT, RF, LightGBM,
XGBoost, and KNN—weremeticulously constructed and optimized
using BO. The hyperparameters of each model were finely tuned
via BO to enhance their predictive capabilities for CC. Negative
Mean Squared Error (NMSE) was selected as the objective function
for BO to minimize prediction error. To prevent overfitting, five-
fold cross-validation was employed during model training. Each
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FIGURE 8
CC prediction results of the 6 ML models on test set: (a) SVR; (b) DT; (c) RF; (d) LightGBM; (e) XGBoost; (f) KNN.

TABLE 5 Improvements of LightGBM compared to the other 5 ML models.

Model RMSE improvement MAE improvement MAPE improvement R2 improvement

SVR 42.88% 53.60% 61.70% 9.44%

DT 40.18% 33.04% 31.48% 8.15%

RF 29.27% 24.92% 23.21% 4.62%

XGBoost 25.20% 22.33% 19.62% 4.44%

KNN 46.04% 48.38% 53.60% 11.26%

Average 36.80% 36.46% 37.92% 7.58%

model underwent 100 optimization iterations, as shown in Figure 6.
The results showed that the NMSE of all six models gradually
increased during the BO process and eventually converged,
demonstrating the effectiveness of BO in improving the models’
performance on the training set.

The optimal hyperparameters and optimization results for the
6 ML models are presented in Supplementary Tables A1-A6 in the
supplementary materials. Using the optimal hyperparameters from
Supplementary Tables A1-A6, the best-performing SVR, DT, RF,

LightGBM, XGBoost, and KNN models were constructed for CC
prediction of TBM tunnel. The prediction performance of the six
models on the training set is shown in Table 2. From Table 2, it
can be seen that the XGBoost model achieved the best prediction
performance on the training set, with RMSE, MAE, MAPE, and
R2 values of 0.7506, 0.5158, 0.0537, and 0.9744, respectively. The
LightGBM model ranked second in prediction performance on the
training set, with RMSE, MAE, MAPE, and R2 values of 0.8170,
0.4773, 0.0537, and 0.9673, respectively.
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FIGURE 9
Model explanation results of LightGBM on the impact of the inputs using SHAP.

FIGURE 10
Dependence plots of the input features: (a) T; (b) RG; (c) DR; (d) SA.

To further underscore the superiority of the BO, Grey
Wolf Optimization (GWO) (Mirjalili et al., 2014), Beluga
Whale Optimization (BWO) (Zhong et al., 2022), and Genetic
Algorithm (GA) (Albus et al., 2024) are used to optimize the
hyperparameters of the LightGBM model to provide comparison.
The optimization results are illustrated in Figure 7 and in
Table 3. It can be observed from Table 3 that the optimal
NMSEs of the are −0.0028 mm, which is smaller than the
NMSE of BO. Moreover, the GWO, BWO, and GA take much
more time than that of BO. The optimization comparison
of LightGBM indicates the superior tuning efficiency of
BO and better tuning performance.

4.2 Prediction results analysis

The prediction performance of the 6 ML models on the test
set is shown in Table 4. From Table 4, it can be observed that
the LightGBM model outperformed the other models in terms of
prediction accuracy on the test set. The LightGBM model achieved
the lowest RMSE (0.9211 mm), MAE (0.6027 mm), and MAPE
(0.0644), as well as the highestR2 (0.9636).This indicates that among
the 6 MLmodels evaluated, LightGBM is the best-performingmodel
for predicting TBM tunnel crown convergence.TheXGBoostmodel,
which performed best on the training set (as shown in Table 2), also
demonstrated satisfactory performance on the test set, with RMSE,
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TABLE 6 Summary of tunnel convergence prediction performance of different ML models.

