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Microseismicmonitoring technology plays a critical role in predicting rockbursts
in coal mines, yet the deeper potential embedded in microseismic data remains
insufficiently explored. This study investigates the evolution characteristics of
microseismic signals across four key dimensions—time, energy, space, and
frequency—and quantitatively analyzes their interrelationships. The results show
that both the multifractal parameter Δα and spatial correlation length exhibit
a clear upward trend prior to roof weighting and gradually decline after
pressure release. In contrast, the main frequency and b-value decrease as roof
weighting approaches and recover afterward. These four indicators demonstrate
a precursor period of approximately 2–4 days. Correlation analysis further
reveals that all four parameters are not only significantly correlated with working
face pressure but also exhibit long-range dependence, with the multifractal
parameter Δα showing the strongest correlation. These findings contribute to
improving the predictive effectiveness of microseismic monitoring in dynamic
disaster early warning.
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1 Introduction

The prediction and early warning of rock bursts are fundamental to the development
of prevention and control strategies, serving as guiding principles for implementing
various preventive measures (Adoko et al., 2013; Askaripour et al., 2022; Wu et al., 2019;
Liang et al., 2020; Kong et al., 2024). Currently, themainmethods formonitoring rock bursts
include microseismic monitoring, electromagnetic radiation monitoring, acoustic emission
monitoring, drilling cuttings monitoring, and stress monitoring (Ma et al., 2018; Frid, 1997;
Hu et al., 2019; Li et al., 2015; Gong et al., 2022; Zhang et al., 2023; Li et al., 2024). These
methods are crucial in monitoring the pressure associated with rock bursts and are widely
utilized. Microseismic monitoring technology is the most extensively employed at present.
It is primarily used for local monitoring in mining areas, where geophones are installed
to detect vibration signals and other indicators of coal and rock rupture. This allows for
continuous observation of the stress statewithin the coal and rockmasses, providing insights
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into the extent of damage and the distribution of stress within them
(He et al., 2017; Su et al., 2021; Ding et al., 2020; Zhang C. et al., 2021;
Zhang H. et al., 2021; Zhang Z. et al., 2021).

The accurate prediction of rock burst relies on the identification
of precursor signals and patterns of disaster occurrence through
microseismic monitoring. By capturing and analyzing signals from
each microseismic event, key indicators of precursor phenomena
are examined, including the energy and frequency of events,
spatiotemporal evolution, b-value, energy index, and fractal
characteristics (Feng et al., 2016; Xu et al., 2010; Zhang C. et al.,
2021; Zhang H. et al., 2021; Zhang Z. et al., 2021). Based on these
parameter values, the severity and likelihood of microseismic
activity are assessed, facilitating the monitoring and warning
of rock burst pressures. Currently, microseismic monitoring
technology is extensively applied in actual coal mine operations
for predicting rock bursts (Zhao et al., 2021; Zhang C. et al.,
2021; Zhang H. et al., 2021; Zhang Z. et al., 2021; Jin et al., 2022;
Yu et al., 2022). Fujii et al. (1997) investigated the spatiotemporal
evolution of microseismic events and their occurrence levels at the
Scintiline coal mine’s working face. They discovered a generally
positive correlation between the total daily energy of microseismic
events and their frequency, with changes in microseismic energy
consistent with the advancement rate. Utilizing a microseismic
monitoring system, Srinivasan et al. (1999) analyzed the temporal
and spatial distribution of microseismic events in the mining
area, noting that the b -value and H-index of disaster precursors
were often elevated in areas of significant risk. Song et al. (2024)
developed a tiered early-warning index for rock bursts, establishing
critical early warning thresholds and monitoring daily total energy
and frequency of microseismic events to regulate mining speed.
In instances of high-energy events, reducing mining speed is
recommended to maintain the severity of rock bursts within
controllable limits.

Zhao et al. (2018) analyzed microseismic monitoring data
from the coal mine, identifying a decrease in main frequency
values, an increase in amplitude, and reductions in the b-value
and energy of microearthquakes as precursor characteristics of
rock bursts. Li et al. (2020) introduced two types of microseismic
shape multifractal feature quantities that exhibit specific patterns
prior to rock bursts, with these multifractal features becoming
more pronounced during the event than before or after. Cai et al.
(2019) developed a spatiotemporal prediction method for multiple
microearthquake indices, considering the dimensions of time, space,
and intensity. Their findings suggest that higher frequencies of
microseismic events, coupled with denser temporal and spatial
occurrences, increase the likelihood of impact risks, with practical
applications demonstrated in Yuejin coal mine. Wang et al.
(2018) explored the precursor characteristics of rock bursts
by analyzing mine earthquake energy and frequency, spatial
distribution, and energy density clouds, concluding that the
expansion and intensification of the energy density cloud can
indicate the potential for strong mine earthquakes due to localized
stress concentration and energy surges. This multi-dimensional
approach allows for real-time monitoring and early warning of
the microseismic system. Dou et al. (2018) established a three-
dimensional early warning system for rock bursts, creating a
multi-parameter index system that considers the time, space,

