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improved mathews stability
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Introduction: With the depletion of shallow mineral resources and surging
demand for deep mining, metal mines in China have generally entered the
kilometer-depth mining stage, confronting challenges in stope stability caused
by high ground stress, elevated rock temperatures, high seepage pressure, and
intense mining disturbances (“three highs and one disturbance”).

Methods: Taking the Dahongshan Copper Mine (800–1000 m depth) as a case
study, this paper proposes an enhanced design methodology for structural
parameters of deep open stopes to address the limitations of the traditional
Mathews stability graph method in 3D mechanical characterization, dynamic
evolution analysis, and model generalization.

Results: First, an improved stability graph model was developed by refining
hydraulic radius calculations through cross-sectional collaborative analysis and
establishing quantifiable zoning thresholds for span and exposure area based on
geological variations between eastern and western ore sections. Second, time-
series cavity scanning revealed dynamic evolution patterns of stope stability,
demonstrating that hydraulic radius and collapse height peak post-blasting. This
finding highlights the pre-final blasting state as the critical node for stability
evaluation. An ensemble model integrating Stacking, Bagging, Boosting, and
Voting strategies demonstrated significant improvements in prediction accuracy
and classification performance over traditional logistic regression.

Discussion: Finally, validation in high-stress stopes at 600–1000 m depths
confirmed the model’s generalization capability, offering a data-mechanism
dual-driven decision framework for structural parameter design in deep
open stopes.

KEYWORDS

mathews stability graph, open stoping with subsequent backfill, structural parameters,
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1 Introduction

With the surging global demand for mineral resources and
the gradual depletion of shallow deposits, deep mining has
become an inevitable choice to ensure sustainable development
in the mining industry (Fairhurst, 2017; Ranjith et al., 2017).
Leading mining nations such as South Africa have reached
depths of 4,000 m, while Australia and Canada operate at
1,900 m and 3,000 m, respectively (Li X. et al., 2017). In China,
nearly 50 metal mines have exceeded 1,000 m in depth, though
none have yet surpassed 2,000 m. Over the next decade, one-
third of China’s mines are projected to operate at depths
exceeding 1,000 m, with some extending to 2,000–3,000 m
(Cai et al., 2019), marking a full transition into the “second-
depth space” (1,000–2,000 m) for metal resource extraction
(Li X. et al., 2017; Wang et al., 2023). The “three highs and
one disturbance” environment (high in situ stress, high rock
temperature, high pore pressure, and intense mining-induced
disturbances) in deep mining significantly exacerbates stope
stability risks (Wang et al., 2025). For instance, at China’s
Dahongshan Copper Mine—a representative deep mining
operation exceeding 800 m in depth—the rational design of
stope structural parameters is critical to safety, productivity,
and economic viability. However, conventional design methods
exhibit inadequate adaptability under complex deep geological

conditions, underscoring the urgent need for more precise stability
assessment models.

The determination of stope structural parameters currently
relies primarily on empirical analogy, numerical simulation, and
theoretical analysis (Ju et al., 2019; Zhou et al., 2023). The
Mathews stability graph method has been widely adopted due
to its simplicity and engineering applicability (Mathews et al.,
1980). This method delineates stability zones in stopes through the
critical relationship between hydraulic radius (HR) and stability
number (N). Its core parameters include the rock mass quality
index (Q), stress ratio (Factor A), joint orientation adjustment
coefficient (Factor B), and gravitational adjustment coefficient
(Factor C). Subsequent studies by Potvin et al., Stewart, Forsyth,
and Trueman et al. have updated the zoning criteria of the stability
graph and refined the computational methods for certain factors;
however, these modifications have not significantly improved
the predictive performance of the technique (Brown and Block,
2002). Nickson (1992) and Hadjigeorgiou et al. (1995) further
enhanced the modified stability graph method proposed by Potvin
et al., introducing distinct zones for supported and unsupported
conditions within the stability graph. The original Mathews
stability graph classified zones into three categories: stable zone,
unstable zone, and caving zone. Stewart and Forsyth (1995)
redefined the chart into four regions using three transitional
boundaries: potentially stable zone, potentially unstable zone,

FIGURE 1
Evaluation of adjustment factors in the Mathews stability graph method (Mathews et al., 1980). Rc: Uniaxial compressive strength of intact rock, σI:
Induced compressive stress.
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FIGURE 2
Multi profile collaborative analysis construction (HR, N) matrix.