Literature Model Input features Count R2 MAPE (%) MAE (mm) RMSE (mm)

Adoko and Wu (2012) ANFIS GEC, T, SRM, γ, H, D 212 0.95 2.16 - 0.122

Mahdevari and Torabi (2012) ANN

E, C, GSI, UCS,
v,σt,φ,RQD,σc,γdry,H,γsat

20 0.9334 - - -

Mahdevari et al. (2012)
ANN

18
0.872 - - -

SVM 0.965 - - -

Adoko et al. (2013)
MARS

γ, SRM, T, ϕ, C, X, E, H 96
0.95 - 0.42 -

ANN 0.97 - 0.29 -

Torabi-Kaveh and Sarshari (2020)

MLP-ANN

NB, σc, RMR, C, H, ϕ 30%

0.925 - 0.122 0.169

RBF-ANN 0.81 - 0.218 0.269

MLR 0.61 - 0.311 0.386

MNR 0.648 - 0.299 0.366

SVR 0.659 - 0.268 0.385

GPR 0.53 - 0.3479 0.4238

RT 0.53 - 0.3383 0.4234

ET 0.63 - 0.3255 0.3743

Mahmoodzadeh et al. (2022)

DNN

GL, CS, C, CA, EM, H, W, E, X,
UW, φ,v

110

0.9851 23.63 2.26 4.461

KNN 0.9507 38.75 5.10 8.549

GPR 0.9716 31.06 2.88 6.393

SVR 0.9626 34.03 3.72 6.846

DT 0.9440 35.83 4.28 8.319

Zhou et al. (2023a)

JSO-BPNN

RMR, H, Q, φrm,Crm,Erm 28

0.692 - 5.914 9.517

JSO-GRNN 0.875 - 3.570 5.675

JSO-ELM 0.697 - 7.440 9.032

JSO-KELM 0.885 - 3.808 5.132

JSO-LSSVM 0.839 - 4.639 6.119

JSO-RF 0.939 - 3.141 3.958

An et al. (2024b)

KNN

DR, RG, GT, SR, SA, T 547

0.9398 23.47 1.8484 2.7320

SVR 0.8616 47.90 3.3652 4.1420

DT 0.9620 22.48 1.4780 2.1692

RF 0.9804 16.75 0.9913 1.5598

XGBoost 0.9887 12.71 0.7759 1.1845

CatBoost 0.9870 13.01 0.7984 1.2693

Auto-ML 0.9874 13.38 0.8225 1.2480

(Continued on the following page)
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TABLE 6 (Continued) Summary of tunnel convergence prediction performance of different ML models.

Literature Model Input features Count R2 MAPE (%) MAE (mm) RMSE (mm)

This study

SVR

DR, RG, GT, SR, SA, T 300

0.8805 16.82 1.2990 1.5971

DT 0.8910 9.40 0.9001 1.5250

RF 0.9122 8.39 0.8028 1.2979

LightGBM 0.9636 6.44 0.6027 0.9122

XGBoost 0.9227 8.05 0.7760 1.2195

KNN 0.8661 13.88 1.1675 1.6904

Note: SRM, surrounding rock mass rating index; GEC, ground engineering conditions rating index; γ, Rock density; X, distance between monitoring station and working face; ϕ, Friction angle;
E, elasticity modulus; UCS, uniaxial compressive strength; GSI, geological strength index; σt, Uniaxial tensile strength; γdry, Dry unit weight; γsat, Saturation unit weight; v, Poisson’s ratio; σc,
Unconfined compressive strength; GL, groundwater level; CA, Cross-section area; EM, excavation method; RMR, rock mass rating; W, tunnel width; UW, unit weight; NB, number of installed
rock bolts; Q, rock mass quality index; φrm, Internal friction angle of rock mass; Erm, Deformation modulus of rock mass; Crm, Rock mass cohesion.

TABLE 7 Description of the four tunnel sections.

Tunnel section Tunnel depth (m) Rock grade SCS (MPa) RQD (%) Steel arch height (mm)

K63 + 510 527 IV 55 48 150

K63 + 530 525 V 55 48 150

K63 + 550 526 V 49 48 150

K63 + 630 522 V 55 48 150

K63 + 650 520 IV 69 73.2 150

K63 + 710 509 IV 55 73.2 150

FIGURE 11
Workflow of crown convergence prediction for real-world
TBM tunnels.