and energy of microearthquakes. This system divides the indices
into categories such as activity index, spatiotemporal diffusion,
total stress equivalent, and total fault area, thereby enhancing the
efficiency and accuracy of early warnings for various types of
rock bursts.

The collective research of these scholars lays a foundational
basis for utilizing microseismic technology to predict rock
bursts. However, the potential characteristics embedded within
microseismic data remain underexplored, and the interrelations
among their evolutionary laws warrant further analysis.
Consequently, this paper delves into the evolution characteristics of
microseismic data across four dimensions, including time, energy,
space, and frequency, and conducts a quantitative analysis of their
intercorrelations. The findings of this research are instrumental in
enhancing the predictive capabilities of microseismic monitoring
technology.

2 Microseismic monitoring system of
coal mine

The studying working face of coal mine is situated in Shanxi
province. The surface elevation ranges from 920 m to 953 m, while
the working face elevation varies from 294 m to 396 m. The strike
length of the working face measures 1,480 m, and its dip length is
289.3 m.The coal seam has a thickness of 5.71 m and a bulk density
of 1.38 t/m3.

A microseismic monitoring system is installed at the working
face, comprising three monitoring substations and 18 sensors.
This system is designed to monitor acoustic signals induced
by coal rock fractures in real-time and enhance the signal-to-
noise ratio using a high-performance filtering algorithm. Building
upon this, a proprietary positioning algorithm is employed to
accurately determine the fracture locations within the coal rock, as
illustrated in Figure 1.

In the process of coal or rock breaking, multi-scale rock
mass activities will be accompanied by superposition of human
and machine-induced vibration signals, resulting in low signal-
to-noise ratio of microseismic signals received by microseismic
monitoring system. Accurate extraction of effective information
in the received signal is the basis of ensuring the accuracy
and reliability of microseismic monitoring and early warning.
Therefore, wavelet decomposition method is used to extract
effective signals.

The result of the energy representation is called the wavelet
packet–energy spectrum, denoted by E(ω), and the signal energy in
the frequency band df is E(ω) df, the total energy of the entire range
can be defined by Equation 1,

E =
∞

∫
−∞

E(ω)df = 1
2π

∞

∫
−∞

E(ω)dω (1)

First, the db8 wavelet base is selected for its excellent
smoothness and long support length, offering superior time-
frequency localization compared to other Daubechies and Coiflet
wavelets, and thus is well-suited for capturing abrupt features
in microseismic signals affected by high-frequency noise and
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FIGURE 1
Microseismic monitoring system.

low-frequency drift. Second, based on the 2 kHz sampling frequency
and a 1 kHz Nyquist frequency, a 5-layer decomposition is
performed to obtain 32 sub-bands, allowing detailed analysis of the
signal’s frequency content. Finally, the signal is decomposed to the
fifth layer, with each component S5, j corresponding to an energy
value E5, j, forming the basis for evaluating the energy distribution
across different frequency bands, which can be described by
Equation 2.

E5,j = ∫|S5,j(t)|
2
dt =

m

∑
k=1
|xj,k|

2 (2)

Microseismic signals are often buried in noise, leading to a
low signal-to-noise ratio in the data received by sensors. Figure 2A
present the original signals collected by the on-site monitoring
system, which contain significant high-frequency noise and low-
frequency drift, obscuring the waveform and reducing accuracy. To
extract meaningful information, wavelet decomposition is applied
to denoise and reconstruct the signals, as shown in Figure 2B. After
filtering, the signal-to-noise ratio is significantly enhanced, and
the waveform becomes clearer, greatly aiding in accurate source
localization.

After filtering the acquired microseismic data, the double-
difference positioning method is used to accurately locate
microseismic events and obtain real-time information across
multiple dimensions, including time, space, intensity, and frequency.
Each dimension offers a unique perspective on the process of
coal and rock damage and fracturing. A comprehensive analysis
of the variation patterns across these dimensions is crucial for
understanding the evolution of underground stress conditions
and plays an important role in the early warning of coal and rock
dynamic disasters.