FIGURE 3
Principles of ensemble learning algorithms. (a) Stacking, (b) bagging, (c) boosting, (d) voting.
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FIGURE 4
The location of Dahongshan copper mine.

potentially severe failure zone, and potential collapse zone. While
their approach incorporated the concept of stability probability,
it lacked quantitative data to represent the likelihood of stability.
Trueman et al. (2000) expanded the stability graph database by
integrating numerous large-scale stope case studies, culminating in
a dataset of approximately 500 entries. Building on this database,
Mawdesley et al. (2001) extended the Mathews stability graph for
open stoping using log-log axes and logistic regression, establishing
a probability density function model and plotting multiple iso-
probability contour lines. Subsequent research has widely adopted
this model to derive stability-failure boundary equations with 95%
probability for stope structural parameter design. In recent years,
scholars have extended classical methods through the integration
of machine learning (Santos et al., 2020; Huang and Zhou,
2024; Putra et al., 2024), theoretical analysis (Zhao et al., 2019;
Li et al., 2023; Li et al., 2025) and 3D numerical simulations
(Jia et al., 2022; Zhang et al., 2024); however, their limitations in deep
mining scenarios remain unresolved.

Despite significant advancements in the Mathews stability
graph method, its application remains constrained by the
following limitations: (1) Restricted applicability: Existing models
predominantly rely on hard rock shallow mining datasets (depth
<500 m), exhibiting insufficient adaptability to high-stress soft
rock formations in deep mining environments; (2) Dimensional
oversimplification: Most studies employ two-dimensional analyses
of single cross-sections, neglecting the influence of three-
dimensional geometric characteristics of stopes on stability; (3)
Data representativeness deficiencies: Case databases are limited
in scale (n < 200), with deep mining scenarios constituting
less than 40% of the dataset; (4) Algorithmic homogeneity:
Decision boundaries predominantly depend on logistic regression,
which demonstrates limited capability in capturing nonlinear
relationships; (5) Parameter uncertainty: Induced stresses are
approximated through parameter estimations or simplified as

vertical stresses, while hydraulic radius calculations disregard the
projected area of inclined roof surfaces, leading to cumulative errors.

This study develops an integrated data-mechanism approach
to address three critical limitations of the Mathews stability
graph method in deep mining: inadequate 3D mechanical
characterization, unclear dynamic evolution patterns, and
poor model generalization. Key innovations include: (1) A
3D parametric model overcoming traditional 2D geometric
oversimplification through cross-sectional synergy analysis and
reconstructed hydraulic radius calculation, establishing zone-
specific stability thresholds for distinct geological conditions;
(2) First identification of critical stability assessment timing
through void sequence scanning, revealing pre-final-blasting
conditions as the decisive evaluation node; (3) A multi-algorithm
ensemble (Stacking/Bagging/Boosting) achieving 5%–10% accuracy
improvement over conventional logistic regression, validated in
600–1000 m deep high-stress stopes. The proposed “threshold-
dynamics-warning” framework offers an engineering-theoretical
integrated solution for deep stope optimization in metal mines.

2 Materials and methods

2.1 Mathews stability graph method

Mathews et al. (1980) established a two-dimensional stability
graph based on 55 stope case studies from Canadian mines,
incorporating the stability number N and shape factor S (HR).
This graph classified open stopes into three distinct stability zones
based on roof stability criteria: the stable zone, unstable zone, and
caving zone.

2.1.1 Stability number N
The stability number N, representing the rock mass’s capacity to

maintain stability under prescribed stress conditions, is analogous to
the Mining Rock Mass Rating (MRMR) in conventional evaluation
methodologies. The relationship between N and its governing
factors is defined as:

N = Q′ ·A ·B ·C (1)

where Q’ denotes the modified Q-value, reflecting adjusted rock
mass quality; A represents the rock stress coefficient, quantifying in
situ stress effects; B corresponds to the joint orientation adjustment
coefficient, accounting for discontinuity alignments; C signifies
the gravitational adjustment coefficient, addressing depth-induced
stress variations.

2.1.1.1 Q’ value
Q’ is determined through geological survey maps or borehole

core log analysis and shares conceptual similarities with the rock
mass quality Q-index (Equation 2). Specifically, Q’ is calculated by
assuming both the joint water reduction coefficient (Jw) and stress
reduction factor (SRF) equal to 1 (i.e., Jw/SRF = 1), resulting in:

Q = RQD
Jn
·
Jr
Ja
·
Jw
SRF

(2)

Parameter Definitions:
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TABLE 1 Indoor rock mechanics test results of Dahongshan copper mine.

