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Exploring the use of new data
assimilation technologies to map
groundwater quality vulnerability
in a large alluvial aquifer

Wes Kitlasten1*, Catherine Moore1 and John Doherty2

1Surface Geoscienes Department, GNS Science, Lower Hutt, New Zealand, 2Watermark Numerical
Computing, Brisbane, QL, Australia

Integrity of simulator-based Bayesian analysis requires adequate representation
of prior parameter probabilities, and quantification and reduction of posterior
predictive uncertainties through history-matching. In many groundwater
management contexts, hydrogeological complexity and long numerical model
run times can render both of these tasks difficult. We present three
new technologies that can make simulator-based Bayesian analysis that is
undertaken in complex hydrogeological environments more effective and more
tractable. These are demonstrated using a case study where groundwater
head, streamflow and groundwater age data are assimilated in order to
assess groundwater vulnerability to anthropomorphic deterioration of its
quality. Bayesian analysis begins by generating ensembles of realizations of
hydraulic property and other parameters used by a multi-layer groundwater
model. The first technology supports this first step, by ensuring that respect
for complex hydrogeology is embodied in nonstationary representations of
hydraulic properties, as well as in stochasticity of so-called “hyperparameters”
which govern their spatially variable geostatistics. The second and third
technologies support data assimilation in two different ways, both of which
are numerically cheap. One of these options, Ensemble Space Inversion
(ENSI) requires adjustment of parameter fields in order for model outputs
to match field measurements. The other option, Data Space Inversion (DSI)
avoids parameter field adjustment through construction of direct statistical
linkages between model-generated counterparts to field measurements and
groundwater predictions of management interest. This statistical model is then
history-matched in lieu of the numerical model. Deployment of both of these
strategies at our case study site yields similar results. They reveal the likely
existence of young water at depth over large parts of a regional aquifer
system. This has repercussions for the quality of extracted water, and for land
management in recharge areas.

KEYWORDS

data space inversion, nonstationary geostatistics, ensemble space inversion, data
assimilation, groundwater age modeling, open framework gravels, pest, Wairau

1 Introduction

The purpose of this paper is to discuss three methodologies that, either
separately or together, can enhance the decision-support utility of groundwater
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modelling.Wedemonstrate their conjunctive use, with a simulation-
based assessment of the vulnerability of a regional aquifer
that is situated in the South Island of New Zealand. In this
paper, low groundwater age is used as a proxy for aquifer
susceptibility to anthropomorphic contamination (Zhang et al.,
2018; Fienen et al., 2018; New Zealand Ministry of Health, 2008).

While vulnerability assessment (especially of shallow aquifers) is
readily undertaken qualitatively using mappable site characteristics
(see, for example, Aller et al., 1987), simulation-based vulnerability
assessment yields benefits that are difficult to achieve in other
ways. Principle among these are the quantitative and spatial detail
that simulation-based vulnerability assessments provide. A second
benefit is that the uncertainties of these assessments can be both
evaluated and reduced through history-matching. These benefits
pertain to decision-support modelling in general, regardless of the
issue that it is undertaken to address (Freeze et al., 1990; Doherty
and Simmons, 2013). However, attainment of these benefits in areas
of high hydrogeological complexity may be hampered by problems
that beset representation and manipulation of high-dimensional
hydraulic property fields (Oliveira et al., 2017; Chan and Elsheikh,
2020), and by the numerical burden of undertaking the many
hundreds (or even thousands) of model runs that history-match
adjustment of these fields requires (Jafarpour and Tarrahi, 2011;
Ciriello et al., 2013; Linde et al., 2015; Riva et al., 2015). The three
new technologies that are described in this paper have the potential
to alleviate these problems, both at sites that are similar to our study
site, and at sites with very different hydrogeology.

The case study used to demonstrate these methodologies
employs a calibration or “history matching” dataset that is
comprised of measurements of groundwater head, streamflow and
groundwater age. These measurements are distributed over a three-
dimensional coastal aquifer. Joint assimilation of these data types
can prove challenging for traditional model parameterization and
data assimilation methodologies as predictions of groundwater age
at locations and depths where measurements have not been made
are often associated with high uncertainties. These arise from their
high sensitivity to details of aquifer anisotropy and heterogeneity
that may be difficult to characterize and manipulate (Sanford, 2010;
Peel et al., 2023; Kitlasten et al., 2022; Delottier et al., 2023).

Because of its ability to reduce and quantify predictive
uncertainties, Bayes-based history-matching is generally seen as
an indispensable component of decision-support groundwater
modelling. However, Bayesian analysis of groundwater systems is
difficult. Characterization of the hydraulic properties of complex
systems, and of stresses imposed on them, requires stochastic
characterization, and then adjustment, of many parameters.
Methods such as rejection sampling and Markov chain Monte
Carlo (which have impeccable Bayesian credentials) are impractical
numerical devices for Bayesian history-matching of highly
parameterised groundwater models, especially where model run
times are high. Hence dimensional reduction methods, often based
on parameter ensembles, are commonly adopted in order to increase
history-matching tractability.

However, deployment of ensemble methods to condition
model parameters faces its own set of difficulties. Bayesian
integrity is sacrificed where relationships between parameters and
history-match-salient model outputs are nonlinear (Evensen et al.,

2022). These nonlinearities may also challenge their history-
matching alacrity. Furthermore, the integrity of posterior parameter
and predictive probability distributions obtained using Bayesian
methods depends on the correctness of prior parameter probability
distributions. These can be difficult to characterize where the
spatial disposition of hydraulic properties is complex, and where
parameters that represent them in a model must be adjustable.

These problems are exacerbated by difficulties associated
with provision of mathematical descriptors that convey the
complex correlations and interrelations of subsurface hydraulic
properties at any particular study site that arise from incomplete
knowledge of that site. Hence the parameters that characterize
prior parameter probability distributions (often referred to as
“hyperparameters”) are themselves uncertain, and therefore require
representation in Bayesian analysis.The so called “hierarchical” data
assimilation problem that emerges from an unknown prior can
challenge the numerical performance of ensemble-based parameter
adjustment (Oliver, 2022). This challenge is exacerbated where
hierarchical parameters vary in space (i.e., are non-stationary).

Methodologies that we describe herein target these
challenges. The first method provides flexible parameterization of
hydraulic properties that require spatially varying geostatistical
hyperparameters. It can equip a groundwater model with hydraulic
property fields whose correlation lengths and directions vary
with location, and whose prior means vary over space. Stochastic
realizations of nonstationary parameter fields of this type are
generated using an adaptation of the method of spatial averaging
discussed by (among others) Oliver (1995), Higdon et al. (1999),
Fuentes (2002), Oliver (2022) and Opazo (2025).

The second method is Data Space Inversion (DSI); see Sun
and Durlofsky (2017), Lima et al. (2020), Liu et al. (2021) and
papers cited therein for methodological details and applications
in petroleum reservoir engineering. The numerical efficiency of
DSI-based data assimilation is unmatched by that of any other
method. It achieves its high level of numerical efficiency by passing
information directly from field measurements to predictions of
management interest. In doing so, it obviates the need for adjustment
of model parameters in order to assimilate information from
field measurements. Instead, based on the outcomes of only a
few hundred runs of an arbitrarily complex numerical simulator,
DSI builds direct statistical linkages between model outputs that
correspond to field measurements on the one hand, and model
outputs that correspond to predictions of management interest on
the other hand. It is this statistical model that is then conditioned by
actual field measurements. The numerical cost of data assimilation
when implemented using this statistical model is trivial.

The third method we demonstrate is Ensemble Space Inversion
(ENSI) as supported by PEST_HP (Doherty, 2024b). Unlike DSI,
ENSI implements parameter-adjustment-based history-matching.
Hence its numerical cost is greater than that of DSI. However, this
cost is commensurate with that of other dimensional reduction
methods such as the PEST++ ensemble smoother PESTPP-IES
(White, 2018). As is described herein, ENSI employs a regularized,
ensemble adjustment algorithm that bears some similarity to
dimensional reduction schemes that are discussed by Iglesias et al.
(2013) and Chada et al. (2018). However, it possesses some novel
options that are not described by these authors. These facilitate
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ENSI’s solution of nonlinear inverse problems that may challenge
other inversion methods.

As far as the authors are aware, this paper is the first to describe
the use of either DSI or ENSI in a real-world groundwatermodelling
context. Also, we are unaware of any other paper that describes
deployment of non-stationary, history-match-adjustable parameter
fields with complementary adjustable geostatistical characterization
in a real-world decision-support groundwater modelling context.
The paper also draws attention to management-salient outcomes
of application of these methodologies in a difficult hydrogeological
setting where it would have been difficult to achieve these outcomes
in any other way.

The paper is organized as follows.
Section 2 provides brief descriptions of nonstationary stochastic

field generation, hierarchical inversion, DSI and ENSI. Section 3
outlines the case study, and the nature of risks posed to groundwater
quality in the study area. Section 4 describes a numerical model
that simulates movement of water and contaminants in the alluvial
aquifer that underlies the study area. It also describes stochastic
parameterization of the numerical model. Section 5 demonstrates
use of DSI and ENSI in creating three-dimensional maps of
groundwater age. Use of DSI in associating uncertainties with
estimates of age, and in assessing the relative worth of head and
groundwater age datasets, is also described. Section 6 discusses
numerical and management repercussions of modelling and data
assimilation that is described in the previous section. The paper
finishes with a short conclusion. See also the glossary at the end of
this paper.

