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Understanding the interaction between blue-green space stability (BGSS) and 
environmental pressures (EPs) is critical for urban ecological resilience. This 
study developed blue-green space stability index (BGSSI) and environmental 
pressure indexes (EPIs) to explore their coupling coordination and spatial 
heterogeneity across four spatial scales (1 km, 5 km, 10 km grids, and 
administrative districts) in Nanchang City, China. We integrated local bivariate 
Moran’s I, spatial regression, and a Coupling Coordination Degree Model 
(CCDM) to evaluate their spatial relationships. Results show that: 1) The 
distribution of EPIs and BGSSI exhibits spatial heterogeneity, with high pressure 
and low stability in the central part of the city, while in contrast, mountainous 
and forest areas in the suburbs had low pressure and high stability. 2) The 
spatial clustering results of EPIs and BGSSI indicated that the blue space 
represents low-low clusters as ecologically sensitive areas, the middle of the city 
represented high-low clusters as ecologically dangerous areas, and the green 
space represented low-high clusters as important ecological protection areas. 
The spatial regression indicated that EPIs were negatively correlated with BGSSI, 
and spatial autocorrelation and spatial spillover effects were observed between 
them, economic and population pressures have lower coefficients than other 
factors. 3) EPIs and BGSSI exhibited three stages and nine types of coordinated 
coupling relationships. As the grid expands, the proportion of Running-in stage 
(RS) increases, while the proportion of Coordination stage (CS) decreases. Our 
multiscale analysis reveals the bidirectional, scale-sensitive nature of EPs–BGSS 
interactions and provides a methodological framework to guide differentiated 
ecological planning and spatial governance.
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blue-green space, blue-green space stability, environmental pressures, coupling 
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1 Introduction

Blue-green space (BGS), comprising natural and semi-
natural ecosystems such as rivers, lakes, wetlands, forests, and 
grasslands (Gómez-Baggethun and Barton, 2013; Veerkamp et al., 
2021), plays a vital role in maintaining urban ecological stability 
(de Macedo et al., 2021). It supports a wide array of ecosystem 
services, including air purification (Fan et al., 2022), urban heat 
mitigation (Li, Stringer, and Dallimer, 2022; Pan et al., 2023), 
flood regulation (Baker et al., 2019), biodiversity conservation 
(Donati et al., 2022), and enhancement of human wellbeing 
(Wu, Luo, and Tang, 2019). However, accelerated urbanization 
and land-use intensification have led to severe fragmentation, 
degradation, and uneven spatial distribution of BGS, particularly 
in rapidly developing cities (Liu et al., 2020; Albert et al., 2020). 
These changes threaten the structural and functional integrity of 
BGS and compromise its long-term ecological performance.

Landscape stability (LS), defined as the ability of ecosystems 
to maintain structural and functional integrity under external 
disturbances, is a key metric for assessing ecosystem resilience 
(Prokopová et al., 2019; Fu et al., 2013). The concept of blue-green 
space stability (BGSS) extends this framework to urban landscapes, 
emphasizing their robustness in the face of ecological stressors such 
as pollution, population pressure, and climate change (Sun et al., 
2023; Zhang et al., 2024). Although LS has been studied in forests 
(Huang et al., 2021), mountainous regions (Zhang and Wang, 2022), 
and wetlands (Świerkosz et al., 2014), studies specifically focusing 
on BGSS remain limited. Nowadays, landscape pattern indices are 
commonly used to evaluate landscape stability, but these indicators 
are often limited to structural description or single dimensional 
evaluation, failing to capture the comprehensive resilience of BGS 
ecosystems to various disturbances such as pollution, heat stress, 
and urban expansion. We propose the Blue-green space stability 
index (BGSSI) as a novel and integrative metric. It builds upon 
the conceptual foundation of landscape ecological risk, the index 
provides a quantitative representation of the capacity of BGS to 
maintain structural and functional integrity under stress.

Environmental pressures (EPs)—including land use change 
(Zhou et al., 2020), population and economic concentration 
(Wang et al., 2020c), air pollution, and increasing temperatures 
(Zhou et al., 2014) are widely recognized as key drivers of BGS 
degradation (Yu et al., 2018). Yet, the relationship between BGSS 
and EPs is often bidirectional and dynamic. While EPs degrade 
LS, BGS can in turn mitigate these pressures, forming a complex 
feedback system (Fletcher et al., 2021; Shen et al., 2021). A nuanced 
understanding of their spatial coupling and coordination is therefore 
essential for informing sustainable urban development.