3 Evolution characteristics of
microseismic multidimensional
information

3.1 Time dimension information

Due to characteristics such as heterogeneity and anisotropy,
the fracture modes of coal rock materials are also characterized
as multi-scale, nonlinear, and unstable. In this section, the box-
counting method is used to calculate the probability distribution of
physical quantities and apply statistical physics methods to analyze
the multifractal parameters of microseismic signals (Lopes and
Betrouni, 2009; Hirabayashi et al., 1993). Suppose microseismic
signal sequence is [xi], and the sequence can be divided into many
subsets of length ε (ε < 1), and define the probability distribution of
each subset as Pi(ε). If microseismic signal sequence hasmultifractal
characteristics, then the probability distribution function Pi(ε)
satisfies Equation 3,

Pi(ε) ∼ εα (3)

Where α is called the singularity index, which controls the
singularity of the probability distribution function Pi(ε) and reflects
the unevenness of the subset probabilities. If the number of units
with the same probability in the subset marked by α is defined
as Nα(ε), the smaller the partition scale ε, the more units are
obtained, as Equation 4,

Nα(ε) ∝ ε−f (α) (4)

Where f (α) represents the growth rate of the number of units within
the subset α as the partition scale ε decreases.
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FIGURE 2
Microseismic signal waveform. (A) Original waveform (B) The filtered waveform.

Currently, statistical physics methods are generally employed to
compute multifractal characteristics. Initially, a partition function
is defined,

Xq(ε) ≡ ∑Pi(ε)
q ∼ ετ(q) (5)

Where, τ(q) represents the mass exponent, with -∞ < q < +∞.
Theoretically, the larger the value of |q|, the better the multifractal
spectrum, and the multifractal spectrum tends to stabilize after |q|
reaches a certain value. Therefore, the value of q is defined within a
fixed range.

As Equation 5 holds on, τ(q) can be calculated according
to the slope of the double logarithmic curve lnXq - lnε,
as show in Equation 6.

τ(q) = lim
ε→0

lnXq(ε)
lnε

(6)

By applying the Legendre transform to τ(q)-q, Equation 7
can be derived:

f (α) = αq− τ(q) (7)

The curve composed of parameters α and f (α) is the multifractal
spectrum, which can describe the complex state of the microseismic
signals. A smaller Δα indicates a more uniform energy distribution
of the microseismic signal. Conversely, a larger Δα suggests a more
complex energy distribution.

This study focuses on the temporal characteristics of
microseismic waveforms. Figure 3 illustrate the dynamic evolution
of the multifractal parameter Δα, reflecting the temporal behavior
of microseismic sources at the working face. When compared with
support resistance data, Δα exhibits a clear upward trend prior
to periodic roof weighting events. The larger the pressure range
and intensity, the more pronounced the precursor trend. After
pressure release, Δα gradually decreases. Notably, the precursor
period indicated by Δα is approximately 2–3 days.

3.2 Frequency dimension information

Sine and cosine functions constitute a complete set of functions,
allowing any periodic function to be represented as a linear
combination of these sine and cosine functions. Therefore, for a
function f (t) with a period T, it can be expressed in the form of a
Fourier series (He et al., 2021; Wang et al., 2024), as Equation 8,

f (t) =
a0
2
+∑(an cos(nωt) + bn sin(nωt)) (8)

Where, an and bn are the coefficients of the sine and cosine functions
in f (t), ω is the angular frequency, n is a positive integer, a0/2
represents the average value of f (t).
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FIGURE 3
Microseismic multifractal parameter Δα and maximum support resistance in June 2024.

FIGURE 4
Microseismic main frequency and maximum support resistance in June 2024.

Based on this, various harmonic components of the signal can
be extracted according to Equation 9.

SF(ω) =
1
2π

+∞

∫
−∞

S(t)e−iaωtdt (9)

Where, S(t) is a continuous-time signal function, e-it is the basis
function of the Fourier transform.

Larger-scale coal or rock fractures typically generate
microseismic waves with lower main frequencies. As a result, a
decline in the main frequency is often interpreted as a sign of
increased stress or extensive fracturingwithin the coal rock. Figure 4
shows the temporal variation in the daily average main frequency
of microseismic events at the working face. A clear downward trend
in the main frequency is observed before periodic convergence,
with the frequency remaining low during sustained pressure and
gradually rising after pressure release.