2 Methodologies

2.1 General

This section provides a brief overview of three methodologies
that are readily incorporated into a decision-support modelling
workflow, and that underpin a decision-support modelling case
study that is described later in this paper. Section 2.2 describes the
first of these, i.e., the generation of non-stationary parameter fields.
Sections 2.3 and 2.4 focus on the data space inversion, and the
ensemble space inversion history matching methods, respectively.

To maintain brevity, references to relevant literature are made
where further detail is needed. Equations are kept to a minimum,
except where required to discuss implementation details and
methodology strengths and weaknesses.

We begin with an equation that depicts the action of a model on
its parameters under calibration conditions:

h = o+ ɛ = Z(k) + ɛ (1)

In this and subsequent equations, vectors are represented
by bold, lower-case letters. In Equation 1, k represents model
parameters. Conceptually, k is used for any model inputs of which
a modeller is unsure. Parameters therefore differ from other model
inputs because they are both stochastic (to express uncertainty) and
adjustable (to assimilate information that reduces uncertainty).Most
(but not all) parameters of a groundwater model represent spatially
distributed hydraulic properties.

In Equation 1, the vector h represents field observations of
system behaviour that comprise a history-matching dataset, while
ɛ (a random and unknown vector) represents measurement noise.
The vector o represents model-generated counterparts to field
measurements. We use C(k) to depict the prior covariance matrix of
k. This expresses parameter stochasticity prior to any conditioning
by field measurements. C(ɛ) represents the covariance matrix of
measurement noise.This is often assumed to be diagonal.The action
of the model in terms of representing field observations given a set
of parameters is represented by the operator Z(k).

We use a similar equation to describe the behaviour of a model
under predictive conditions:

s = Y(k) (2)

where the vector s represents a set of predictions of management
interest and Y(k) is another model operator describing the action
of the model, given a set of parameters, in terms of simulating
predictions of interest.

2.2 Nonstationary parameter fields

History matching using ensemble-based methods such as DSI
and ENSI requires sampling of the prior probability distribution
of the parameter vector k. Hydraulic properties that are assigned
to different model cells may be designated as different parameters
(i.e., different elements of the vector k). Alternatively, a reduction
in parameter numbers may be achieved by using devices such as
pilot points. Many of the elements of k are spatially-distributed
hydraulic properties; othersmaypertain to boundary conditions and
historical stresses. The methodology that we now describe focusses
on the parameterisation of spatially-distributed hydraulic properties
to facilitate the representation of complex patterns of heterogeneity.

We define new spatial parameters as independent standard
normal variates, each having a mean of 0.0 and a standard deviation
of 1.0; numbers of this type are often referred to as iid’s (independent
and identically-distributed randomvariables). Every iid parameter is
statistically independent of every other iid parameter. In the model
that is discussed in our case study, iid parameters are assigned to all
model cells. However there is no reason why iid parameters cannot
be ascribed to pilot points.

Hydraulic property values are assigned to model cells by
weighted spatial averaging of iids. In the limit, where iids are
assigned to all model cells and model cells are very small,
this becomes a spatial integration process. This weighted
averaging/integration process can be two- or three-dimensional.
In the former case, iid parameters are layer-specific, whereas in the
latter case they inform multiple model layers.

We describe the spatial averaging process using Equation 3.

pi =
n2

∑
j=n1

W(dij)kj (3)

In Equation 3, pi is the hydraulic property assigned tomodel cell
i. Summation of iid values takes place over all elements of k that
are assigned to one or a number of model layers, this depending
on whether the averaging process is two- or three-dimensional. The
indices of these parameters start at n1 and end at n2. W(d) is the
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weighting kernel function.This is a decaying function of the distance
dij between cell i and parameter j.

The geostatistical structure of the cell-by-cell hydraulic property
field p that emerges from application of Equation 3 depends
on the nature of the averaging kernel function W(d). Oliver
(1995) pairs averaging kernel functions with hydraulic property
spatial correlation functions that are used in everyday geostatistical
practice. However, implementation of this methodology does
not require a mathematically-characterizable hydraulic property
correlation structure. Use of simple, polynomial-based kernel
functions can result in fast implementation of the averaging process,
and the production of hydraulic property fields with realistic
patterns of heterogeneity. Alternatively, a Gaussian averaging kernel
yields a hydraulic property field with a Gaussian decay of spatial
correlation; in this case, the spatial correlation decay constant of
the hydraulic property field is √2 times that employed by the kernel
function. See Oliver (1995) for details; see also Equation 11 below.

If the spatial integration kernel W(d) of Equation 3
exhibits spatial anisotropy, this anisotropy is inherited by the
hydraulic property field that emerges from the weighted spatial
averaging process. If W(d) is independent of location, then the
emergent hydraulic property field is geostatistically stationary.
Conversely, as Higdon et al. (1999) point out, if W(d) varies
with location, the correlation structure of the emergent hydraulic
property field also varies with location. Geostatistical descriptors of
hydraulic property variability such as mean, variance, correlation
length and anisotropy therefore become location-specific.

An ability to represent spatial variability of spatial correlation
and other geostatistical characteristics of a hydraulic property field
enhances the utility of groundwater model parameterization. For
example, in an alluvial valley, changing directions of the major
axis of spatial correlation may reflect changing geometries and
dispositions of buried alluvial channels. In other areas, the presence
(or absence) of different rock types, and/or structural features that
penetrate them, will also affect the nature of hydraulic property
spatial variability, and the degree and direction of hydraulic property
connectedness.

As stated above, use of Equation 3 to assign hydraulic properties
to model grid cells requires that iid parameters be statistically
independent of each other. Let us designate the subset of k that
is used to represent iid parameters using the vector j. Then the
covariance matrix of j is the identity matrix. That is:

C(j) = I (4)

The locations of hydraulic property heterogeneity within a
model domain are determined by values that are ascribed to the
elements of j, while patterns that are adopted by this heterogeneity
are determined by parameters that characterize the kernel function
W(d); we refer to these latter parameters as “hyperparameters”
As Oliver (2022) points out, this separation of parameter types
and functions can prove advantageous in model history-matching.
This is because j parameters retain their prior covariance matrix
C(j) (which is used for regularisation and/or stochastic field
generation) despite the fact that simultaneous history-match
adjustment of geostatistical hyperparameters (which may have their
own covariance matrix) can alter patterns that characterize the
model’s hydraulic property field. Hence, by implementing so-called

FIGURE 1
Workflow summary of the methodology used for generating hydraulic
property fields with spatially varying anisotropy.

“hierarchical inversion”, in which both iid parameters comprising j
and hyperparameters which characterize W(d) are simultaneously
adjusted in ways that respect their prior probability distributions,
uncertainties in prior parameter uncertainty are recognized and
respected as data are assimilated. Refer to Figure 1 for a summary
of the methodology for generating nonstationary parameter fields.

Where it is desired that W(d) hyperparameters exhibit spatial
variability so that a model’s hydraulic property fields exhibit
nonstationary stochastic behaviour, geostatistical hyperparameters
can be ascribed to so-called “conceptual points”. These are broadly-
spaced pilot points. Prior to populating the model grid with
hydraulic properties, the values of these hyperparameters are
spatially interpolated from conceptual points to the model grid.
The W(d) function that is used in cell-by-cell hydraulic property
assignment is therefore (a) specific to every model cell and (b)
continuously variable in space.

2.3 Data space inversion

Data Space Inversion (DSI), creates a direct statistical
relationship between the measured, historical behaviour of a system
and aspects of its future behaviour that are of management interest.
This relationship is formulated by sampling model outputs from
an ensemble of model runs that employ random realizations
of its parameters. Model outputs of interest correspond to field
measurements on the one hand, and predictions of future system
behaviour on the other hand. Observation-prediction relationships
are then collated into a joint probability distribution. Once this
joint probability distribution has been characterized, it can be
conditioned by field measurements of actual system behaviour.
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2.3.1 DSI strengths and weaknesses
One major advantage of DSI is that it does not require

adjustment of numerical model parameters. Instead, parameters are
sampled rather than adjusted, thereby avoiding the potential for
model instability issues that can accompany parameter adjustment.
A numerical model can therefore be endowed with hydraulic
property fields of arbitrary complexity. This complexity can include
categorical features such as faults and discrete alluvial channels
whose existence, positions and properties may change from
realization to realization.

Secondly, where model hydraulic property fields are generated
using the weighted averaging technique that is described in
the previous subsection, geostatistical hyperparameters can be
sampled at the same time as iid parameters. Uncertainties in
prior parameter uncertainties can therefore be taken into account
when assessing the posterior (i.e., conditional) uncertainties of
predictions of management interest. Without the need to resort to
a sequential approach.