Lithology Natural density (g/cm3) Rc (MPa) E (GPa) μ UTS (MPa) C (MPa) ψ(°)

East mining section

tuff 3.08 93.37 65.0 0.28 8.26 5.26 41.9

black cloud schist 3.12 77.28 58.7 0.26 6.72 2.02 44.0

marble 2.87 155.11 66.4 0.24 9.17 5.03 41.3

West mining section

tuff 3.06 131.3 69.33 0.22 13.35 4.40 42.74

tuff rock (containing minerals) 3.09 85.8 55.77 0.26 7.32 4.57 40.97

schist (containing minerals) 3.11 101.7 50.67 0.28 9.43 3.87 41.68

marble 2.89 120.7 67.18 0.22 10.21 3.87 41.68

Notes: Rc, uniaxial compressive strength; UTS, uniaxial tensile strength.

• RQD: Rock Quality Designation, quantifying intact rock
integrity;

• Jn: Joint set number, reflecting the density of discontinuities;
• Jr : Joint roughness coefficient, characterizing surface asperities;
• Ja: Joint alteration coefficient, describing infilling material
properties;

• Jw: Joint water reduction coefficient, assessing
groundwater effects;

• SRF: Stress reduction factor, addressing in situ stress
magnitudes.

Interpretation of Parameter Groups:

1. RQD/Jn evaluates the intactness of the rock mass;
2. Jr/Ja represents the morphological characteristics

of discontinuities, including surface roughness and
alteration degree;

3. Jw/SRF accounts for environmental influences, such as
groundwater pressure and tectonic stresses.

2.1.1.2 Factor A
Factor A, the rock stress coefficient, is determined by the ratio

of the intact rock uniaxial compressive strength (Rc) to the induced
stress (σ I) generated by mining activities at the stope centerline, as
illustrated in Figure 1. Rc is obtained through field sampling and
laboratory rock mechanics testing. The induced stress σ I , defined as
the stress parallel to the exposed stope walls or roof in the analysis,
is estimated using parameters such as the height-to-span ratio and
lateral pressure coefficient. Consequently, the mean stress parallel to
the cross-section is utilized in subsequent parameter calculations to
replace estimated values.

2.1.1.3 Factor B
Factor B, the joint orientation adjustment coefficient, is

quantified by the angular difference between the dip angle
of the stope face and the dominant joint set orientation, as
depicted in Figure 1. The calculation process involves first

identifying the dip angle of the dominant joint set within the stope,
followed by determining the corresponding value of coefficient B.

2.1.1.4 Factor C
Factor C, the gravitational adjustment coefficient, quantifies the

influence of stope face orientation on the stability of mine rock
masses. Its value is determined by failure mechanisms including
caving of exposed roof surfaces, sliding along inclined planes, and
sidewall sloughing. As depicted in Figure 1, which illustrates the dip
angle (α) of the stope relative to the horizontal plane.

2.1.2 Hydraulic radius
Thehydraulic radius (HR), which reflects the stope’s dimensions

and geometry, is determined by the following equation:

HR = xy/(2x+ 2y) (3)

where HR represents the permissible hydraulic radius of the
excavation surface, expressed in meters (m); x denotes the stope
length along the dip direction, in meters (m); y signifies the stope
length along the strike direction, in meters (m).

2.1.3 Cooperative analysis
In response to the limitations of traditional Mathews methods

in characterizing three-dimensional mechanical states, this study
proposes a three-dimensional parameterized improved Mathews
stability diagram model. Through collaborative analysis of
transverse and longitudinal profiles and correction of hydraulic
radius calculation, a (HR, N) spatial matrix is constructed to
achieve 3D mechanical characterization of the mining site,
as shown in Figure 2.

2.2 Ensemble learning

Stacking, also known as stacked generalization, was first
proposed by Wolpert (1992). This method aims to minimize
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FIGURE 5
Results of stope investigation: (a) 285 level, (b) 385 level, (c) 180 level
and (d) −20 level.

prediction errors by combining outputs from diverse base
learners (referred to as primary learners) through a meta-
machine learning (ML) algorithm (termed the meta-model). As
illustrated in Figure 3a, the predictions of primary learners are
aggregated as new input features for the meta-model to generate
final predictions.