The coupling coordination degree model (CCDM) is widely 
used to evaluate interactions between complex systems and 
identify constraints on regional development (Zhang et al., 2023). 
Previous applications include analyses of economic development 
and ecological environments (Cai et al., 2021), and urbanization 
coupled with ecosystem service value (Guo et al., 2022). This 
model can therefore be effectively applied to assess the coordination 
between BGSS and EPs. In the context of BGSS and EPs, this 
model provides a structured approach to measure the degree 
of synchronization and mutual reinforcement between ecological 
integrity and anthropogenic stressors.

Considering these challenges, multiscale analysis offers a 
powerful methodological framework to explore the spatial 
heterogeneity (Nicolè et al., 2011) and scale-sensitive interactions 
between BGSS and EPs. Research has shown that the distribution 
and ecological functioning of BGS are highly dependent on spatial 
resolution, with varying clustering patterns, regression behaviors, 
and coupling mechanisms at different scales (Bai et al., 2020; 
Felipe-Lucia, Comín, and Bennett, 2014; Lu et al., 2025). Fine-scale 
grids (e.g., 1 km) enable precise detection of localized ecological 
degradation, while coarser scales (e.g., 10 km or administrative 
districts) reveal broader spatial trends and policy-relevant dynamics. 
Moreover, a multiscale approach helps mitigate the Modifiable 
Areal Unit Problem (MAUP), a spatial statistical bias arbitrary unit 
selection in geographic analysis (Anselin, 1995).

Accordingly, this study selected four representative spatial 
scales—1 km, 5 km, 10 km grid, and administrative district 
level to comprehensively examine the spatial interaction and 
coordination between BGSSI and environmental pressure indexes 
(EPIs). These scales were chosen to reflect nested levels of 
spatial analysis: from micro-level ecological responses to macro-
level governance frameworks. The multiscale design enables 
the assessment of both fine-grained ecological risks and large-
scale spatial trends, enhancing the robustness and applicability 
of findings in ecological planning and urban management 
(Zhang et al., 2024; Turner et al., 1993).

Nanchang, a rapidly urbanizing city in southeast China, serves 
as an ideal case study. With an urbanization rate increasing from 
50.55% in 2014 to 78.08% in 2020, and reaches 79.09% in 2024, the 
city faces severe challenges such as fragmented BGS, rising pollution 
levels, and extreme weather events. This study aims to: 1) evaluate 
the spatial distribution of BGSSI and EPIs across multiple scales; 2) 
analyze their spatial autocorrelation and interaction mechanisms; 
and 3) examine the coupling coordination patterns between them. 
By revealing the spatial dynamics of BGSS and EPs, we seek to 
provide insights for targeted ecological restoration and adaptive 
policy-making under a multiscale governance framework. 

2 Materials and methods

2.1 Study area

Nanchang (115°27′-116°11′E, 28°09′-29°11′N), located in East 
China, is the capital city of Jiangxi Province (Figure 1), covering a 
land area of 7,194.98 km2, administratively, it contains nine districts. 
Nanchang is characterized by predominantly flat terrain in the 
southeast and rolling hills in the northwest. The city experiences a 
subtropical monsoon climate, with an average annual temperature 
of 19.7°C and an annual precipitation of 1962.8 mm.

Nanchang is abundant in BGS, with nearly 43% urban green 
coverage and almost 30% water area. In 2022, it was recognized 
as an international wetland city. However, the distribution of 
BGS is highly uneven, with significant concentrations in the city’s 
outskirts. Among them, major blue spaces include the Nanji Wetland 
National Nature Reserve, Poyang Lake National Nature Reserve 
in the northeast, and Jinxi Lake and Junshan Lake in the center 
and east. Forests are mainly concentrated in the northwest and
southeast.
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FIGURE 1
Location and Land Use/Land Cover of the study area.

As land use changes and climate change intensify, external 
environmental pressures become more prominent, resulting in a 
decline in BGSS and a reduction in ecosystem services. Therefore, 
it is crucial for sustainable urban development to assess the current 
level of BGS stability in relation to the coordination of EPs. 

2.2 Data sources

The data used for the study included land use, population, 
Gross Domestic Product (GDP), nighttime lighting (NL), annual 
average PM2.5 (PM2.5), monthly average temperature (MAT), 
Digital Elevation Model (DEM), slope, and detailed information 
on the data sources are provided in Table 1. All spatial data 
were resampled to a 50 × 50 m raster in ArcGIS 10.2 (ESRI, 
Redlands, CA, United States) and the coordinate system was
standardized. 

2.3 Data processing

2.3.1 Calculation of BGSSI
LS indicates the capacity and degree of a landscape to maintain 

its structural stability and functional integrity in the face of 
potential disturbances (Turner et al., 1993). BGSS was quantified 
by the reciprocal of landscape ecological risk, meaning that higher 
ecological risk corresponds to weaker BGSS, the calculation of 
landscape ecological risk index refers to existing research (Cao et al., 
2023; Li et al., 2021), while lower ecological risk indicates stronger 
BGSS. The BGSSI was derived using the range method (Equations 
1–3).