Third, the numerical burden of DSI-based predictive
uncertainty analysis is very small compared to that ofmethodologies
that require that parameter uncertainty be quantified as a precursor
to quantification of predictive uncertainty. Conditioning of the DSI
statistical model is numerically very fast. Meanwhile, only a few
hundred samples of the joint past-future probability distribution
are generally sufficient to characterize this distribution before
conditioning it.The numerical simulator must therefore be run only
as many times as is required to obtain these past-future samples.

Fourth, based on the premise that the worth of data increases
with their ability to reduce the uncertainties of management-salient
predictions, DSI can offer a rapid means of appraising the worth
of existing or yet-to-be-acquired data; see, for example, He et al.
(2018) and Delottier et al. (2023). DSI-based methodologies of
data worth assessment have greater integrity than older methods
such as those described by James et al. (2009), Dausman et al.
(2010) and Wallis et al. (2014) that require an assumption of local
model linearity.

Fifth (and finally), relationships between historical
measurements and predictions of management interest are often
less nonlinear than are those between measurements and model
parameters. This can result in DSI-evaluated posterior predictive
means and variances that are more reliable than those obtained by
other means.

Naturally, potential advantages are accompanied by potential
disadvantages. The theory on which DSI rests is based on an
assumed Gaussian relationship between the measured past and the
managed future. Histogram transformation of numerical model
outputs that are used in this process can bestow Gaussian
behaviour on individual model outputs (Sun and Durlofsky,
2017). However this does not guarantee Gaussianality of the
joint measurement/prediction probability distribution as a whole.
This inadequacy is partly overcome through construction of
a parameterizable statistical model that encapsulates the joint
past-future probability distribution. This statistical model is then
subjected to iterative Bayesian history-matching; see below. Despite
this, the performance of DSI can still suffer if past-to-future
relationships are highly nonlinear. However, this potential problem
must be seen in context. Similar considerations apply to all data
assimilation methodologies, especially those that operate in high

dimensional parameter spaces. Nevertheless, where predictions are
likely to be discontinuous with respect to hydraulic properties
and/or exhibit non-monotonic relationships with observations of
past system behaviour, a modeller should use DSI (and all other data
assimilation methodologies) with caution.

DSI is vulnerable to prior-data conflict. If it exists, prior-data
conflict is readily exposed by undertaking model runs based on
stochastic samples of the prior parameter probability distribution,
a process that is integral to DSI deployment. Where stochastic
model outputs that correspond to field measurements do not
collectively span these measurements, then these measurements
cannot condition the DSI statistical model. Where this occurs,
a modeller should review his/her prior parameter probability
distribution. Alternatively, a modeller may exclude offending
measurements from the conditioning dataset on the basis that they
reflect some aspect of system behaviour that the model is unable to
replicate. This exclusion decision must be based on the premise that
failure to replicate these nuances of past system behaviour does not
invalidate the model’s ability to replicate those aspects of its future
behaviour that are of management interest. We note that decisions
of this kind must be made when implementing data assimilation by
anymeans;DSI’s ability to assess the existence (or otherwise) of prior
data conflict as part of its normal workflow can therefore also be seen
as a strength.

Finally, where collections of model predictions exhibit
consistencies in temporal or spatial behaviour that arise from
the nature of these predictions (for example, monotonicity of a
contaminant breakthrough curve), it is sometimes found that DSI
predictions do not exhibit this same consistency. This is especially
the case where a measurement dataset hosts little information that is
pertinent to a particular prediction.While this may not detract from
DSI estimates of posterior predictive mean and standard deviation,
the optics are not good. In some instances this problem can be
ameliorated by implementing a reduced dimensional representation
of model outputs using, for example, basis functions that emerge
from principal component analysis. Some authors have achieved
reasonable success in overcoming this problem by combining DSI
with other machine learning methodologies. See Jiang et al. (2021)
and references cited therein for further details.

2.3.2 DSI mathematical details
An ensemble of parameter realizations k generated from the

prior parameter probability distribution is run through a numerical
model to produce an ensemble of model equivalent observations o
and predictions s. Individual elements of thesemodel output vectors
are then (optionally) subjected to histogram transformation; we
retain the symbols o and s to represent these transformed vectors.
Using standard statistical analysis, empirical means of these vectors
(i.e., ŝ and ô) are then obtained; along with the empirical covariance
matrix of these vectors, which we represent below partitioned into
its component submatrices.

Ce([

[

s

o
]

]
) = [

[

Css Cso

Cos Coo

]

]
(5)

This empirical covariance matrix is now subjected to singular
value decomposition (SVD) in order to obtain matricesV and S that
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are defined by the following equation.

Ce([

[

s

o
]

]
) = VSVT (6)

V is an orthonormal matrix while S is diagonal. Values of
S decrease down its diagonal. The square root of the empirical
covariance matrix is now calculated as:

C
1
2
e ([

[

s

o
]

]
) = VS

1
2VT (7)

Now consider the following “model” whose random parameters
are encapsulated in a vector x whose mean is 0 and whose prior
covariance matrix is the identity matrix I.

[

[

s

o
]

]
= C

1
2
e ([

[

s

o
]

]
)x+[

[

̂s

ô
]

]
(8)

Run time for the “model” of Equation 8 is of the order of
hundredths of a second.

Using standard formulae for propagation of variance, it is easily
established that if the model of Equation 8 is equipped with random

samples of x, values of [

[

s

o
]

]
that are calculated using these samples

possess the same mean and covariance matrix as those produced
by the simulator using random samples of its parameters k. That

is, the mean of [

[

s

o
]

]
calculated using Equation 8 is [

[

̂s

ô
]

]
, while the

covariancematrix of[

[

s

o
]

]
calculated using Equation 8 is Ce([

[

s

o
]

]
).

It follows that by sampling x which is easily done because each
element of x is an iid, (not to be confused with the iid’s in subvector j
in Equation 4), samples of the prior probability distribution of s can
be obtained very quickly. What is more significant is that samples
of the posterior probability distribution of s can be calculated
from samples of the posterior probability distribution of x. The
latter can be obtained by history-matching the model of Equation 8
against field measurements h corresponding to model outputs
o, while adjusting the values of x. Bayesian history matching is
easily implemented using methods such as Markov chain Monte
Carlo, or an ensemble smoother. The latter option was adopted
by Lima et al. (2020). The PEST suite (Doherty, 2024a) enables
regularized calibration of the model of Equation 8 followed by fast
calculation of posterior predictive confidence intervals in Gaussian
space using a linearized formulation of Bayes equation (which is
applicable in this space). Confidence intervals calculated in this way
are then back-transformed to the space of native variables.The latter
option is extremely fast. Experience shows that it also preserves
temporal and spatial continuity relationships that are expected in
numerical model outputs (see above). Figure 2 provides a summary
of the workflow used to implement the DSI workflow.

2.4 Ensemble space inversion

Although the principal foci of this paper are nonstationary
stochastic field generation and DSI-based data assimilation, we

provide a short description of ensemble space inversion (ENSI) as
we use it in the case study (Section 3), to verify posterior predictive
means calculated by DSI. ENSI is a numerically efficient and
effective tool for model history-matching and is therefore worthy of
deployment in many modelling contexts, either as a complement to
other methodologies, or on its own.

2.4.1 ENSI strengths and weaknesses
We begin our description of ENSI by noting that, at the

time of writing, the Iterative Ensemble Smoother (IES) is gaining
increasing use in groundwater model history-matching. See Chen
and Oliver (2012), White (2018) and PEST++ Development Team
(2024) for a description of its algorithmic base and implementation
details. Kalman ensemble methods have two strong attractions.
The first is that they implement a numerical approximation to
Bayes theorem, thereby sampling an approximation to the posterior
parameter probability distribution. The second is that they can
offer substantial computational savings by working in a reduced
dimensional parameter subspace. The number of model runs
required per iteration of a nonlinear data assimilation process is
commensurate with the size of this subspace.

However, like all methods, strengths come with weaknesses.The
Bayesian credentials of IES are challenged by model nonlinearity.
Hence the calculated posterior may not be the true posterior,
and an IES-calculated posterior predictive mean may suffer
some bias (Evensen et al., 2022). At the same time, its confinement
to a relatively low dimensional parameter subspace can sometimes
limit the ability of IES to fit field measurements well.

Like IES, ENSI gains numerical benefits from dimensional
reduction. Like IES, the parameter subspace in which ENSI works
is defined by random samples of the prior parameter probability
distribution. However, ENSI provides some flexibility in definition
of this subspace by defining different subspaces for different
parameter types. Parameter type subspaces can be of different
dimensions; furthermore, factors by which different parameter
realizations within a subspace are multiplied in order to form
a history-match-conforming parameter set can be different for
different subspaces. Different sets of parameters can therefore
respond to information that is hosted by a history-matching
dataset in ways that are best suited to them. This can elevate
history-matching performance while mitigating parameter and
predictive bias.

In addition to parameter realizations, ENSI also allows user-
specified parameters to be adjusted on an individual basis as
in traditional history-matching. This can be useful where a
model is endowed with hierarchical parameterization; geostatistical
hyperparameters are obvious candidates for individual, rather than
collective, adjustment. Non-realization parameters such as these
can therefore gain immunity from spurious adjustment as they
are not realization-tethered to other parameters that may respond
in different ways to information that is hosted by a calibration
dataset. They are therefore free to respond to information within a
calibration dataset in their own way without compromising passage
of information to other parameters.