3.3 Energy dimension information

In 1941, to precisely delineate the statistical relationship
between earthquake magnitude and frequency, Gutenberg and
Richter introduced the G-R relationship formula (Scholz, 2015;
Smith, 1981), as Equation 10,

lg N = a− bM (10)

Where M represents the magnitude of the seismic source, N
denotes the number of earthquake events with a magnitude of
M ± ΔM within a specified period. The parameter a indicates
the seismic activity level and the statistical time frame, while b
is a function that reflects the relationship between the relative
magnitude distribution, the strength of the medium, and the stress
level. The application of normalization techniques facilitates a more
accurate characterization of the variations in the b-value relative to
stress levels.

Figure 5 shows the evolution of the microseismic b-value at the
working face. Prior to periodic roof weighting, the b-value exhibits
a clear downward trend, with the precursor signal becoming more
pronounced as the pressure range and intensity increase. Following
pressure release, the b-value gradually recovers. Overall, the b-value
provides a precursor indication approximately 3–4 days in advance.

3.4 Spatial dimension information

Cluster analysis is a widely utilized method in data analysis,
designed primarily to segregate data samples into distinct groups
or clusters according to their similarities. This technique finds
application across various domains including data mining, market
research, bioinformatics, and image processing. In cluster analysis,
data samples are treated as points within an n-dimensional space,
where n represents the number of features. The method categorizes
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FIGURE 5
Microseismic b-value and maximum support resistance in June 2024.

these samples based on their similarity, which can be quantified
using distance metrics such as Euclidean distance, Manhattan
distance, or cosine similarity. Samples are then aggregated
into clusters, each comprising data points that share similar
characteristics.

Assume a microseismic sequence consists of N events. Define
a matrix E of size N × N, where each element aij represents
the spatiotemporal distance between the ith and jth events in the
sequence (Zhang et al., 2017a; Zhang et al., 2017b). The relationship
is expressed by Equation 11,

aij = √(xi − xj)
2 + (yi − yj)

2 + (z i − z j)
2 (11)

Where (xi, yi, zi, ti) and (xj, yj, zj, tj) represent the spatial coordinates
and corresponding occurrence times of the ith and jth events,
respectively.

For the matrix E, the elements apk (k = 1,2, …,N ; k≠p) in the
pth row represent the spatial distances between the pth event and
the other events. By comparing each element apk in the pth row,
the minimum value is determined. If the minimum value is apw, it
indicates that event w is the nearest neighbor to event p, and they
should be connected by a single linear link.

To further analyze the spatiotemporal distribution
characteristics of source sequences, scholars employ the Weibull
distribution to calculate, as shown in Equation 12,

w(l) = L
L0
= 1− exp[−( l

l0
)
d
] (12)

In this section, following the methodology outlined in
reference (Zhang et al., 2017a), the spatial correlation length is
defined at the point where w(l) = 0.5.

To examine the variation pattern of the spatial correlation
length, a sliding event window methodology was employed for the
calculations.Thismethod involves capturing allmicroseismic events
occurring on a given day within each window, which then advances
by 1 day. The findings are illustrated in Figure 6. It is observed
that the spatial correlation length of microseismic events gradually
increases 2–3 days prior to the roof weighting and subsequently
decreases after roof weighting.

4 Research on correlation of
microseismic multidimensional
information

4.1 Research on the correlation between
microseismic multidimensional
information and pressure

Correlation analysis is a statistical technique employed to
investigate the relationships between random variables and is
extensively used in the analysis of random signal patterns.
In this section, cross-correlation analysis is particularly useful
for examining the relationship between multi-dimensional
microseismic information and stress.

Assume there are two random signal time series X(t) and Y(t),
the cross-correlation function describes the relationship between
series X(t) at any given time t1 and series Y(t) at time t2. Defining
τ = t2-t1, the cross-correlation function between X(t) and Y(t) can
be expressed as Equation 13,

Rxy(τ) = Rxy(t1, t1 + τ) = E[X(t1)Y(t1 + τ)] (13)

The correlation coefficient can be defined as Equation 14,

rxy(t1, t2) =
Covxy(τ)

√σ2
xσ2

y

= rxy(τ) (14)

Where, E represents the expected value; mx and my are the
mean value of X(t) and Y(t), respectively; σx2 and σy

2 represent
corresponding squared differences. The correlation coefficient,
denoted as r, ranges from −1.0 to 1.0. A higher value of r indicates a
greater similarity between the two sets of variables.

Building on the theoretical framework, this study systematically
analyzes the quantitative correlation between the evolution of
microseismic source multi-parameters—spanning time, space,
and strength—and pressure development at the working face,
as shown in Figure 7. The results reveal that waveform multifractal
parameters, main frequency, b-value, and spatial correlation length
are all related to the maximum support resistance. Among them,
the main frequency shows a relatively weak correlation, while the
multifractal parameters display a strong correlation. Both the b-
value and the spatial correlation length are highly correlated with
the maximum support resistance at the working face.