Rki = Eki × Fki (1)

Eki = aCki + bSki + cDki

where Eki is the landscape disturbance index of unit i landscape type 
k, which is composed of landscape fragmentation Cki, separation 
Ski and dominance Dki, a, b and c represent weights respectively, 
generally, a = 0.5, b = 0.3, c = 0.2 (Gao et al., 2022). Fki is the landscape 
vulnerability of unit i landscape type k. According to previous 
studies and the actual situation of the study area (Wang et al., 
2020b), the vulnerability of BGS types is ranked from low to 
high as follows: forest land, grassland, cultivated land, water and 
submerged plants (Li et al., 2020). The normalized vulnerability is 
0.067, 0.133, 0.200, 0.267 and 0.333 respectively.

Cki =
Nki

Aki
(2)

Ski =
Ai

2Aki
×√

Nki

Aki

Dki = 0.6
Nki

Ni
+ 0.4

Aki

Ai

where Nki is the number of i-unit patch k, Aki is the area of i-unit 
patch k, Ai is the total area of i-unit patch, and Ni is the total number 
of i-unit patch.

BGSSI =
BGSSi −BGSSmin

BGSSmax −BGSSmin
(3)

BGSSIi =
1

ERIi

ERIi =
n

∑
k=1

Aki

Ai

√Rki

where BGSSI is the Blue-green space stability index, BGSSi is the 
BGSS value of unit i, BGSSmin is the minimum value of BGSS value, 
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FIGURE 2
Spatial distribution of EPIs and BGSSI.

BGSSmax is the maximum value of BGSS, ERIi is the landscape 
ecological risk value of unit i, n is the number of BGS types of unit 
cell, Aki is the BGS area of unit i type k, Ak is the total area of unit 
BGS, Rki is the landscape loss index of unit i patch type k. 

2.3.2 Calculation of EPIs
Population, GDP, NL, mean summer temperature (MST, 

Calculated from MAT), PM2.5, DEM, and slope data were selected 
as EPs, and standardize the data to obtain nighttime lighting 
index (NLI), gross domestic product index (GDPI), population 
index (POPI), annual average PM2.5 index (PMI), mean summer 
temperature index (MSTI), digital elevation model index (DEMI), 
slope index (SLI) (Equations 4–6), then use these EPIs to build 
comprehensive environmental pressure index (CEPI) by the CRITIC 
method (Equations 7, 8). Although DEM and slope are not direct 
human pressures, they are considered terrain improvers, reflecting 
the limitations of terrain on urban expansion and ecological 
restoration. For example, terrain features such as slope and elevation 
significantly influence urban planning suitability and expansion 
potential (He et al., 2023). Generally, the lower the DEM and 
the gentler the slope, the easier it is for humans to alter the 
natural environment and landscape. This facilitates anthropogenic 
land transformation and thus increases pressure on the natural 
landscape (Zhang et al., 2021). Therefore, in this article, DEM and 
SLE are also defined as EPs.

To reduce the impact of data level difference, the logarithm 
of the original data is first taken, and Min-max normalization was 
used to standardize each factor, Finally, the value range of EPI is 

between [0,1].

xi
j = log

10
xi

j (4)

when xi
j is a positive indicator:

Pi
j =

xi
j −min (xj)

max (xj) −min (xj)
(5)

when xi
j is a negative indicator:

Pi
j =

max (xj) − xi
j

max (xj) −min (xj)
(6)

where xi
j is the attribute value of the EPIj in unit i, xi

j is the original 
value of unit i EPIj, P

i
j is the pressure index of unit i EPIj, min (xj)

is the minimum value of EPIj attribute value, and max (xj) is the 
maximum value of EPIj attribute value.

The CRITIC method is an objective weighting method that 
provides more objective weighting coefficients and is widely used in 
the field of environment (Krishnan, 2024). The calculation formula 
is as follows.

Wj =
Cj

∑n
j=1

Cj
(7)

Cj = SjAj
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Sj =
√∑

n
i=1
(Pi

j − pj)
2

n− 1

Aj =
n

∑
i=1
(1− rij)

where Wj is the weight of pressure factor j, Cj is the information 
content of pressure factor j, Sj is the volatility of pressure factor j, 
Aj is the conflict between pressure factors, and rij is the correlation 
coefficient between pressure factor i and J.

Finally, the comprehensive pressure index is calculated:

SPIi =
n

∑
j=1

WjP
i
j (8)

SPIi is the CEPI of unit i. 