Unlike IES, ENSI does not sample the posterior parameter
probability distribution. Instead, it seeks a unique, Tikhonov-
regularized solution to an inverse problem. Ideally, this solution
enables a model to make minimum-error-variance predictions of
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FIGURE 2
Workflow summary of the DSI methodology.

future system behaviour; generally these are close to the posterior
means of their respective posterior probability distributions. In
pursuing its solution to an inverse problem, ENSI calculates a
Jacobian (i.e., sensitivity) matrix that links calibration-pertinent
model outputs to realization factors and individual calibration-
adjustable parameters. History-matching performance in the face
of inverse problem nonlinearity can be improved through regular
Broyden updating of this matrix. See Doherty (2024a) for details.

2.4.2 ENSI mathematical details
For a brief mathematical depiction of how ENSI works, we first

divide the full parameter vector k of Equations 1 and 2 into multiple
subsets. We denote the subset of parameters that are assigned to
realization group i as ki. Meanwhile, group-independent parameters
are collectively denoted as k0. The overall parameter vector k can
therefore be written as follows, where n is the total number of
realization groupings:

k =

[[[[[[[

[

k0
k1
…

kn

]]]]]]]

]

(9)

Suppose now that Mi random realizations of native model
parameters that belong to realization group i are generated; the

number of elements of ki (we denote this as mi), is generally
considerably larger thanMi. Where a hierarchical parameterization
scheme is adopted, the elements of ki may be iid’s, so that the prior
covariance matrix associated with this set of parameters is the mi ×
mi identity matrix. (Note that ENSI does not insist on hierarchical
parameterization; so it is possible that each subset of parameters
may be associated with an arbitrary covariance matrix.) Let the
Mi realizations of ki parameters comprise columns of the mi × Mi
matrix Ki. Let factors by which these realizations are multiplied be
assigned to the Mi - dimensional vector fi. Then elements of fi are
adjustable parameters in the re-formulated inverse problem.

A parameter set k that is used by a numerical model is computed
from calibration-adjustable factor parameters that are manipulated
by ENSI in the following way.

k =

[[[[[[[

[

I 0 … 0

0 K1 … 0

… … … 0

0 0 … Kn

]]]]]]]

]

[[[[[[[

[

k0
f1
…

fn

]]]]]]]

]

(10)

Ideally, prior mean values of parameter types that are featured
in different realization groups (for example, the prior mean value
of all members of parameter group ki) should be assigned to the
nonrealization parameter group k0. (This is not necessary for those
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FIGURE 3
Workflow summary of the ENSI methodology.

iid parameters which correspond to the j vector in Equation 4, for
theirmean values should probably not be adjusted fromzero.)Under
these circumstances the preferred value of all realization factor
parameters is 0. This is implemented as a Tikhonov regularization
constraint. Meanwhile, the prior standard deviation of each element
of the fi parameter group is√Mi − 1 (Iglesias et al., 2013; Chada et al.,
2018). This is used to weight Tikhonov regularization constraints.

The workflow used to implement the ENSI methodology is
summarised in Figure 3.

The numerical cost of implementing ENSI is commensurate
with that of IES as the number of parameter realizations that is
required for effective implementation of these two processes is
similar. Experience to date suggests, however, that ENSI is often
able to attain a better fit with a history-matching dataset in fewer
iterations than IES. Implementation of Broyden Jacobian updating
appears to contribute significantly to its history-matching alacrity.

Based on this short comparison between ENSI and IES, it
should not be construed that the authors of this paper see one as
“superior” to the other. The authors view them as complementary
to each other. Their principles of operation, and the numerical cost
of their deployment, are somewhat similar. However, IES adjusts
all realizations that comprise an ensemble while ENSI combines
ensembles to attain a single parameter field that is, ideally, close to
the posterior mean parameter field. For reasons described above,
formulation of the ENSI inverse problem protects this field, to some
extent at least, from estimation bias.

2.5 Summary

Three novel methodologies have now been described that, when
used together or on their own, can improve the efficacy of decision-
support groundwater model deployment in hydrogeologically
heterogeneous environments.

Nonstationary stochastic field generation allows a modeller
to construct adjustable parameter fields that encapsulate variable
connectedness of hydraulic properties in different parts of a
model domain. The locations of hydraulic property heterogeneity
are represented by a dense spatial array of iid parameters,
while heterogeneity patterns are governed by spatially variable
geostatistical hyperparameters. These two sets of parameters (iid’s
and hyperparameters) are independently adjustable.

In conjunction with a numerical model, DSI can use hydraulic
property fields such as these to construct a statistical model that
links field measurements of system behaviour to predictions of
management interest. Once this statistical model has been built,
it can be quickly conditioned using actual field measurements,
thereby reducing predictive uncertainties. The numerical cost of
the DSI process is limited to a few hundred simulations based on
stochastic hydraulic property fields. The DSI process can readily
accommodate both nonstationarity and uncertainty of geostatistical
hyperparameters. Moreover, because model hydraulic property
fields do not undergo adjustment, DSI can accommodate categorical
expressions of hydraulic property heterogeneity.
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ENSI achieves efficiencies in model calibration by working in
a subspace of parameter space that is defined by realizations of
a prior parameter probability distribution for different parameter
types. This can lift history-matching performance while mitigating
parameter bias in complex history matching contexts. The ENSI
inversion algorithm appears to be robust in the face of nonlinearities
induced by hierarchical inversion. Because parameters require
adjustment, its model run burden is greater than that of DSI; it is of
the same order as other dimension reduction methods such as IES.

3 A case study

3.1 General

This section describes groundwater issues, and a groundwater
model, to which the methodologies that are described in the
previous section are applied. The study area is in Aotearoa/New
Zealand.The issue is potential risk to groundwater quality; however,
the present study actually focusses on groundwater age, as young
groundwater may contain pathogens that are introduced from
agricultural and other activities through free draining soils that
are then transported large distances through highly permeable
aquifers. As a direct outcome ofmicrobial decay, groundwaterwhose
residence time is less than 1 year poses a greater risk to human
health than groundwater that is older than this.There is a heightened
awareness of this issue in New Zealand as microbial groundwater
contamination has led to deaths in the recent past; see Gilpin et al.
(2020). Groundwater in the study area is also contaminated by
nitrates. While threats to human health posed by nitrates are not
directly related to groundwater age, groundwater residence time
impacts an aquifer’s response to changes in agricultural practice that
may be implemented to address this issue.

3.2 Hydrogeology

The Wairau Aquifer, underlying the Wairau Plain, is situated in
the northern part of the South Island of New Zealand; see Figure 4.
With an area of approximately 360 km2, this is the country’s largest
wine-growing region. The Wairau River flows near the northern
boundary of the Wairau Plain.

Glacial outwash sediments underlie the western part of
the Wairau Plain (Holocene Rapaura Formation) while finer
marine, estuarine, lagoonal, and aeolian deposits prevail in the
east (Holocene Dillons Point Formation). The Holocene surficial
gravels of the Rapaura Formation increase in thickness from
approximately 10 m to approximately 20 m from west to east,
with transmissivities varying between 1,000 and 4,000 m2/day.
To the east, the finer deposits of the Dillons Point Formation
extend to a depth of about 30 m, with lower transmissivities of
up to 50 m2/day. A series of springs occur along the transition
zone between the Rapaura and Dillons Point Formations. It is
relevant to the following discussion that estimates of groundwater
residence time for some of these spring waters are as low as
a single year.

Both of these surficial Holocene formations overly glacial
outwash deposits of Pleistocene age.These deposits are at least 80 m

thick, with estimated transmissivities of 35 m2/day to 300 m2/day.
In the eastern part of the Wairau Plains, groundwater flow can be
confined. For further details of the hydrogeology of the Wairau
Plains, see Davidson and Wilson (2011).

Pumping tests, lithological and geophysical logs, outcrops, and
a consideration of depositional mechanisms suggest that hydraulic
property heterogeneity is high throughout the alluvial gravel
and glacial outwash sequences. Furthermore, spatial correlation
of elevated and subdued hydraulic conductivity is likely to be
higher in the direction of historical river and glacial outwash
flow (roughly from west to east) than perpendicular to this
direction. To the extent that spatial correlation of hydraulic
conductivity anisotropy prevails in the finer sediments of the
Dillons Point Formation, it is expected to be parallel to historical
shorelines (which are roughly parallel to the present-day shoreline).
Correlation anisotropy such as this can have a profound effect on
movement of solutes, as well as on groundwater age (Engdahl and
Weissmann, 2010; Moore et al., 2022).

Preferential pathways of open framework gravel permeate
the alluvial and glacial outwash deposits (Ferreira et al., 2010).
These are common to many New Zealand glacial outwash-alluvial
reworked aquifers (Burbery et al., 2017). The impact of open
framework gravels on overall aquifer transmissivity is generally
mild, but their impact on contaminant residence time can be
profound, for they comprise rapid transport pathways that have
led to detection of pathogens at large distances from suspected
pathogen sources (Gilpin et al., 2020). As will be discussed
below, this has consequences for modelling of both contaminant
movement and groundwater age in these aquifers. The small cross-
sectional area of open framework gravels, combined with their
extremely high permeability, requires the assignment of low effective
porosities to their host formations in order for modelling to
replicate high observed transport velocities (Dann et al., 2008;
Thorpe et al., 1982; Tonkin and Taylor Ltd, 2018).