MAE, MAPE, and R2 values of 1.2195 mm, 0.7760 mm, 0.0802,
and 0.9227, respectively. Although XGBoost’s performance on the
test set was slightly inferior to LightGBM, it still ranked second,

highlighting its good generalization ability on unseen data. The RF
model also showed competitive performance, with RMSE, MAE,
MAPE, andR2 values of 1.2979 mm, 0.8028 mm, 0.0839, and 0.9211,
respectively. The RF model’s prediction performance on the test
set was comparable to that of XGBoost, indicating that ensemble
methods are generally suitable for this prediction task.

Compared to ensemble methods, the DT model has a simpler
structure but still provides reasonable prediction results, withRMSE,
MAE, MAPE, and R2 values of 1.5250 mm, 0.9001 mm, 0.0940,
and 0.8910, respectively. However, its performance was significantly
lower than that of LightGBM, XGBoost, and RF models, suggesting
that more complex models may be needed to capture the nonlinear
relationships in the data. The SVR and KNN models had relatively
higher prediction errors compared to the other models. The SVR
model achieved RMSE, MAE, MAPE, and R2 values of 1.5971 mm,
1.2990 mm, 0.1682, and 0.8805, respectively, while the KNN model
achieved values of 1.6904 mm, 1.1675 mm, 0.1388, and 0.8661,
respectively. These results indicate that SVR and KNN are less
effective than ensemble methods for the specific task of predicting
TBM tunnel crown convergence, likely due to their limitations in
handling complex nonlinear interactions between input features. For
instance, the SVR model’s training set performance is inferior to
that of ensemble learning models like LightGBM, and it shows no
significant improvement on the test set. This indicates that the SVR
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FIGURE 12
User interface to implement the machine learning models.

TABLE 8 The performance metrics of tunnel convergence prediction for
the six tunnel sections using LightGBM.

Section RMSE
(mm)

MAE (mm) MAPE (%) R2

K63 + 510 0.2825 0.2259 2.18 0.9951

K63 + 530 0.4547 0.4014 4.50 0.9941

K63 + 550 2.2889 1.8748 12.44 0.8093

K63 + 630 1.3249 1.0993 7.50 0.9275

K63 + 650 0.6763 0.5145 6.22 0.9822

K63 + 710 0.4308 0.2922 2.87 0.9882

Average 0.9097 0.7347 5.95 0.9494

modelmay struggle to capture the complex nonlinear characteristics
in TBM tunnel crown convergence data.

As indicated in Tables 2,4, the XGBoost, RF, DT, and KNN
models exhibit markedly better predictive performance on the
training set compared to the test set. This suggests potential
overfitting during their training process. Conversely, the LightGBM
model demonstrates comparable predictive performance on both
the training and test sets, implying its strong generalization
ability and lower risk of overfitting. This might be attributed to
LightGBM’s unique algorithmic optimization strategies, such as
gradient boosting and the histogram algorithm, which effectively
reduce overfitting.

Figure 8 shows the prediction results of the six models on
the test set, which depicts the actual versus predicted crown
convergence values for each model, clearly comparing their

prediction capabilities. Referring to Figure 8, the LightGBMmodel’s
predicted values were closest to the actual values, with the smallest
deviations, further confirming its superior performance. In contrast,
the SVR and KNN models showed larger deviations from the actual
values, especially for larger crown convergence values, indicating
their limitations in accurately predicting extreme cases. Overall,
the prediction performance of the 6 ML models for TBM tunnel
crown convergence can be ranked as follows: LightGBM > XGBoost
> RF > DT > SVR > KNN. This outcome offers a key reference
for choosing a TBM tunnel crown convergence prediction model.
It indicates that in similar complex engineering tasks, opting for
advanced ensemble learning models like LightGBM is likely to yield
superior predictive results.