2.3.3 Bivariate spatial autocorrelation model
The spatial autocorrelation model determines the distribution 

and clustering patterns of variables in space (Anselin, 1995). 
The Global Spatial Autocorrelation model was used to
analyze the spatial correlation between each EPI 
and BGSSI (Equation 9). The Moran’s I was between [-1,1]. 
When Moran’s I > 0, the spatial correlation between variables 
was positive, showing spatial clustering characteristics. When 
Moran’s I < 0, there is a negative correlation between variables, 
indicating that there is spatial separation. Once Moran’s I = 0, 
there seems to be no spatial correlation, indicating a random
distribution.

I =
∑n

i=1
∑n

j=1
Wij(xi − y)(xj − y)

n∑n
i=1
(xi − y)2(∑n

i=1
∑n

j=1
Wij)

(9)

where I is the bivariate global Moran index, n is the total number of 
units, Wij is the spatial weight matrix, and the Queen connection 
matrix is used. i and j are the i th and j th units respectively, 
xi and xj are the attribute values of the first variable of the i 
th and j th space units respectively, and y is the mean value of 
the attribute value of the second variable. The Queen contiguity 
matrix considers both edge and vertex adjacency between grid cells, 
which allows capturing spatial autocorrelation even in areas with 
partial geographical fragmentation such as rivers and lakes. Given 
the grid resolution used in this study, the majority of grid cells 
remain spatially contiguous, making the Queen contiguity matrix 
appropriate for capturing the overall spatial patterns of EPIs and 
BGSSI in Nanchang.

The bivariate local Moran’s index was used to measure 
the spatial agglomeration degree of pressure factors and BGSSI
(Equation 10).

I′ =
xi

k − xk

S2
k

n

∑
j=1

Wij
xi

l − xl

S2
l

(10)

where I′ is the bivariate local Moran index, xi
k is the i-unit, the 

attribute value of the variable k, xi
k is the attribute value of the i-unit 

variable l, xk and xl are the average values of variables k and l, S2
k and 

S2
l  are the variances of variables k and l, respectively, and n is the total 

number of units. 

2.3.4 Spatial regression
The impact of EPs on BGS is often influenced by the surrounding 

space, so its spational effects cannot be ignored. The spatial 
effect econometric regression models mainly include spatial lag 
model (SLM) and spatial error model (SEM) (Wang et al., 2018; 
Weixiang et al., 2022), the expression of SLM is Formula 11, 
and SEM is Formula 12. This article uses the classic OLS regression 
to compare the significance of Lagrange multiplier (LM), and 
determines the final model based on the significance and value of 
LM and Robust-LM.

Y = α+Xβ+ ε

Y = α+Xβ+ λWμ+ ε (11)

where Y is the dependent variable, X is the independent variable, 
α is a constant term, β is the estimated parameter, λ is the spatial 
autocorrelation coefficient, W is an n × n weight matrix, μ is a spatial 
error term, ε is a random error term.

Y = α+ ρWy+Xβ+ ε (12)

where Y is the dependent variable, X is the independent variable, ρ 
is a parameter of spatial autoregressive coefficient, which is affected 
by W matrix, W is an n × n weight matrix, y is the spatial lag term, 
β is the estimated parameter, ε is a random error term. 

2.3.5 Coupling coordination degree model
The CCDM served as a valuable tool for assessing and 

quantifying the dynamic interaction and influence relationship 
between EPIs and BGSSI (Table 2), and the model is as follows 
(Equation 13):

T = aK1 + bK2 (13)

C =
2√K1K2

K1 +K2

D = √CT

where D denotes the level of coupling coordination between EPIs 
and BGSSI, while C represents their coupling degree, and T signifies 
their coordination level, K1 is the EPI, K2 is the BGSSI, a and b are 
undetermined coefficients, As BGS and EPs are equally weighted in 
CCDM, a = b = 0.5 (Baoping and Gong, 2022).

Introducing a relative developmental degree model (Equation 
14) to judge the relative developmental relationship between 
pressure systems and landscape stability systems (Yuchun and 
Zhang, 2023).

E =
U1

U2
(14)

where E represents the relative development degree, U1 and U2
represent EPIs and BGSSI. 

3 Results

3.1 Basic characteristics of BGSSI and EPIs

Figure 2 displays the spatial distribution of eight EPIs and BGSSI 
at different scales, revealing distinct spatial variations. As the grid 
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TABLE 1  The data sources in this study.