Initial estimates of aquifer properties such as hydraulic
conductivity are based on Westerhoff et al. (2018). These estimates
were used to support characterization of mean hydraulic properties.
Meanwhile, estimates of hydraulic property spatial correlation
lengths are informed by expert intuition. Together, these provide a
probabilistic description of aquifer properties that can be embodied
in the stochastic parameterization scheme of the numerical model.
The reader is referred to relevant publications (White et al., 2016;
Morgenstern et al., 2019; Raiber et al., 2012; Wöhling et al., 2018;
Davidson and Wilson, 2011) and to Supplementary Material for
more detail.

3.3 Water inflow

As discussed by Wöhling et al. (2018) and references cited
therein, recharge to the Wairau Aquifer is dominated by the Wairau
River, the Waihopa River (its dominant tributary), and other minor
tributaries. Meanwhile, estimates of diffuse rainfall recharge are
available from regional modelling that incorporates local climate,
land use and soil type (Westerhoff et al., 2018). Recharge averages
145 mm/year over western alluvial Holocene material; however
recharge is minimal under the fine coastal sediments that prevail
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FIGURE 4
Overview of study area showing model domain, geology, stream network, and conceptual points used for depiction of spatially variable anisotropy of
hydraulic property correlation. The orientation and length of each line indicates the direction and length of maximum spatial correlation (see Table 1).
The darkness of these lines indicates the model layers to which respective conceptual points pertain. Specifiers such as 1+ indicate all layers from layer
1 to layer 13. The grey line indicates the approximate location of the transition from confined (west) to unconfined (east) conditions.

in the eastern portion of the study area. Means and variances of
recharge estimates are summarised in Supplementary Table S1.

The Wairau Aquifer also receives water from neighbouring
groundwater systems through its boundaries with these systems.
See Figure 5 below. Inflow rates vary considerably along the
alluvial perimeter. They are estimated (with some uncertainty)
on the basis of contributing areas and estimated recharge rates.
Because of their uncertainties (and hence the need for their
stochastic and adjustable representation), lateral inflow rates are
declared as parameters in the Wairau model. See Supplementary
Table S1 in the Supplementary Material for further details.

3.4 History matching observations

Estimates of long-term average water levels throughout
the Wairau aquifer system at 1,778 locations are provided by
White et al. (2016). Well screen intervals are generally shallower
under the western portion of the aquifer than under its eastern
portion, this reflecting the fact that deep permeabilities are higher

than shallow permeabilities in the eastern part of the system;
see Figure 4.

Estimates of mean flows in the Wairau River and 14 springs are
also used for history matching (White et al., 2016, derived from
Davidson and Wilson, 2011); see Figure 5.

Measurements of groundwater age have been made at 63
locations throughout the study area. (We use the terms “age” and
“residence time” interchangeably in this paper.) Inferences of age
vary between 1 day and 210 years (Figure 5). Most measurements
were made in the eastern part of the study area where water is older.
Increased water age in this area is an outcome of greater distance
from recharge sources and slower rates of groundwater flow through
coastal sediments.

3.5 Purpose of modelling

The primary purpose of modelling that is described herein
is production of a three-dimensional map of groundwater age.
Modelling therefore needs to reproduce age measurements
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TABLE 1 Initial values of conceptual point hyperparameters. Standard deviations for all hyperparameters listed above are 2 orders of magnitude, i.e.,
(+/−) 2 in log10 space.

Material por (−) kh (m/day) kvmul (−) ahmax (m) ahmin (m)

Holocene alluvial gravels 0.001 100 0.7 900 900

Holocene valley gravels 0.005 100 0.7 3,000 900

Holocene estuary 0.1 0.1 0.09 900 900

Holocene swamp and beach 0.1 0.1 0.09 3,000 900

Holocene swamp 0.1 0.1 0.09 900 900

Pleistocene gravels (margins) 0.001 100 0.7 900 900

Pleistocene gravels (central) 0.001 10 0.9 3,000 900

FIGURE 5
Locations of age/head history matching and stream inflow targets. Symbol sizes for age and head observations indicate observation depth in 10 m
increments, with the smallest being less than 10 m and the deepest being greater than 100 m.

that are depicted in Figure 5 while interpolating between these
measurements in three dimensions. Of particular interest are low
residence times, especially where these residence times are less
than about a year. Unfortunately, as is apparent from Figure 5, most
measurements of groundwater age were made in the eastern part
of the study area where water is older, and hence poses less threat
to human health. Only a few measurements have been made in

western parts of the aquifer system where it is supposed that water
is younger, and hence may pose a health risk.

Ideally, because groundwater age interpolation is simulation-
based, and because measurements of heads and streamflows
provide additional history-matching constraints, model-based age
interpolation should have greater integrity than spatial interpolation
that is undertaken in any other way. Nevertheless, local uncertainties
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FIGURE 6
Random realization of horizontal hydraulic conductivity for (A) layer 1 and (B) layer 10 of the Wairau model.

are likely to be high. In recognition of this, modelling is tasked with
quantifying these uncertainties. In doing so, it is also tasked with
identifying locations where the likelihood of encountering young
water is not vanishingly small.

4 Model construction and
parameterization with spatially varying
anisotropy

4.1 General

Numerical simulation of the Wairau Aquifer is now described.
For brevity, we only include details of the modelling process that are
pertinent to the theme of this paper.

4.2 Numerical model structure and design

Groundwater flow is simulated using MODFLOW 6
(Langevin et al., 2017). The model grid is structured and laterally
uniform. All cells are square with a side length of 300 m.The model
grid is shown in Figures 6A,B.

In order to represent variation of hydraulic properties with
depth, and in order to support simulation of three-dimensional
travel paths of water and contaminants throughmaterial with depth-
dependent hydraulic properties, the model possesses 13 layers.
Layer thicknesses are uniformly 1, 2, 4, 6, 8, 10, 10, 20, 20, 20,
33, 33 and 33 m. Hydraulic properties that are representative of
Holocene gravels extend to the base of layer 5, while those that

represent finer coastal Holocene sediments extend to the base
of layer 6. These overly layers that represent Pleistocene glacial
outwash deposits.

The model simulates steady state flow. Groundwater interaction
with the sea is represented using a general head boundary (i.e.,
GHB). This is located in model layer 1; it extends seaward from the
coast for about 2 km.

Water enters the model vertically through recharge (simulated
using the RCH package) and laterally through small amounts
of inflow (i.e., “mountain front recharge”) through its northern,
southern and western boundaries (simulated using the WEL
package). As discussed above, these lateral inflows are calculated
from estimated recharge rates and areas of upgradient, contributing
catchments.

The streamflow routing package (SFR, Niswonger and Prudic,
2005) is used to simulate flow in theWairau River and its tributaries.
SFR reaches are assigned to cells that include streamlines that
are depicted in Figure 5. Upstream inflows into the Wairau and
other rivers are estimated from pertinent stream gauging data
(where available); these are declared as parameters so that they are
adjustable. SFR conductances are calculated from layer 1 vertical
hydraulic conductivities, observed and estimated stream widths,
and intersection lengths of mapped streams with model cells.
Spatially distributed multiplier parameters are applied to these
stream conductances in order to support history-match adjustment.

Ubiquitous high-conductance, surface-emplaced drain
cells (simulated using the DRN package) are connected
to the MODFLOW 6 water mover (MVR) package.
These conduct surface water seepage to the nearest SFR
stream reach.
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Groundwater age is calculated by particle backtracking
using MODPATH 7 (Pollock, 2016). Five hundred particles are
emplaced on a cylinder of radius 1 m and height 2 m surrounding
each subsurface age measurement point. The model calculates
groundwater age as the average travel time of these 500 backtracked
particles. For predicting age at cells without age measurements
(these being model predictions of interest), a single particle is
placed at the centre of each cell and backtracked to its recharge
source. In both cases, particles that emerge at mountain front
recharge boundaries are ascribed a history-match-adjustable age
increment that increases with depth of exit. A spatially-variable
increment-versus-depth function is ascribed to all laterally emergent
particles.

The model run time is generally 5–10 min, this including
parameter preprocessing and model output postprocessing.
However, this can extend to 30 min for some parameter sets.

4.3 Conceptual point hyperparameters

As discussed above, spatially-varying, layer-specific
hyperparameters that embody geostatistical descriptors of hydraulic
property variability are ascribed to conceptual points. One suite of
hyperparameters is required for horizontal hydraulic conductivity
(kh), another suite is required for the ratio of vertical to horizontal
hydraulic conductivity (kvmul), and another suite is required for
porosity (por). Five hyperparameters are ascribed to each conceptual
point for each of these three hydraulic property types. These
are as follows:

• mean value;
• variance (i.e., sill);
• bearing of major axis of correlation anisotropy;
• length of major axis of correlation anisotropy (ahmax) (i.e.,
correlation length in the dominant direction of anisotropy);

• length of minor axis of correlation anisotropy (ahmin) (i.e.,
correlation length in the minor direction of anisotropy).