Bagging (Bootstrap Aggregating) offers a straightforward
approach to enhance model performance by training multiple
instances of a base algorithm on bootstrapped subsets of the original
dataset (Breiman, 1996). Shown in Figure 3b, weak classifiers trained
on randomly sampled data (with replacement) are combined via

voting (for classification) or averaging (for regression) to form
a robust ensemble classifier. The independence among classifiers
arises from parallel training on distinct subsets.

Boosting adopts a sequential strategy to iteratively link
base learners, where each subsequent learner prioritizes
samples misclassified by previous ones (Li Q. et al., 2017). As
depicted in Figure 3c, misclassified instances receive higher
weights in successive training iterations. The final prediction is a
weighted sum of all learners, with higher weights assigned to more
accurate models.

Voting synthesizes predictions from multiple ML models to
derive consensus results (Dong et al., 2020). In Figure 3d, base
models trained on the full dataset contribute individual “votes,” and
the majority prediction (for classification) or averaged value (for
regression) is selected as the final output.

2.3 Mine overview

The Dahongshan Copper Mine, located in Yuxi City, Yunnan
Province, China (as shown in Figure 4), has an annual ore
production of 4.29 million tonnes. Mining operations are divided
into the Eastern and Western Sections. In the Eastern Section, the
primary production is currently conducted at the 285 mining level
with a depth exceeding 800 m. Future operations at the planned 185
mining level and deeper zones will extend beyond 800 m. In the
Western Section, active mining is focused on sub-level 80 of the 180
mining level at depths of 900–1,000 m. Post-2025, operations will
transition to the −20 mining level, reaching depths of 800–1,100 m.

TheDahongshanCopperMine features stratified orebodies with
thicknesses of 1–21 m and dip angles ranging from 17° to 43°
(average 27°), classified as gently dipping thin to medium-thick
deposits with interburden layers of 2–10 m and an average copper
grade of 0.38%. The mine operates with Class II rock mass quality
and predominantly employs open stoping with subsequent backfill.
In the Eastern Section, downward parallel long-hole drilling is
utilized, with stope spans typically exceeding 25 m (maximum30 m)
and ultimate lengths of 50–100 m. In the Western Section, upward
fan drilling is adopted at the −20 mining level, where designed
panel dimensions reach 45–51 m in strike length (maximum 74 m)
and 18–29.2 m in dip span (maximum 39 m), collectively indicating
oversized stope geometries with elevated roof caving risks.

Rock mechanics test samples were collected from the following
locations: the Eastern Section focused on the B12–B64 zones at
the 285–385 m elevation of the 285 mining level, and the Western
Section concentrated on the B88–B120 zones at sub-level 140 of the
−20mining level. Data in Table 1 demonstrate significant differences
in rock mass parameters between the two sections.

2.4 Stope investigation

Based on the void scanning data obtained from the mining
operations and comparative analysis against the stope design
CAD drawings, we conducted a comprehensive investigation on
roof collapse mechanisms in open stope subsequent backfill
mining systems. The study encompasses 108 stopes distributed
across four mining levels: Level 285 and Level 385 in the
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FIGURE 6
Data distribution: factor A, factor C, N and HR.

eastern mining section, as well as Level −20 and Level 180 in
the western mining section. Critical parameters including stope
geometry (length/width), roof exposure characteristics (projected
area, overburden depth, and inclination angle), and collapse
development metrics (average collapse height) were systematically
analyzed.The spatial distribution patterns of investigation outcomes
across different mining levels are visually presented in Figure 5.

2.5 Parameter calculations

2.5.1 Determination of Q’ value
Rock mass quality evaluation was conducted using the Q-

system, with both the joint water reduction factor (Jw) and stress
reduction factor (SRF) set to 1, resulting in the simplified Q’-value.
The engineering geological investigation included 12 tunnels in the
eastern mining section and 8 tunnels in the western mining section.
Accordingly, the mean Q’-value of 161.72 from the eastern section
was applied to the 285 and 385 levels, while the mean Q’-value of
167.08 from the western section was used for the 180 and -20 levels.

2.5.2 Determination of A value
Factor A for each stope was determined based on

laboratory rock mechanics tests and induced stress calculations.