Variable name Data type/Resolution Year Source

Land Use/Land Cover Raster data/10 m 2020 https://www.arcgis.com

MAT Raster data/1 km 2020 http://www.geodata.cn

NL Raster data/0.004° 2020 https://www.resdc.cn

Population Raster data/1 km 2020 https://landscan.ornl.gov

DEM Raster data/30 m — https://www.gscloud.cn

Slope Raster data/30 m — Calculated from DEM data

GDP Raster data/1 km 2020 https://www.resdc.cn

PM2.5 Raster data/1 km 2020 http://www.geodata.cn

TABLE 2  Classification and characteristics of coupling coordination.

D Stage E Type Characteristic

0 ≤ D < 0.4 Antagonism stage (AS)

0 ≤ E < 0.8 AS1 pressure outweighs stability
intense antagonism, System in decline

0.8 ≤ E < 1.2 AS2 Pressure-stability balance, mild antagonism, System in development

1.2 ≤ E AS3 stability outweighs Pressure
mild antagonism, System in decline

0.4 ≤ D < 0.7 Running-in stage (RS)

0 ≤ E < 0.8 RS1 pressure outweighs stability
mild running-in, System in decline

0.8 ≤ E < 1.2 RS2 Pressure-stability balance, intense running-in, System in development

1.2 ≤ E RS3 stability outweighs Pressure
intense running-in, System is optimized

0.7 ≤ D < 1 Coordination stage (CS)

0 ≤ E < 0.8 CS1 pressure outweighs stability
mild coordination, System in decline

0.8 ≤ E < 1.2 CS2 Pressure-stability balance, intense coordination, System in development

1.2 ≤ E CS3 stability outweighs Pressure
intense coordination, System is optimized

gets larger, smaller-scale differences decrease and tend to cluster 
and evenly distribute. The distribution of various pressure indices 
has both differences and similarities, at the grid scale, NLI, GDPI, 
POPI, PMI, and CEPI gradually decrease from the city center to 
the suburbs, but the degree of diffusion and details vary, medium-
high levels of NLI and CEPI are concentrated in the center, while 
GDPI is in the east and south, and PMI is in the east and northeast. 
From south to north, MSTI shows a change from high to low, 
the DEMI and SLI in the central and eastern parts of the city are 
higher than those in other parts. On the administrative scale, Anyi 
County and Xinjian District in the northwest of the city, as well as 
Jinxian County in the southeast, have lower NLI, GDPI, population, 
PMI, and CEPI, while Xihu District in the central region had the 
highest. The MSTI shows that Jinxian County is at a high level 

and Anyi County is at a low level. DEMI and slope are at high 
levels in Anyi and Xinjian Districts, while Nanchang County is at a
relatively low level.

The central part of the city represents a typical area with 
low BGSS values due to its dense urban development and 
fragmented BGS distribution within built-up land. In contrast, 
the northeastern part of the city features extensive BGS, primarily 
composed of lakes and wetlands. This region includes the 
Jiangxi Poyang Lake Nanji Wetland National Nature Reserve 
and Jiangxi Poyang Lake National Nature Reserve, which are 
important ecological sources and ecologically sensitive areas. These 
areas were susceptible to external environmental interference, 
resulting in predominantly medium-low levels of BGSSI. At 
the administrative scale, Anyi County and Xinjian District in 
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FIGURE 3
The Proportion of EPIs and BGSSI levels at four scales.

the northwest region exhibited the highest BGSSI, while Xihu 
District and Qingyunpu District displayed the weakest stability in
the center.

At the grid scale, the majority and minority of index 
levels remain consistent, while their specific proportions 
fluctuate (Figure 3). POPI and PMI are mainly distributed at 
medium-high levels. The proportion of POPI across the 1 km, 
5 km, and 10 km scales is 38.90%, 38.83%, and 39.39%, respectively, 
while PMI is distributed as 37.33%, 35.88%, and 36.36%. Medium 
is the main class of MSTI, CEPI, and BGSSI, and the scale 
changes from small to large, with the MSTI increasing from 
45.75% to 51.52%, CEPI rising from 35.57% to 44.44%, and BGSSI 
decreasing from 42.11% to 32.32%. At 1 km scale NLI and GDPI are 
dominated by Low level, with proportions of 38.23% and 35.09%, 
respectively, while 5 km scale and 10 km scale are in medium-low 
level, the percentage of NLI was 31.64%,31.31% and GDPI was 
40.96%,25.25%. In 1 km and 5 km grid DEMI were concentrated 
in medium-high with 44.50% and 37.29%, meanwhile, 10 km was 
clustered in low with 75.76%. At the 1 km scale, medium-low level 
is the majority of SLI, its proportion is 43.11%, 5 km, 10 km scale 
medium occupies the main position, the proportion separately is 
53.95%, 42.42%. At the administrative scale, MSTI, DEMI, CEPI, 
and BGSSI are mostly distributed at medium levels, with MSTI 
accounting for 44.44% and the other indices at 33.33%. POPI is 
concentrated at low levels, representing 33.33%.

