AUTHOR=Hu Wanrui , Wu Kai , Liu Heng , Luo Weibang , Li Xingxing , Guan Peng TITLE=Interpretable machine learning approach for TBM tunnel crown convergence prediction with Bayesian optimization JOURNAL=Frontiers in Earth Science VOLUME=Volume 13 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2025.1608468 DOI=10.3389/feart.2025.1608468 ISSN=2296-6463 ABSTRACT=Accurate prediction of crown convergence in Tunnel Boring Machine (TBM) tunnels is critical for ensuring construction safety, optimizing support design, and improving construction efficiency. This study proposes an interpretable machine learning method based on Bayesian optimization (BO) and SHapley Additive exPlanations (SHAP) for predicting crown convergence (CC) in TBM tunnels. Firstly, a dataset comprising 1,501 samples was constructed using tunnel engineering data. Then, six classical ML models, namely, Support Vector Regression, Decision Tree, Random Forest, Light Gradient Boosting Machine (LightGBM), eXtreme Gradient Boosting, and K-nearest neighbors—were developed, and BO was applied to tune the hyperparameters of each model to achieve accurate prediction of CC. Subsequently, the SHAP method was adopted to interpret the LightGBM model, quantifying the contribution of each input feature to the model’s predictions. The results indicate that the LightGBM model achieved the best prediction performance on the test set, with root mean squared error, mean absolute error, mean absolute percentage error, and determination coefficient values of 0.9122 mm, 0.6027 mm, 0.0644, and 0.9636, respectively; the average SHAP values for the six input features of the LightGBM model were ranked as follows: Time (0.1366) > Rock grade (0.0871) > Depth ratio (0.0528) > Still arch (0.0200) > Saturated compressive strength (0.0093) > Rock quality designation (0.0047). Validation using data from a TBM water conveyance tunnel in Xinjiang, China, confirmed the method’s practical utility, positioning it as an effective auxiliary tool for safer and more efficient TBM tunnel construction.