As shown in Figure 6, Factor A exhibits a right-skewed distribution
(skewness = 0.92) with a mean of 0.52 and standard deviation
of 0.18. The positive skewness indicates data concentration in
lower-value ranges and a long tail toward higher values. The
leptokurtic distribution (kurtosis = 3.78) demonstrates steeper peaks
and heavier tails compared to a normal distribution, suggesting
significant clustering around themeanwith outliers at higher values.
The Shapiro-Wilk test (p < 0.01) strongly rejected the normality
assumption, necessitating non-parametric methods for subsequent
analysis. A moderate coefficient of variation (CV, Coefficient of
Variation = 34.6%) reflects balanced data dispersion.

2.5.3 Determination of B value
Engineering geological investigations at the Dahongshan

Copper Mine revealed that the dip angles of structural
discontinuities in the rock mass are predominantly distributed
between 40° and 90°, classifying them as steeply dipping structural
discontinuities. In accordance with the B-value evaluation
criteria, Factor B was determined to be 0.8 for subsequent
geomechanical analyses.

2.5.4 Determination of C value
Based on the dip angles of roofs in stop cross-sectional

profiles (Figure 1), Factor C was calculated for each stope.
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FIGURE 7
Scatter plot of HR-N data: (a) East mining section and (b) West mining section.

As shown in Figure 6, Factor C exhibits a mildly right-skewed
distribution (skewness = 0.67) with a mean of 1.43 and standard
deviation of 0.41. The platykurtic distribution (kurtosis =
2.59) indicates flatter peak and lighter tails compared to the
normal distribution, suggesting relatively uniform data dispersion
around the central region. Despite proximity to the normal
distribution benchmark (kurtosis = 3), the Shapiro-Wilk test
(p < 0.01) confirmed significant deviation from normality. The
low coefficient of variation (CV = 28.7%) demonstrates limited
data dispersion.

2.5.5 Determination of N value
Based on the aforementioned parameters and Equation 1,

Parameter Nwas calculated for each stope. As illustrated in Figure 6,
Parameter N exhibits a pronounced right-skewed distribution
(skewness = 0.78) with amean value of 63.04 and standard deviation
of 34.03.The platykurtic distribution (kurtosis = 2.91) approximates
the normal distribution benchmark but demonstrates flattened
morphology, reflecting weakened central clustering and extended
tail dispersion. The Shapiro-Wilk test (p < 0.01) conclusively
rejected normality, while the exceptionally high coefficient of
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FIGURE 8
Modeling flowchart.

variation (CV = 54.0%) highlights substantial dataset heterogeneity.
This variability likely originates from multi-factorial contributions
(e.g., multiplicative interactions) to Parameter N, resulting in an
extensive numerical range.

2.5.6 Calculation of HR
Hydraulic radius (HR) was calculated using stope lengths along

dip and strike directions as parameters (Equation 3), where the
inclined dip length replaced traditional spanmeasurements to better
characterize actual stope area and perimeter. As shown in Figure 6,
HR exhibits a right-skewed distribution (skewness = 0.73) with
a mean of 7.36 and standard deviation of 2.16. The leptokurtic
distribution (kurtosis = 4.16) demonstrates steep central clustering
and heavy tails, where rare high-value outliers significantly influence
the distribution despite most data being tightly grouped around
the mean. The Shapiro-Wilk test (p = 0.016) marginally rejected
normality at α = 0.05, indicating subtle deviation from Gaussian
assumptions. While the low coefficient of variation (CV = 29.3%)

suggests moderate dispersion, the interplay between skewness and
kurtosis implies potential subpopulation existence.

3 Results

Stability charts and classification criteria were developed
separately for the eastern and westernmining sections, as significant
differences exist in rock compressive strength, stope structural
parameters, and drilling techniques between these two zones.

3.1 Scatter plots and data processing

The eastern mining section documented a total of 56 stopes,
with 28 located at the 285 level and 28 at the 385 level, while the
western section comprised 52 stopes, including 47 at the 180 level
and 5 at the −20 level. HR values, calculated uniformly from roof
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FIGURE 9
Classification decision boundary for mining stability: (a) East mining section and (b) West mining section.

dip angles across transverse and longitudinal axial profiles of each
stope, yielded 216 paired datasets (HR,N), subsequently partitioned
into training and testing sets at a 7:3 ratio. Scatterplots of HR-N
relationships (Figure 7) were generated separately for both mining
sections, employing distinct geometricmarkers: circularmarkers for
the 285 level, square markers for the 385 level, triangular markers
for the 180 level, and diamond markers for the −20 level. Color
gradients from yellow (indicating poor stability) to purple (denoting
high stability) visually encoded stope stability, while marker sizes
proportionally represented exposed areas. Annotations within the

plots provided quantitative metrics including mean collapse height
(m) and exposed area (m2) for individual stopes.