3.2 Spatial correlation between EPIs and 
BGSSI

Figure 4 displays the bivariate local Moran’s I relationship 
between EPIs and BGSSI at four scales. NLI, GDPI, POPI, PMI, 
MSTI, CEPI consistently exhibited negative spatial correlation with 
BGSSI across all scales, while DEMI and SLI are either negatively 
related to the BGSSI at the grid scale but positively correlated at 
the zonal scale. As the scale enlarged, Moran’s index between NLI, 
GDPI, POPI, PMI, CEPI and BGSSI become larger, while the spatial 
clustering effect between them decreases. Among the scales studied, 
PMI, MSTI, DEMI, SLI, CEPI are more strongly spatially correlated 
with BGSSI, and the spatial clustering effects of NLI, GDPI, POPI 
are weaker, BGSSI had the strongest correlation with PMI and the 
weakest association with POPI.

The spatial relationship between EPIs and BGSSI is 
depicted in Figure 4 across multiple scales, revealing consistent 
distribution patterns. The Low-high synergy areas for EPIs 
and BGSSI were mainly located in the northwestern mountain 
woodlands, and the high-low are clustered primarily in the central 
built-up areas, meanwhile, the Low-Low types of MSTI, DEMI, 
SLI, and BGSSI were also concentrated in the central part of the 
city. Poyang Lake in the northeast and Junshan Lake in the east 
were both major low-low clusters of NLI, GDPI, POPI, MSTI, and 
BGSSI, as well as high-low clusters of PMI, DEMI, SLI, and BGSSI. 
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FIGURE 4
Spatial map of association between EPIs and BGSSI at four scales.

The northwestern and southeastern sections of the city were the 
centralized areas for the high-high synergy areas for EPIs and BGSSI.

At both the grid and regional scales, the spatial distribution 
of NLI, GDPI, POPI, PMI, and BGSSI exhibited distinct high-low 
and low-high clustering. The former was concentrated in the city 
center, while the latter was observed in the northwest. Conversely, 
the spatial relationship between DEMI, SLI, and BGSSI indices 
demonstrated predominant high-high and low-low clustering. The 
former was prominent in the northwestern region, while the latter 
was concentrated in the central part of the city. In the northeastern 
area, EPIs and BGSSI generally exhibited low clustering, whereas 
PMI showed high-low clustering.

The spatial clustering patterns also reflect the city’s planning 
intentions. The clustering of high-pressure and low-stability areas 
in the urban center corresponds to key development zones in 
Nanchang’s land-use planning. For example, the clustering patterns 
in Xihu and Donghu Districts are closely related to the city’s focus 
on commercial and administrative expansion, while peripheral low-
pressure and high-stability clusters, such as in Anyi and Jinxian, are 
consistent with designated ecological conservation and agriculture-
oriented zones. 

3.3 Spatial regression between EPIs and 
BGSSI

A spatial regression test was conducted on EPIs 
and BGSSI (Table 3), and the fitting effect of the spatial model was 
judged based on the significance and size of Lagrange Multiplier 
(LM) and Robust LM. The results indicate that the grid scale SEM 
has the best matching effect, and only GDPI performed better in the 

SLM at the 5 km scale. On the management level, POPI and GDPI 
are appropriate for the SLM, while the other EPIs adopt OLS.

The regression coefficients of the pressure indices were negative 
at all scales except for POPI, which had a positive regression 
coefficient at the 5 km grid scale. The negative correlation between 
CEPI, and BGSSI, was the strongest within each study scale, all 
correlation coefficients passed the 1% significance test, with values 
of −1.2844, −1.04567, −1.35842, and −1.12995 at 1 km, 5 km, 10 km, 
and district scales. At the grid scale, CEPI, PMI, DEMI, SLI, 
and MSTI, have stronger negative effects on BGSSI, than NLI, 
GDPI, POPI, the correlation between POPI, and BGSSI, was the 
smallest, with correlation coefficients of −0.0811,607, 0.0161,535, 
and −0.103,947 at the 1 km, 5 km, and 10 km scales, respectively, 
and did not pass the significance test at the 5 km and 10 km scales.

3.4 The coupling coordination relationship 
between EPIs and BGSSI

The coupling coordination relationship between EPIs and BGSSI 
at four scales is shown in Figure 5. There were three stages of 
coupling coordination: AS, RS, and CS, and nine types of coupled 
coordination: AS1, AS2, AS3, RS1, RS2, RS3, CS1, CS2, and CS3. 
Generally, coupling and coordination between EPIs and BGSSI 
are relatively consistent with scale changes. The coupling and 
coordination level is low in the central region and high in the 
Meiling area in the northwest. Compared to other stressors, PMI, 
MSTI, DEMI, and BGSSI have a higher degree of coupling and 
coordination, with CS relationships dominating at multiple scales.