Table 5 shows the improvement in prediction performance
of the LightGBM model compared to the other five
models. From Table 5, it can be observed that the LightGBM
model significantly outperformed the other 5 ML models in terms
of prediction accuracy on the test set. Specifically, the LightGBM
model achieved average improvements of 36.80%, 36.46%, 37.92%,
and 7.58% in RMSE, MAE, MAPE, and R2, respectively, compared
to the XGBoost, RF, DT, SVR, and KNN models.

The results of this study have important implications for
engineering practice, particularly in the context of TBM tunnel
construction. Accurate prediction of crown convergence is crucial
for ensuring the safety and stability of tunnels during and after
construction. The LightGBM model, with its high prediction
accuracy, can serve as a powerful tool for engineers to predict
and mitigate potential risks associated with tunnel deformation. By
integrating this model into real-time monitoring systems, engineers
can make more informed decisions regarding support measures and
construction schedules, leading to safer and more efficient tunnel
construction processes.
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FIGURE 13
Prediction curves of the six tunnel sections yielded by LightGBM model.

4.3 Model explanation using SHAP

Although the developed ML models demonstrated satisfactory
prediction performance in the task of predicting TBM tunnel crown
convergence, particularly the LightGBM model, which achieved a
low MAPE of 6.44% on the test set, the “black-box” nature of ML
models makes their internal decision-making mechanisms difficult
to understand (Adadi andBerrada, 2018). To explore the importance
of input features and improve the interpretability of the ML models,
the SHAP method was used to analyze the LightGBM model in
depth, with the results shown in Figure 9. According to Figure 9,
the average SHAP values of the six input variables were ranked as
follows: T (0.1366) > RG (0.0871) > DR (0.0528) > SA (0.0200)
> SCS (0.0093) > RQD (0.0047). This ranking of average SHAP
values reveals the importance of each input feature to the LightGBM
model’s predictions.

The time factor (T) had the highest average SHAPvalue (0.1366),
indicating that it has the most significant impact on CC prediction.
This result aligns with engineering practice, as tunnel deformation
typically accumulates over time, especially after the completion
of initial support, where the creep effect of surrounding rock
significantly affects tunnel stability. Therefore, the time factor is
a key variable in predicting CC. The RG had an average SHAP
value of 0.0871, suggesting that it also has a significant impact
on CC prediction. Rock grade reflects the strength and stability
of the surrounding rock; higher grades indicate better stability
and smaller tunnel deformation. The DR had an average SHAP
value of 0.0528, demonstrating that it also has some influence on
crown settlement prediction. However, compared to the T and RG,
the influence of the depth ratio is relatively small. The SA had
an average SHAP value of 0.0200, indicating that the stiffness of
the initial support also contributes to crown settlement prediction.
The steel arch height reflects the stiffness of the initial support;
higher stiffness leads to better support effects and smaller tunnel

deformation. However, compared to the T and RG, the influence
of initial support is relatively small. The SCS and RQD had average
SHAP values of 0.0093 and 0.0047, respectively, suggesting that they
have a relatively small impact onCCprediction.Thismay be because
these features are correlated with other features (e.g., RG), resulting
in their independent contributions being relatively small.

Figure 10 presents the dependence between the four most
influential features. The relationship between T and RG indicates
that time has less impact on CC at lower RG (better rock quality),
but a more pronounced impact at higher RG (poorer rock quality).
This aligns with engineering reality, as poor rock quality implies
lower stability, leading to more significant deformation over time
due to enhanced creep effects. RG and DR are interdependent, with
DR exerting a greater influence on CC at higher RG. When rock
quality is poor, the tunnel’s stability mainly relies on geometric and
burial factors, so changes inDRdirectly affect the stress environment
and deformation characteristics, amplifying its impact on CC. DR
and SA also show dependence, where steel arch height has a more
noticeable effect on CC at larger DR. Deeply buried tunnels face
higher geo-stress and deformation risks, and increasing steel arch
height can better resist rock pressure and reduce deformation. In
contrast, at smaller DR, steel arch height has a relatively minor
impact on CC, as shallow tunnels have a milder stress environment,
and lower steel arch height may already suffice for support.