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2025.1612720
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Guo et al. 10.3389/feart.2025.1612720

FIGURE 6
Microseismic spatial correlation length and maximum support resistance in June 2024.

FIGURE 7
Correlation relationship between microseismic multidimensional information and pressure in June 2024. (The color blue indicates the correlation
coefficient for multifractal parameters; black represents the correlation coefficient for the dominant frequency of microseismic waveforms; green
denotes the correlation coefficient for the b-value; and red signifies the correlation coefficient for the spatial correlation length.).

4.2 Research on long range correlation
between multi-dimensional microseismic
information and pressure

Correlation analysis primarily evaluates the linear relationship
between two variables on the same time scale, often using measures
like the Pearson correlation coefficient to indicate the strength
and direction of their association. This method reflects short-
term, immediate interactions. In contrast, long-term correlation
analysis examines the dependence and memory effects within or
between time series over extended periods. Techniques such as
the Hurst exponent are commonly used to determine whether a
system exhibits persistence, trends, or long-range influence. While
correlation analysis emphasizes whether variables change in sync at
a given moment, long-term correlation analysis focuses on whether
past states continue to influence future behavior. Combining both
approaches provides a more comprehensive understanding of a
system’s short-term dynamics and long-term evolutionary patterns.

In this section, the Rescaled Range Analysis method
(R/S) is utilized to explore the long-term correlation between
microseismic information and pressure. This method allows for
a detailed assessment of the persistence or memory of the time
series data related to microseismic events. The time recording

sequence of multi-dimensional microseismic information, is
defined as Equation 15:

{x(t)} t = 1,2,⋯N (15)

“In this analysis, the time sequence is segmented into A
continuous subintervals, each with a length of n, where n represents
the chosen scale for analysis.The entire sequence is divided such that
each segment conforms to this length, although the final subinterval
may be shorter than n if the total sequence length is not a perfect
multiple ofn. Each subinterval is denoted byΦa, where a=1, 2,…,A.
Within each subinterval Φa, individual data points are represented
as Rk, a, where k = 1,…, n and a = 1,…, A.

Use X (k, a) to represent the cumulative difference within a
subinterval, as Equation 16,

X(k,a) =
k

∑
i=1
(Ri,a − ⟨X⟩n)k = 1,2,⋯n (16)

Use SΦa to represent the standard deviation and use it to re-scale
the range, as Equation 17,

SΦa
= √ 1

n

n

∑
i=1
[x(i) − ⟨X⟩n]

2 (17)
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FIGURE 8
Long-range correlation between microseismic multidimensional information and pressure in June 2024. (The color blue indicates the Hurst index for
multifractal parameters; black represents the Hurst index for the dominant frequency of microseismic waveforms; green denotes the Hurst index for
the b-value; and red signifies the Hurst index for the spatial correlation length.).

Therefore, for the partition interval length n, the rescaled range
of the average for subinterval A can be calculated as Equation 18,

(R
S
)
n
== 1

A

A

∑
a=1
(
R∅a
S∅a
) (18)

The empirical relationship analyzed by Hurst is expressed
as Equation 19,

R
S
∼ (n)H (19)

By repeating the above calculation process for different partition
lengths nnn, multiple mean rescaled ranges can be obtained. When
the Hurst exponent H = 0.5, it suggests that past increments
have no correlation with future increments—an attribute of
standard Brownian motion, which is a purely random process
with independent increments. Based on this theoretical foundation,
the study systematically analyzes the quantitative correlation
between the evolution of time-space-strength multi-parameters of
microseismic sources and pressure development at the working face,
as illustrated in Figure 8.

5 Conclusion

Theanalysis reveals that severalmicroseismic parameters exhibit
clear precursor trends before roof weighting. The multifractal
parameter Δα shows a distinct upward trend 2–3 days prior
to pressure events, with stronger pressure and wider ranges
enhancing this trend, and gradually decreases after pressure release.
Similarly, the microseismic main frequency decreases before roof
weighting, remains low during high-pressure periods, and increases
post-release. The b-value also declines noticeably 3–4 days in
advance, with greater pressure amplifying the trend, and recovers
gradually afterward. The spatial correlation length increases before
roof weighting, particularly under stronger pressure conditions,
and decreases following release, with a precursor period of
about 2–3 days. Overall, Δα, main frequency, b-value, and spatial
correlation length are all correlated with working face pressure,
among which the main frequency shows a weak correlation,
while Δα and other parameters demonstrate strong and long-range
correlations.
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