The AS demonstrated a concentrated distribution at the 1 km 
grid and regional scales, with the 1 km grid scale centered in the 
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TABLE 3  Spatial econometric model tests. (Steinberg ∗. P < 0.1; ∗∗. P < 0.05; ∗∗∗. P < 0.01).

Scale Variable Lagrange multiplier (lag) Robust LM (lag) Lagrange multiplier (error) Robust LM (error)

1 km grid

NLI 11247.5684∗∗∗ 35.0231∗∗∗ 11565.1490∗∗∗ 352.6036∗∗∗

GDPI 10542.8483∗∗∗ 35.7802∗∗∗ 10635.6312∗∗∗ 128.5631∗∗∗

POPI 12806.8475∗∗∗ 8.4775∗∗ 12888.4984∗∗∗ 90.1284∗∗∗

PMI 5327.1050∗∗∗ 15.5076∗∗∗ 5455.1955∗∗∗ 143.5981∗∗∗

MSTI 10854.1313∗∗∗ 29.3221∗∗∗ 10884.0946∗∗∗ 59.2855∗∗∗

DEMI 7,459.9446∗∗∗ 2.9859∗ 8036.3565∗∗∗ 579.3978∗∗∗

SLI 11177.1009∗∗∗ 13.0979∗∗∗ 11984.6350∗∗∗ 820.6321∗∗∗

CEPI 4513.8015∗∗∗ 10.4362∗∗∗ 5543.0354∗∗∗ 1039.6702∗∗∗

5 km grid

NLI 414.3859∗∗∗ 10.0196∗∗∗ 436.3370∗∗∗ 31.9707∗∗∗

GDPI 359.1060∗∗∗ 6.6577∗∗∗ 352.8701∗∗∗ 0.4217

POPI 437.0656∗∗∗ 0.2265 437.6821∗∗∗ 0.8430

PMI 54.9252∗∗∗ 21.8945∗∗∗ 97.9783∗∗∗ 64.9476∗∗∗

MSTI 238.5529∗∗∗ 0.2653 285.0709∗∗∗ 46.7834∗∗∗

DEMI 117.4559∗∗∗ 3.9279∗∗ 179.8439∗∗∗ 66.3160∗∗∗

SLI 437.0656∗∗∗ 0.2265 437.6821∗∗∗ 0.8430

CEPI 153.0737∗∗∗ 4.1455∗∗ 212.8500∗∗∗ 63.9218∗∗∗

10 km grid

NLI 67.9764∗∗∗ 8.0973∗∗∗ 74.3026∗∗∗ 14.4236∗∗∗

GDPI 55.5783∗∗∗ 0.3225 56.2784∗∗∗ 1.0227

POPI 69.1432∗∗∗ 1.1174 69.5889∗∗∗ 1.5630

PMI 0.2783 12.6657∗∗∗ 12.2747∗∗∗ 24.6620∗∗∗

MSTI 31.6061∗∗∗ 0.1483 55.6814∗∗∗ 24.2236∗∗∗

DEMI 3.3436∗ 15.6610∗∗∗ 40.8753∗∗∗ 53.1927∗∗∗

SLI 10.8617∗∗∗ 1.9727 34.3225∗∗∗ 25.4334∗∗∗

CEPI 16.4931∗∗∗ 9.4578∗∗∗ 51.6574∗∗∗ 44.6220∗∗∗

district scale

NLI 2.3779 0.6379 1.7789 0.0389

GDPI 4.4940∗∗ 3.9818∗∗ 0.8623 0.3501

POPI 3.2167∗ 3.2262∗ 0.4040 0.4135

PMI 0.8581 0.0821 0.7977 0.0217

MSTI 1.5098 0.5208 1.2433 0.2543

DEMI 0.5723 0.0006 0.8245 0.2528

SLI 0.6695 0.0740 0.6353 0.0399

CEPI 0.2141 0.8296 0.0777 0.6931
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FIGURE 5
The coupling coordination relationship between EPIs and BGSSI at four scales.

central area of the city, and the regional scale observed in Anyi 
County and Xihu District. The RS primarily spanned the central 
and eastern parts of the city, while the CS was distributed across the 
western and southeastern areas.

Furthermore, the spatial patterns of coupling coordination 
between EPIs and BGSSI are consistent with Nanchang’s urban 
development plans. Specifically, the central districts such as Xihu 
and Qingyunpu, which display high environmental pressure and 
low BGS stability, overlap with the core area of the “one core, two 
axes, multiple clusters” urban development strategy. These zones are 
designated for intensive economic and infrastructure development, 
and the results indicate they are also ecological stress hotspots.