3.2 Model development

Nine machine learning algorithms—Logistic Regression (LR),
Random Forest (RF), Support Vector Machine (SVM), Decision
Tree (DT), Multilayer Perceptron (MLP), Gaussian Process (GP),
K-Nearest Neighbors (KNN), Stochastic Gradient Descent (SGD),
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FIGURE 10
Confusion matrix: (a) East mining section and (b) West mining section.

FIGURE 11
ROC curve: (a) East mining section and (b) West mining section.

and Gaussian Naive Bayes (GNB)—were applied to the training
dataset. The predictive outputs of these base learners served as
input features for ensemble learning architectures, generating 9
stacking meta-learners (S1–S9), 10 bagging ensembles (B1–B10),
and 7 boosting ensembles (BT1–BT7). Specifically, the Extra Trees
(ET) algorithmwas derived from bagging with extreme randomized
trees, while Gradient Boosting (GB), Histogram-based Gradient
Boosting (HGB), and Extreme Gradient Boosting (XGB) were
implemented under the boosting framework. High-performing
ensemble classifiers participated in majority voting to construct
the stability classification model for deep open stoping, ultimately
deriving decision boundaries and categorical outcomes. The model
development process is illustrated in Figure 8.

The stope stability classification models adopted distinct
ensemble learning strategies for the eastern (V-east) and western
(V-west) mining sections based on test set accuracy and decision

boundary performance. For the V-east model, LR, RF, SVM, MLP,
and GNB were selected as base learners for the stacking meta-
algorithm, while ensemble classifiers S1, S5, B1, B3, and BT2
participated in the final voting mechanism. Conversely, the V-
west model utilized LR, RF, and SVM as stacking base learners,
with ensemble classifiers S1, S5, S6, S9, and B1 incorporated
into the voting system, reflecting section-specific geomechanical
heterogeneity in optimal classifier combinations.

3.3 Decision boundaries and classification
criteria

Themodels were trained on the training set to delineate decision
boundaries, as illustrated in the accompanying Figure 9. Two
critical boundaries were derived: Boundary 1 (boundary 3) separates
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FIGURE 12
Status of stope at different periods.

TABLE 2 Date correspondence table.

Date Actual date

date 1 2023.02.07

date 2 2023.02.13

date 3 2023.02.17

date 4 2023.04.21

date 5 2023.05.23

date 6 2023.06.09

stable zones from critical zones, while Boundary 2 (boundary 4)
distinguishes critical zones from unstable zones. Translucent markers
represent training data, whereas opaquemarkers denote test data.The
experimental resultsdemonstratedivergentclassificationperformance
between the decision boundary models of the eastern and western
mining sections. Specifically, the eastern section model achieved
an accuracy of 88.24% and an F1-score of 88.36% on the test set,

while the western section model exhibited superior discriminative
capacity with accuracy and F1-score values reaching 90.63% and
90.96%, respectively.As revealed by the confusionmatrix in Figure 10,
the eastern model demonstrated relatively balanced classification
performance across all three target categories. Although the western
model displayed outstanding overall performance, as evidenced by
its Receiver Operating Characteristic (ROC) curve in Figure 11, its
classification efficacy for critical-class samples (AUC = 0.78) slightly
underperformed the model’s average benchmark.

The decision boundaries of ensemble models typically
represent complex combinations of multiple constituent models,
making direct derivation of simplified analytical expressions
impractical. However, approximate interpretations can be achieved
by analyzing boundaries from base classifiers exhibiting high
accuracy and geometric congruence with ensemble decision
patterns. Consequently, we extracted linear decision boundary
approximations (Equations 4–7) from Logistic Regression (LR).
These formulations preserve the critical separation between
stable, critical, and unstable zones while maintaining engineering
applicability through their interpretable parametric form. N is a
dimensionless quantity, and the HR unit is m.
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FIGURE 13
Correlation of stability factors in the mining area: (a) r-value and (b) p-value.
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FIGURE 14
Feature importance.