In the modelling workflow described herein, only some
of these hyperparameters are varied in order to express
uncertainty and respond to history-matching; see below.
The remaining hyperparameters are fixed at user-prescribed
values.

The length of an axis of anisotropy (ahmax or ahmin) is the value
of a that appears in the following depiction of the Gaussian function;
d represents distance. This function is employed by the spatial
integration kernel which transforms cell-based iids to spatially
correlated, cell-based hydraulic properties.

f(d) = e−(
d
a
)2 (11)

48 conceptual points are assigned to each model layer.
Conceptual points have the same x and y coordinates in all of
these layers. Interpolation of geostatistical hyperparameters from
conceptual points to cells of the model grid is implemented
using two-dimensional kriging that is based on spatially varying
variograms that reflect local anisotropy. See Doherty (2024c).

Figure 4 shows the locations of conceptual points together
with associated ahmax lengths and directions. These are overlain

on a geological map of the study area. Assignment of values to
conceptual-point-hosted hyperparameters reflects local geologic
structure and hydraulic property type. See Table 1. Note that ahmax,
ahmin and orientation parameters are fixed (i.e., are nonadjustable)
in the present study.

Immediately noticeable from Table 1 are the low values of
prior mean porosity. (Recall that porosity is parameterized; hence
values of porosity throughout the model domain are history-
match-adjustable.) As discussed above, prior porosity values reflect
experience in history-matching other New Zealand models with
similar geology. They reflect the presence of preferential pathways
comprised of highly permeable open framework gravels whose
connected cross-sectional areas are considerably smaller than that
of numerical model cells. Use of low prior porosities in this context
can therefore be considered as an upscaling strategy, or a property of
the medium that prevails at a representative elementary volume that
is roughly the size of a model cell (Kenny et al., 2025; Dann et al.,
2008). As such, its use embodies similar concepts to that of dual
porosity in which a medium is declared to possess coincident
mobile and immobile flow domains. Preferential pathways are
likely to have little effect on bulk hydraulic conductivities,
but are able to transport solutes (and possibly viruses) large
distances in short times (Thorpe et al., 1982; Dann et al., 2008;
Tonkin and Taylor Ltd, 2018).

4.4 Model parameterization

4.4.1 General
The Wairau Aquifer model possesses 51,714 active model cells.

Three groups of iid parameters are assigned to each of these cells, one
for the log of porosity (por), one for the log of hydraulic conductivity
(kh), and one for the log of the ratio of vertical to horizontal
hydraulic conductivity (kvmul). These iids are spatially integrated
to obtain values of the logs of pertinent hydraulic properties at
model cells. The integration function is specific to each model
cell. It reflects local values of cell-interpolated hyperparameters that
are depicted in Table 1. Generation of random values for iids is
straightforward as they are normally distributed and independent
of each other. The total number of iid parameters is 155,142.

Hyperparameters comprisingmean values for por, kh and kvmul
are ascribed to each of the 624 conceptual points, this resulting
in 1,872 hyperparameters that are history-match-adjustable.
Spatial correlation between these hyperparameters is presumed
to be horizontal and spatially variable, with ahmax and ahmin
values equivalent to those ascribed to the conceptual points
themselves. Covariance matrices that embody this assumption are
used for generation of random values of these hyperparameters.
All other conceptual point hyperparameter values are
declared as fixed.

A spatially-correlated addend field is applied to recharge. Recall
that steady state recharge rates are calculated by a regional recharge
model that takes local climate, soil type and land use into account.
In order to introduce the possibility of additional spatial variability
beyond that provided by the regional recharge model, the recharge
addend field is interpolated from 121 pilot points that are distributed
over a regular grid that spans the model domain. The addend field
is characterized by a mean value of 0.0 and a covariance matrix

Frontiers in Earth Science 13 frontiersin.org

https://doi.org/10.3389/feart.2025.1609778
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Kitlasten et al. 10.3389/feart.2025.1609778

with a variance of 10–6 (m/day)2 and a spatial correlation length
of 9 km (see Supplementary Table S1).

Other parameters used by the Wairau model are as follows:

• stream stage above stream bed;
• stream conductance multipliers;
• rate of groundwater age increase with depth at lateral model
boundaries;

• multipliers applied to lateral boundary inflow rates;
• GHB conductances at the seaward model boundary;
• boundary inflows into stream segments.

All but the last of these parameters are spatially
distributed. Prior means, variances and correlation lengths are
provided in Supplementary Material.

Altogether, the Wairau Aquifer model is endowed with 163,359
parameters. Collectively, they reflect what is known about the
Wairau groundwater system (through their prior probability
distributions) and what remains unknown about the system
(through the range of values that are compatible with these
distributions).

4.4.2 Model parameterisation and DSI
Five hundred runs of the Wairau numerical model were

devoted to training of the DSI statistical model. On each
occasion that it was run, the numerical model was equipped
with a single realization of all model parameters (including
hyperparameters) that are described in previous paragraphs.
For each model run, model outputs that complement field
measurements, together with model predictions of management
interest, were recorded. These were subsequently used to construct
the empirical covariance matrix of Equation 5. In the present case,
predictions of interest comprise groundwater ages calculated for
every model cell.

4.4.3 Model parameterization and ENSI
As for DSI, implementation of ENSI requires generation of

random parameter fields. ENSI combines these fields to produce
a single, regularized hydraulic property field. As discussed above,
separate combinatorial factors can be applied to realization groups
that are comprised of different parameter types. So, prior to
implementing ENSI, a modeller must separate parameters into
different realization groups. He/she must then assign a certain
number of realizations to each of these groups. As discussed above,
individual parameters can also be estimated.

The number of realizations assigned to each realization group
for the study that is documented herein is listed in Table 2.

The ENSI parameter set also includes 18 non-realization
parameters. These are inflows to SFR stream segments along the
model boundary.

4.5 Example realizations

Figure 6 shows a single realisation of hydraulic conductivity
for layers 1 and 10 of the model. Note how, in the upper of
these two model layers (which represents Holocene deposits), high
values of hydraulic conductivity in the western part of the model

TABLE 2 Number of realizations assigned to different parameter groups.

Parameter type Number of realizations

kh iid parameters 100

por iid parameters 100

kvmul iid parameters 100

Conceptual point mean kh 100

Conceptual point mean kvmul 100

Conceptual point mean por 100

Spatial parameters describing age increase
with depth for particles terminating on
model boundaries

200

Spatial parameters that multiply lateral
mountain front recharge

100

Stream stage above stream bed 100

Recharge rate multipliers 50

Spatial distribution of boundary
conductance

50

Total number of realizations 1,100

domain merge smoothly into low values of hydraulic conductivity
in the eastern part of the model domain as gravels grade into
silts and clays. Note also how the patterns and orientations of
hydraulic conductivity change shape and direction when moving
from west to east.

In contrast, the geostatistical properties of Pleistocene
glacial outwash material that underlies the shallow Holocene
deposits exhibit less spatial variability than the material which
overlies it. Hence patterns of heterogeneity are the same
in both the eastern and western parts of layer 10 of the
model domain.

5 Data assimilation results

5.1 DSI

As stated above, the numerical model of the Wairau Aquifer
was run 500 times in order to train the DSI statistical model.
For each of these runs, the model was populated with a different
stochastic parameter field. Measured heads, streamflows and log-
transformed measured groundwater ages comprise the vector h
(i.e., the history-matching dataset) of Equations 5–8, while model
outputs corresponding to these measurements comprise the vector
o.The vector s (i.e., the suite of model predictions) contains logs of
groundwater age calculated for every cell of the model domain.

The DSI statistical model of Equation 8 has a run time
of a fraction of a second as it requires only that a vector
be multiplied by a matrix. This makes history-matching easy.
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History-matching options include those that would normally be
considered for a numerical groundwater model, these including
regularized inversion or ensemble smoothing. However, because
of its short run time, options such as Markov chain Monte
Carlo that would not normally be used for groundwater model
history matching can also be considered. In all cases, the x
parameters of Equation 8 are adjusted until a desired level of fit is
attained between statistical model outputs and field measurements.
Ideally, history-matching using regularized inversion yields
groundwater log (age) predictions that approximate their posterior
means. Alternatively, an ensemble smoother enables direct
sampling of the posterior predictive probability distribution
of log (age).

In the present study, we implement history-matching using
regularized inversion. As is discussed in Section 2.3, statistical
linkages embodied in Equation 8 are generally made after histogram
transformation of observations and predictions to Gaussian space.
Predictions made by the statistical model must then be back-
transformed to the space of natural numbers. Software available
through the PEST suite associates predictive confidence intervals
with back-transformed, calibrated statistical model predictions
without the need to sample posterior predictive probability
distributions. This is done by first implementing linearized Bayes
equation in Gaussian space (where it is applicable) and then back-
transforming to the space of natural numbers. This approach to DSI
model history-matching and uncertainty analysis has the advantage
that it reduces the propensity for nonphysical DSI model output
behaviour that is discussed in Section 2.3. See Doherty (2024a) for
details. In the present study, however, implementation of histogram
transformation was found to offer no advantage. So calculation of
uncertainties in this manner was applied to untransformed model
predictions.