Through SHAP analysis, not only can the contribution of each
input feature to the model’s predictions be quantified, but the
interactions between features and their specific impacts on CC
can also be understood. This analysis not only improves model
interpretability but also provides valuable insights for engineering
practice. For example, engineers can focus on the factors that have
the greatest impact on crown settlement (e.g., time factor and rock
grade) based on the SHAP analysis results, enabling them to take
more targeted supportmeasures to ensure tunnel safety and stability.
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4.4 Comparative analysis with related
works

Previous studies have constructed reliable ML models for
predicting tunnel convergence using different tunnel datasets.
Table 6 summarizes the prediction performance of ML models in
tunnel convergence prediction tasks from related studies. According
to the statistical results in Table 6, the LightGBM model developed
in this study achieved an R2 of 0.9636 on the test set, which is
higher than the R2 values of most ML models in the related studies.
This indicates that the LightGBM model developed in this study
has satisfactory prediction performance comparable to that of ML
models from previous studies, providing an effective tool for the safe
and efficient construction of TBM tunnels.

4.5 Limitations

Despite the accurate prediction of crown convergence in the
TBM water conveyance tunnel, this study has some limitations that
need to be addressed. Firstly, the generalization of the dataset needs
improvement as some features have overly limited values, such as
SCS having only 4 values and SA having only 3 values. Secondly,
the support form only considered the steel arch height as an input
feature, neglecting the stiffness provided by other support measures
such as rock bolts, steel mesh, and concrete. Thirdly, the dataset in
this study was constructed from a single tunnel, lacking regional and
engineering diversity.

5 Engineering application

5.1 Engineering background

The TBM water conveyance tunnel in Xinjiang, China,
traverses strata primarily composed of tuffaceous sandstone, tuff,
calcareous sandstone, tuff breccia, breccia lava, andesite porphyry,
basalt porphyry, dacite porphyry, feldspar sandstone, crystal tuff
sandstone, and carbonaceous sandstone from the Devonian and
Carboniferous systems; siliceous slate and schistose tuff from
the Silurian system; and conglomerate, sandstone, argillaceous
sandstone, and carbonaceous mudstone from the Permian and
Triassic systems. The tunnel also passes through Hercynian
intrusions such as biotite granite, granodiorite, migmatitic granite,
and potassic granite. Most of the tunnel sections are located in fresh
rock masses with poorly developed fractures, and the surrounding
rock is generally blocky and thick-layered, with relatively intact rock
masses. The groundwater along the tunnel is mainly bedrock fissure
water, with low flow rates. The tunnel crosses five major fault zones,
with fracture zones generally ranging from 90 to 100 m wide and a
maximum fracture zone width of 800 m.

The total length of the tunnel is 283.41 km, with a burial depth
ranging from150 to 774 m and an average burial depth of 428 m.The
maximumburial depth is 774 m.The designed flow rate is 40.0 m3/s.
The elevation of the tunnel inlet is 638.23 m, and the elevation of the
outlet is 528.494 m. The TBM excavation length is 227.08 km, and
the drill-and-blast method is used for 56.33 km. The drill-and-blast

method uses a horseshoe-shaped cross-section with an excavation
diameter ranging from 6.56 to 8.96 m, while the TBMuses a circular
cross-section with an excavation diameter of 7.00 m. Secondary
lining is mainly applied in sections with poor rock integrity (Class
III) and in Class IV and V rock sections, using C35 reinforced
concrete lining. In sections with better rock integrity (Class II and
III), shotcrete and rock bolting are used as the primary support.

5.2 Crown convergence prediction results

Six typical sections (K63 + 510, K63 + 530, K63 + 550, K63
+ 630, K63 + 650, and K63 + 670) were selected from a TBM
water conveyance tunnel in Xinjiang, China and used to validate
the LightGBM model’s prediction performance. The geological and
design information of the tunnel sections are displayed in Table 7.
To enhance the understanding of engineers in relevant fields, the
implementing steps of the application in real-world TBM tunnels are
illustrated in Figure 11. To make it more convenient for the workers
on site to use, a graphical user interface is designed to implement
these models, as shown in Figure 12. In this user interface, the
users can choose different well-trained models to predict the CC
of the tunnel sections with the input features of the sections. The
prediction results can be shown as a curve plot to enhance user’s
understanding.