f1 0.049+ 0.591HR− 0.170N− 0.010HR2 + 0.013HR ·N = 0 (4)

f2 − 0.124− 1.293HR− 0.090N+ 0.205HR2 + 0.005HR ·N = 0 (5)

f3 0.096+ 0.647HR− 0.458N+ 0.051HR2 + 0.055HR ·N = 0 (6)

f4 − 0.052− 0.497HR− 0.391N+ 0.170HR2 + 0.043HR ·N = 0 (7)

To enhance the operational utility of decision boundaries,
stability classification criteria for roof stability in deep open
stoping at the Dahongshan Copper Mine were formulated by
synthesizing decision boundary expressions Equations 8–13
with projection areas of proximal data points along boundary
regions.

(1) Eastern Section:

Stablezone
{
{
{

Ap ≤ 863m2

f1 ≤ 0
(8)

Criticalzone
{
{
{

863m2 < Ap ≤ 1623m
2

f1 > 0, f2 ≤ 0
(9)

Unstablezone
{
{
{

Ap > 1623m2

f2 > 0
(10)

(2) Western Section:

Stablezone
{
{
{

Ap ≤ 811m
2

f3 ≤ 0
(11)

Criticalzone
{
{
{

811m2 < Ap ≤ 1067m2

f3 > 0, f4 ≤ 0
(12)

Unstablezone
{
{
{

Ap > 1067m2

f4 > 0
(13)

4 Discussion

4.1 Temporal effects

The stope extraction process encompasses sequential phases
including development, slot slashing, blasting, mucking, and
backfilling, as illustrated in Figure 12. Through void scanning
analysis, key geometric parameters—dip and strike collapse heights,

exposed surface span, length, hydraulic radius (HR), and area—were
quantified across operational phases to investigate temporal effects
on roof stability post-exposure. Temporal trends of stability-related
parameters reveal distinct phase-dependent behaviors: the exposed
surface span exhibited significant growth during date1–date3
before stabilizing, while the exposed length continued increasing
through date3–date5 until achieving equilibrium by date6. This
progression indicates slot slashing completion by date3 and blasting
cessation by date5, defining date3–date5 as the blasting-mucking
phase and date5–date6 as the post-mucking stabilization period.
The correspondence between Date1∼date6 and specific periods
is shown in Table 2.

The analysis of graphical data reveals distinct temporal patterns
in geomechanical parameters across mining phases. During slot
slashing (date1–date3), the mean collapse height demonstrated
gradual reduction, while it exhibited significant time-dependent
escalation throughout blasting operations (date3–date5) before
stabilizing post-blasting. The mucking phase (date5–date6) showed
marginal variation in collapse height. Hydraulic radius and exposed
area followed similar trends, with accelerated growth during blasting
followed by stabilization after full roof exposure.These observations
confirm that post-blasting roof conditions provide critical safety
benchmarks for operational planning.

4.2 Zoning criteria and definitions

The Mathews stability graph originally classified open stopes
into three zones: stable zone, unstable zone, and caving zone
(Mathews et al., 1980). Subsequently, Stewart and Forsyth refined
the Mathews stability graph by proposing four zones demarcated
by three transitional boundaries: potentially stable zone, potentially
unstable zone (failure zone), potentially major failure zone, and
potential caving zone. Caving is defined as occurring when rock
mass failure and collapse progress until all available void space
becomes filled with fragmented rock, continuing as fragmented
material is removed from stope boundaries. Major failure is
identified when over 30% dilution occurs or caving extends
into stopes with wall penetration depths exceeding 50% of the
opening’s smaller dimension. However, the distinction between
failure andmajor failure remains ambiguous compared to the clearer
differentiation between stability and caving, resulting in significant
misclassification risks (Brown and Block caving geomechanics,
2002). To address this limitation, our study redefines the stability
graph into three zones based on the mean collapse height (h) and
its ratio to stope height (H): stable zone (h < 0.1H, h < 2.5–3 m),
critical zone (0.1H < h < 0.4H), and unstable zone (h > 0.4H). This
tripartite classification system enhances operational predictability
while maintaining compatibility with field monitoring thresholds.