Fits between DSI statistical model outputs and field
measurements are summarized in Figure 7. Head misfits can
be attributed to a number of causes. These include invalidity
of the steady state assumption, and the effects of local nuances
of hydraulic properties that cannot be represented using prior
parameter and hyperparameter probability distributions that are
employed in this study. Root mean square errors are 1.69 m
for heads, 0.59 log10 (m3s-1) for streamflows and 0.07 log10
(years) for groundwater age. The objective function that was
used to define model-to-measurement misfit, and that was
minimized during the DSI statistical model calibration process,
used different weights for different observations of each type in
order to reflect relative measurement credibilities. Following this
philosophy, weights assigned to streamflows were such that they
comprised about 10% of the total objective function because local
channel characteristics, especially elevation, are represented only
approximately at the scale of the model grid. (Note that the log scale
used for streamflows in Figure 7, appears to exaggerate misfits with
small flows.).

A number of factors contribute to model misfit of groundwater
age measurements. These include processes that determine
groundwater residence time, as well as those that effect the
groundwater age measurement process itself. Ideally, given the
purpose of the current study, a model-calculated age should be
matched against that of the youngest water in the vicinity of
the age measurement point. However, because of local hydraulic

property heterogeneity, it cannot be guaranteed that a particular
measurement borehole has access to the youngest local water.
Furthermore, extraction of water from a borehole is likely to
mix locally younger water with locally older water. Some older
water may therefore be withdrawn from material of low hydraulic
conductivity that juxtaposes a measurement borehole that is
screened in hydraulically conductive material.

Figure 8 depicts posterior mean groundwater age in layers 6
and 9 of the numerical model as calculated by the calibrated DSI
statistical model. (These layers were selected for representation
in this and ensuing pictures because they are representative of
conditions in the upper and lower portions of the Wairau Aquifer.
Their significance for vulnerability assessment is no different from
that of other layers, however.) The predicted youthfulness of deep
water in some parts of the model domain is readily apparent from
this figure. By way of comparison, Figure 9 depicts ages in these
same layers calculated using prior mean hydraulic properties. It is
apparent that data assimilation reduces predicted groundwater age
considerably in many parts of the Wairau Alluvium.

The posterior standard deviation of uncertainty of predicted
groundwater age in layers 6 and 9 is mapped in Figure 10, using
a log(to base 10) scale. Uncertainties are high near the coast and
relatively low in other parts of themodel domainwhere groundwater
age is predicted to be low.

Figure 11 shows the ratio of the posterior standard deviation
of log age to the prior standard deviation of log age in these
same layers. Lighter colours indicate low values of this ratio, and
hence larger reductions of uncertainty accrued through history-
matching; any value less than 1.0 indicates at least some reduction
in the uncertainty of predicted groundwater age. The uncertainty-
reducing effects of data assimilation are readily apparent. This
is particularly significant near the Wairau River in the west
of the study area where previous studies have shown high
rates of groundwater recharge from the river (Davidson and
Wilson, 2011; Wilson et al., 2023).

Figure 12 illustrates how uncertainty analysis can assist
groundwater management through its ability to associate risk
with prognoses of future groundwater condition. The two parts
of this figure (each pertaining to a different model layer) depict
the 95% confidence limit of groundwater youthfulness. That is to
say, there is only a 5% chance that groundwater is younger than
values that are mapped in this figure, while there is a 95% chance
that it is older. Areas where there is less than a 5% probability
of water being younger than a single year are omitted from
these figures.

Finally, we explore the comparative efficacy of head and
streamflow data on the one hand, and groundwater age data
on the other hand, in reducing uncertainties of regional
groundwater age predictions. Figure 13 depicts improvements
in uncertainty reduction accrued through joint use of age,
head and streamflow measurements over that achieved through
use of head and streamflow measurements alone. It does
this through displaying the ratios of posterior uncertainties
calculated on the basis of these two calibration datasets. Values
of less than unity (lighter colours in Figure 13) imply lower
predictive posteriors when history-matching is undertaken
against age/head/streamflow data than when it is undertaken
against head/streamflow data alone. It is apparent from these
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FIGURE 7
Model-to-measurement fits for (A) groundwater head (B) log(to base 10) of streamflow and (C) log(to base 10) of groundwater age.

FIGURE 8
Posterior mean estimates of groundwater age in (A) layer 6 and (B) layer 9 of the model domain as calculated by the calibrated DSI statistical model.
These correspond to depths of approximately 31 m and 61 m respectively.

two figures that uncertainties in predicted groundwater age are
generally much greater when these predictions are constrained
only by head and streamflow measurements than when they
are constrained by head, streamflow and age measurements.
Other analyses demonstrate this in different ways. For example,
a plot of posterior mean groundwater age calculated using
a DSI statistical model that is calibrated against heads and
streamflows alone (see Supplementary Figure S1) exhibits
ages that are similar to those calculated using prior mean
parameter fields.

5.2 ENSI

Calibration of the numerical model of the Wairau Aquifer
using ENSI attained an acceptable level of model-to-measurement
misfit in 6,711 model runs. Nevertheless, the inversion process
was allowed to continue until model-to-measurement misfit was
minimized, thereby reducing the objective function by a further
5%; this required a total of 49,245 runs over 22 iterations of the
regularized inversion process. Fits between model outputs and
field measurements are commensurate with those attained through
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FIGURE 9
Prior mean estimates of groundwater age in (A) layer 6 and (B) layer 9 of the model domain.

FIGURE 10
Posterior standard deviation of log(to base 10) of groundwater age in (A) layer 6 and (B) layer 9 of the model domain as calculated by the calibrated DSI
statistical model.

calibration of the DSI statistical model, and so are not presented
as a separate figure. After 6,711 model runs, root mean square
errors are 2.17 m for heads, 1.70 for streamflows and 0.42 log10
(years) for groundwater age.

ENSI-calibrated hydraulic conductivity fields for layers 6 and 9
are displayed in Figure 14. Unsurprisingly, these fields are smoother
than samples of the prior hydraulic conductivity distribution that
are displayed in Figure 6.This is an expected outcome of regularized
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FIGURE 11
Ratio of posterior (DSI calibration) to prior standard deviation of log(to base 10) of groundwater age in (A) layer 6 and (B) layer 9 of the model domain.

FIGURE 12
Groundwater age predictions corresponding to the 5% quantile in (A) layer 6 and (B) layer 9 of the model domain as calculated using the calibrated DSI
statistical model.

inversion whose purpose is to find the “simplest” solution to an
inverse problem while maintaining geostatistical correctness of that
solution. See Doherty (2015) for further details.

Groundwater age predictions made using the ENSI-calibrated
model are shown in Figure 15. These are commensurate with
predictions of groundwater age made using the calibrated DSI

statistical model; see Figure 8. While qualitative agreement between
predictions made using ENSI on the one hand, and DSI on the
other hand (onemethod requiring adjustment of complex parameter
fields and the other requiring adjustment of parameters used by a
statistical model), does not constitute validation of either method,
consistency of results lends credibility to both of them.
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FIGURE 13
Ratio of posterior predicted age standard deviations with and without age measurements included in the DSI calibration dataset for (A) layer 6 and (B)
layer 9 of the model. Lighter colours depict areas where historical measurements of groundwater age are most effective in reducing the uncertainties
of future groundwater age predictions.

FIGURE 14
ENSI-calculated hydraulic conductivities in (A) layer 1 and (B) layer 9 of the model domain. These can be compared to selected prior realisations of
hydraulic conductivity provided in Figure 6.
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FIGURE 15
Predictions of groundwater age in (A) layer 6 and (B) layer 9 of the ENSI-calibrated model.

6 Discussion

6.1 Numerical implications

In this paper we present and demonstrate the utility of a
methodology that enables generation of complex, stochastic,
non-stationary hydraulic property fields. The hydraulic property
parameters from which these hydraulic property fields are
computed are Gaussian, continuous, and adjustable. Furthermore,
hyperparameters that govern hydraulic property patterns can
be simultaneously adjusted during history-matching. The case
study demonstrates how these two parameter types can therefore
express, in a semi-realistic manner, hydrogeological complexities
on which model outputs may depend, and how they can respond
to information related to locations and patterns of anomalous
heterogeneity that may reside in a history-matching dataset. At
the same time, this type of parameterization can readily express
the consequences of information insufficiency for predictive
uncertainty.

An advantage that accompanies the use of iid parameters to
represent hydraulic properties is that they retain their geostatistical
identity even as hyperparameters that dictate the spatially-variable
correlation structure of groundwater system hydraulic property
fields are adjusted during history-matching. This enables relatively
easy implementation of hierarchical inversion. It also enables
expression of uncertainties in prior hydraulic property uncertainty
when building a DSI statistical model.

Advantages of DSI as a device for predictive uncertainty
quantification and reduction that have been demonstrated through
the case study include the following:

1. The numerical cost of DSI is small. It requires that only a few
hundred runs of a numerical simulator be undertaken using
samples of its prior parameter probability distribution. Data
is assimilated using a fast-running surrogate statistical model,
reducing the computational costs of historymatching by orders
of magnitude.