Table 8 shows the prediction performance metrics of the
LightGBM model for these six sections. According to Table 8, the
LightGBM model achieved high prediction accuracy in the K63 +
510, K63 + 530, K63 + 650 and K63 + 670 sections, with R2 values
of 0.9951, 0.9941, 0.9822 and 0.9882, respectively. In the K63 + 550
and K63 + 630 sections, the prediction accuracy was slightly lower,
with R2 values of 0.8093 and 0.9275, respectively.

Overall, the LightGBM model achieved an average RMSE
of 0.9097 mm, an average MAE of 0.7347 mm, an average
MAPE of 5.95%, and an average R2 of 0.9494 across the six
sections. This indicates that the LightGBM model has high
prediction accuracy and generalization ability in actual TBM tunnel
engineering. Additionally, Figure 13 shows the prediction curves of
the LightGBM model for the six sections compared to the actual
observed values. It can be observed that the model’s prediction
curves closely match the actual observed values in most sections,
particularly in the K63 + 510, K63 + 530, K63 + 650, and K63 +
710 sections, where the prediction curves almost completely overlap
with the actual observed values. In the K63 + 550 and K63 +
630 sections, although the prediction errors increased slightly, the
model still captured the trend of crown convergence well, with
small deviations between the prediction curves and the actual
observed values.

The high prediction accuracy and generalization ability of
the LightGBM model in actual TBM tunnel engineering provide
strong support for tunnel support design and construction decision-
making. By integrating this model into real-time monitoring
systems, engineers can predict crown convergence in real-time and
adjust support measures and construction schedules accordingly,
ensuring the safety and stability of the tunnel. For instance, in the
K63 + 550 and K63 + 630 sections, despite a slight increase in
prediction errors, the model still captures the crown convergence
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trend effectively, offering a reliable basis for risk warning and
decision support during construction.

6 Conclusion

This study proposes an interpretable ML method based on BO
and SHAP for predicting crown convergence inTBMtunnels. Firstly,
a large-scale dataset containing 1,501 samples was constructed.
Then, six classical ML models (SVM, DT, RF, LightGBM, XGBoost,
and KNN) were developed, and BO was applied to tune the
hyperparameters of each model to achieve accurate prediction of
crown convergence. Subsequently, the SHAP method was used
to interpret the LightGBM model, quantifying the contribution
of each input feature to the model’s predictions and improving
model interpretability. Finally, the LightGBM model was validated
using data from six sections of a TBM water conveyance tunnel in
Xinjiang, China. The results show that:

(1) The LightGBM model achieved the best prediction
performance on the test set, with RMSE, MAE, MAPE, and
R2 values of 0.9122 mm, 0.6027 mm, 0.0644, and 0.9636,
respectively. The prediction performance of the 6 ML models
was ranked as follows: LightGBM > XGBoost > RF > DT >
SVR > KNN.

(2) SHAP analysis revealed the contribution of input features to
the LightGBM model’s predictions. The average SHAP values
of the six input features were ranked as follows: T (0.1366) >
RG (0.0871) > DR (0.0528) > SA (0.0200) > SCS (0.0093) >
RQD (0.0047).

(3) In practical engineering applications, the LightGBM model
achieved an average RMSE of 0.9097 mm, an average MAE
of 0.7347 mm, an average MAPE of 5.95%, and an average
R2 of 0.9494 across six sections, demonstrating accurate
prediction of crown convergence in theTBMwater conveyance
tunnel.

Future research will incorporate the comprehensive stiffness of
the support structure as an input feature to improve the model’s
prediction accuracy. Moreover, data from other tunnels will be
collected to increase the diversity of the dataset and improve the
generalization ability of the ML models.
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