4.3 Analysis of stope stability factors

To optimize engineering decision-making in stope stability
analysis, it is imperative to quantify the interrelationships among
critical geological and geometric parameters (including burial
depth, length, span, and roof dip angle). This study calculated
Pearson correlation coefficients for these variables to evaluate their
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FIGURE 15
Classification results of a single ensemble model: (a)S7 and (b) BT2.

association strength. As demonstrated in the heatmap (Figure 13),
significant correlations (∣r∣>0.5, p < 0.001) were observed between
span, projected roof area, and average caving height, indicating these
parameters’ substantial influence on stope stability. Based on these
findings, this research establishes engineering application guidelines
for stope stability classification criteria. The core Equations 14–19
integrates two critical parameters - span (S) and projected
area (Ap) - providing a theoretical foundation for designing
structural parameters in deep open stope mining operations at the
Dahongshan Copper Mine.

(1) Critical Control Parameters for Stopes in the Eastern
Mine Section

Stablezone
{
{
{

Ap ≤ 863m2

S ≤ 25m
(14)

Criticalzone
{
{
{

863m2 < AP ≤ 1623m
2

25m < S ≤ 31m
(15)

Unstablezone
{
{
{

Ap > 1623m2

S > 31m
(16)

(2) Critical Control Parameters for Stopes in the Western
Mine Section

Stablezone
{
{
{

Ap ≤ 811m
2

S ≤ 20m
(17)

Criticalzone
{
{
{

811m2 < AP ≤ 1067m2

20m < S ≤ 25m
(18)

Unstablezone
{
{
{

AP > 1067m2

S > 25m
(19)

Furthermore, analytical results demonstrated a statistically
significant positive correlation (p < 0.001) between burial
depth and average caving height in both the −20 and 385
mining levels. Notably, the magnitude of this influence
was notably amplified compared to other mining levels.
This phenomenon suggests that increased mining depth,

coupled with high-stress environments, may impose greater
destabilizing effects on stope stability as extraction progresses
to deeper horizons. Furthermore, the random forest feature
importance analysis (Figure 14) demonstrates that the
hydraulic radius (HR) exhibits significantly higher predictive
dominance (72%) in stope stability classification compared to
the stability number (N, 28%).

4.4 Model comparison

Conventional methodologies for stope stability classification
in the literature have predominantly employed single-algorithm
models such as Logistic Regression (LR). Nevertheless, thesemodels
exhibit inherent limitations in processing noisy data and outliers,
as demonstrated by their suboptimal performance in Figure 15. In
comparison, ensemble models integrating multiple base learners
and diverse ensemble strategies demonstrate superior efficacy in
reducing model bias and variance, thereby significantly enhancing
classification performance. Additionally, the ensemble framework
proposed in this study achieves an optimized equilibrium between
model complexity and generalization capability by aggregating
predictions from heterogeneous base learners. This approach
reduces sensitivity to classification errors inherent in single-
model paradigms, effectively mitigating overfitting risks while
concurrently improving model robustness. Consequently, the
proposed framework exhibits enhanced stability and reliability in
practical engineering applications.

5 Conclusion

(1) A three-dimensionally parameterized Mathews stability graph
model was developed to classify open stope mining stopes
into three zones: stable, critical, and unstable. Cross-sectional
and longitudinal profiles were integrated to characterize 3D
stope behavior, while the hydraulic radius (HR) calculation
was refined by incorporating dip length and actual roof
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exposure area, addressing the limitations of conventional
2D methods in representing deep stope mechanics. Stability
thresholds based on span (S) and exposed area (Ap) were
quantified for the Dahongshan Copper Mine’s eastern (stable:
25 m/863 m2; critical: 31 m/1,623 m2) and western sections
(stable: 20 m/811 m2; critical: 25 m/1,067 m2), establishing
a data-mechanism dual-driven framework for structural
parameter design in deep open stope mining.

(2) The dynamic evolution of stope stability was investigated
through temporal cavity scanning analysis, revealing that
hydraulic radius (HR), exposed area (Ap), and average caving
height (Hc) peak post-blasting and stabilize during ore-
drawing. The pre-blasting phase was identified as the critical
stability assessment window, providing a theoretical basis for
dynamic risk intervention in open stope mining.

(3) By integrating multi-algorithm strategies, model engineering
applicability was significantly enhanced, achieving prediction
accuracies of 88.23% (eastern), 91.07% (western) and f1 scores
of 88.36% (eastern), 90.96% (western),outperforming single-
model approaches. Robust generalization capabilities were
demonstrated in deep, high-stress environments (600–1,000 m
depth) with complex structural configurations, yielding an
interpretable and adaptive framework for stability analysis in
deep metal mine engineering.
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