2. DSI can therefore be employed in conjunction with simulators
whose run times are long, and whose numerical stability
may not withstand the rigours of parameter-based data
assimilation implemented through either ensemble-based
history-matching or regularized inversion.

3. When implementing DSI, the prior probability distribution of
hydraulic and other systemproperties can be represented using
geostatistical descriptors of arbitrary complexity. Furthermore,
they can include uncertainty in prior uncertainty, i.e., the
uncertainties of values of geostatistical hyperparameters.

4. DSI analysis is easily extended to include appraisal of
the comparative worth of different data and/or different
data types.

The data worth analysis that is exemplified in the present study
is simple, requiring only the omission of part of an existing history-
matching dataset from the data assimilation process. However, with
little extra effort, more complex analyses can explore the worth
of data that has not yet been acquired. This can be achieved
by comparing DSI-evaluated predictive uncertainties with and
without the inclusion ofmodel-generated “measurements” of system
behaviour in a DSI history-matching dataset (Delottier et al., 2023).
Appraisals of data worth that are undertaken in this manner can
underpin design of data acquisition strategies that maximize returns
on data investments.
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Parameter-based data assimilation is required where
information pertaining to the disposition of subsurface hydraulic
properties is sought. However, where a complex, slow-running
model is endowed with many parameters, and where data
assimilation requires adjustment of all of these parameters, then
history-matching must be implemented using a dimensional
reduction scheme. ENSI provides flexibility in reducing the
dimensionality of an inverse problem, and with it the number of
model runs that is required for solution of that problem.

The case history that is described above demonstrates ENSI’s
ability to subject different parameter types, as well as individual
parameters, to history-match-adjudicated manipulation in their
own subspaces without interference from other parameter types. Its
use in hierarchical inversion has also been demonstrated.

A shortcoming of ENSI inversion is that it does not assess
posterior parameter uncertainty. Uncertainty quantification must
therefore be undertaken using other methods. However, in attaining
a good fit with a measurement dataset, ENSI inversion provides
a useful starting point for application of these methods. For
example, random parameter samples that are used by an iterative
ensemble smoother such as PESTPP-IES may be centred on an
ENSI-calibrated parameter field. If this is done, the hard work of
achieving a good fit with a measurement dataset, possibly under
nonlinear circumstances that may challenge the performance of
an ensemble smoother, has already been accomplished. Similarly,
random parameter sets centred on an ENSI-calibrated parameter
field can be used for DSI analysis. Another option is to undertake
linear, first order second moment (FOSM) analysis following ENSI
inversion using an ENSI-calculated Jacobian matrix.

6.2 Implications for groundwater
management

DSI-predicted groundwater residence times that are pictured
in Figures 8, 12 are smaller than those anticipated on the basis of
system properties that are informed by expert knowledge alone;
see Figure 9. In particular, they depict deep groundwater as being
younger than expected.DSI-based uncertainty analysis exposes even
more pessimistic possibilities; see Figure 12.

Implications forWairau Aquifer groundwater management may
be significant. This study suggests that continuous monitoring of
aquifer-extracted drinking water for viral and other contaminants
may be warranted. This is because contaminants have opportunities
for rapid transport from their sources to drinking water extraction
points. These opportunities are offered by alluvial sediments that
include depositional features with highly connected permeabilities.

Of equal importance is the mechanism through which
these opportunities for rapid advection have been exposed. The
present study shows that information forthcoming from head and
streamflow measurements does little to illuminate risks posed by
fast advective transport of pathogens through a highly permeable
and heterogeneous groundwater system. It appears that the best
way to inform groundwater age is to calibrate a numerical model
(or its statistical surrogate) against measurements of groundwater
age, to the extent that these are available. Correspondingly, the best
way to reduce uncertainties in groundwater age is to take more

age measurements, especially at locations that are important to
maintenance of human health.

Calculation of younger-than-expected groundwater residence
times has some beneficial repercussions. It suggests that alterations
to agricultural practices and land management that may require
implementation in order to reduce the amount and location of
nitrate pollution may achieve positive outcomes in a reasonably
short time.

7 Conclusions

Protection and management of the health and sustainability of
a groundwater system requires an ability to extract management-
pertinent information from all available data. It also requires that
the repercussions of information insufficiency be clearly presented
to decision-makers so that they are aware of the risks that accompany
any management strategy that they may pursue.

Three technologies which are new to groundwatermodelling are
presented in this paper. Whether used together or separately, these
can enable those who provide technical support to groundwater
managers to increase the value of that support.They are all designed
to enhance the utility of numerical simulation as a groundwater
management tool. In particular, they are all designed to increase
the ability of numerical simulation to extract information from
measurements of past system behaviour in order to express and
reduce uncertainties in predictions of future system behaviour.

Adoption of numerical simulation as a means of information
harvesting and delivery rests on the premise that unbiased
predictions of management interest can be made, and that these
predictions can be endowed with uncertainty intervals that are
realistic, and that have been reduced to the extent that available
information allows. Credibility of model-evaluated uncertainty
intervals requires that model parameter fields express the proclivity
for hydraulic property heterogeneity, and (just as importantly) the
proclivity for hydraulic conductivity connectedness, that prevails in
the subsurface. However, adjustment of realistic hydraulic property
fields in order to constrain uncertainties through history-matching
is a numerically demanding process. Methodologies that deliver
most efficiency to this process generally make use of ensembles of
model parameters, as these methodologies enable history-matching
to take place in a subspace of parameter space that is far smaller
than the dimensionality of parameter space itself. The latter must
often be large in order to represent system complexities to which
management-salient predictions may be sensitive.

In this paper we demonstrate how Ensemble Space Inversion
(ENSI) can be deployed to adjust complex parameter fields
(including those that embody nonstationary geostatistics)
in order to fit a multi-component history-matching dataset
comprised of groundwater head, streamflow and groundwater
age measurements. Depending on the hydrogeological context,
ENSI’s model run efficiency and history-matching alacrity is either
commensurate with, or exceeds, that of other ensemble-based
methods. Furthermore, ENSI is able to readily accommodate
inversion nonlinearities incurred by the simultaneous adjustment of
geostatistical hyperparameters and hydraulic property parameters
(that is, hierarchical inversion).

Frontiers in Earth Science 21 frontiersin.org

https://doi.org/10.3389/feart.2025.1609778
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Kitlasten et al. 10.3389/feart.2025.1609778

In contrast to ENSI, Data Space Inversion (DSI) requires
no parameter adjustment. Nor does it require that model-
imbued hydraulic property fields be either stationary or adjustable.
Furthermore, it can accommodate uncertainties in hyperparameters
that describe the geostatistical properties of hydraulic property
fields.Thenumerical burden of implementingDSI is generally only a
few hundred model runs. These are generally sufficient to construct
a statistical model that links measurements to predictions. Data
assimilation is then conducted using the statisticalmodel atminimal
numerical cost.

Like other data assimilation methodologies and tools, those that
are documented herein have their strengths and weaknesses. Hence
there are advantages to be gained in using them in combination
with other methods, and indeed with alternative methods of aquifer
vulnerability assessment that do not rely on numerical simulation
(if vulnerability assessment is the intention of their deployment).
Their numerical efficiency, and their ability to quantify and reduce
the uncertainties of management-salient predictions, should favour
their adoption at many sites.

We finish this paper by noting that all of the methodologies that
are described herein can be implemented using software from the
PEST suite. At the time ofwriting, all but ENSI are presently available
through the PEST++ and supporting PyEMU suites.

Terminology

Broyden updating: improvement of a Jacobian (i.e. sensitivity)
matrix based on information acquired through testing parameter
upgrades. Conceptual points: points in two-or three-dimensional
space to which hyperparameters are assigned. Values of
hyperparameters are spatially interpolated to cells of a model
grid from these points. Covariance matrix: used to describe joint
probabilities of multiple random variates. Diagonal elements of
this matrix express variance (square of standard deviation)of
individual variates. Off-diagonal elements express covariance
between pairs of variates. Data assimilation: in general, this
term refers to uncertainty reduction accrued through harvesting
of information from data. In groundwater modelling, this is
generally achieved through history matching. DSI: data space
inversion. Ensemble: a collection of realizations drawn from a
probability distribution. ENSI: ensemble space inversion. IES:
iterative ensemble smoother. Hierarchical inversion: an inversion
process in which parameters include hydraulic properties as
well as hyperparameters which govern the prior probability
distributions of hydraulic properties. Histogram transformation:
a term borrowed from image processing that has been adopted by
DSI literature. In the present context it is equivalent to normal
score transformation. Hyperparameters: parameters employed
by functions that characterize the prior probability distributions
of parameters used by a model. Iid: independent and identically
distributed random variable. Nonstationary: used to describe a
context in which geostatistical hyperparameters vary in space.
Pilot points: points in two- or three-dimensional space to which
parameters are assigned. Hydraulic properties are assigned to cells of
a model grid by spatial interpolation or weighted spatial averaging,
depending on their mode of deployment.
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