Meanwhile, peripheral areas with high BGSSI and low EPIs, such 
as Meiling in the northwest and the Poyang Lake wetland belt in 
the northeast align with key ecological protection and restoration 
zones identified in the city’s ecological planning and the Poyang 
Lake Eco-Economic Zone. This spatial correspondence highlights 
the relevance of our findings for guiding differentiated planning 
policies at multiple administrative levels.

Figure 6 illustrates the proportional relationship between the 
coupling coordination stages and types of EPIs and BGSSI at four 
distinct scales. At the ecological grid scale, RS serves as the primary 
coupling and coordination stage between BGSSI and NLI, GDPI, 
SLI, and CEPI. Meanwhile, the main coupling and coordination 
stage between MSTI and BGSSI is CS. At the 1 km and 5 km scales, 
CS is the primary level of coupling and coordination between BGSSI 
and POPI, PMI, and DEMI, while at the 10 km scale, RS is the 
predominant level of coupling and coordination.

As the grid size increased, RS is the most distinctive stage of 
change. There was a notable increase in the proportion of RS1 
between BGSSI and NLI、GDPI、PMI、MSTI、DEMI、CEPI, 

rising from 5.16%、4%、3.19%、2.7%、7.41%、12.68%–18.18%、
17.17%、49.49%、28.28%、49.49%、67.68%, the proportion 
of RS2 between BGSSI and NLI、PMI、DEMI rising from 
5.48%、0.04%、0.58%–12.12%、6.06%、3.03%. The proportion 
of RS3 between BGSSI and NLI、GDPI、CEPI decrease from 
75.68%、78.81%、14.17%–53.54%、44.44%、8.08%, while the 
proportion of RS3 between BGSSI and PMI, DEMI rising from 
0.53%, 3.90%–5.05%, 7.07%. Besides the proportion of AS3 between 
BGSSI and NLI, GDPI rised from 0.48%, 0.19%–8.08%, 30.3%.the 
proportion of 3 CS types between BGSSI and POPI, PMI, MSTI, 
DEMI, and CEPI follows a downward trend, changing from 
71.73%, 95%, 86.44%, 86.76%, and 41.49%–10.1%, 37.37%, 68.69%, 
38.38%, and 4.04%. 

4 Discussion and suggestions

4.1 Spatial characterization and linkages 
between BGSSI and EPIs

The observed spatial heterogeneity, with high EPIs and low 
BGSSI in urban centers versus low EPIs and high BGSSI in 
suburban mountainous areas, aligns with global patterns of 
urbanization-driven ecological degradation (Albert et al., 2020). 
The central urban zone, characterized by dense infrastructure 
and fragmented BGS, mirrors findings from studies in rapidly 
urbanizing Asian cities where land-use intensification reduces 
landscape connectivity and resilience (Zhou et al., 2020). Conversely, 
suburban regions with contiguous forests and wetlands act as 
ecological buffers, corroborating the role of natural landscapes 
in mitigating environmental stressors (Fletcher et al., 2021). The 
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FIGURE 6
The proportion of coupling coordination between EPIs and BGSSI.

spatial alignment of ecological pressure and stability patterns 
with Nanchang’s development plan suggests a spatial mismatch in 
some zones. Urban core areas under high-intensity growth show 
ecological fragility, calling for integrated governance that links 
ecological protection with zoning control.

These spatial patterns are also scale-sensitive. For instance, 
clustering analyses revealed low–low clusters in blue spaces 
and high–low clusters in urban cores. Smaller grids (1 km) 
captured fine-grained fragmentation effects, while larger scales 
(10 km) emphasized aggregated trends, consistent with the 
scale sensitivity of ecosystem services (Lu et al., 2025). This 
highlights the importance of multiscale analysis and supports 
a hierarchical planning framework: localized interventions for 
high-risk urban cores and broader strategies for suburban
conservation.

The regression analysis further confirmed that EPIs are generally 
negatively correlated with BGSSI, supporting the hypothesis that 
anthropogenic pressures degrade landscape stability. Among these, 
PMI and MSTI showed the strongest negative effects, likely due 
to their direct connections to industrial emissions and urban heat 
islands, which exacerbate BGS fragmentation and hydrological 
stress (Pan et al., 2023; Li, Stringer, and Dallimer, 2022). In 
contrast, GDPI and POPI exhibited weaker influence, which may 
reflect Nanchang’s ongoing ecological restoration policies such as 
ecological parks and sustainable agriculture (Wang C. et al., 2020).

However, not all EPIs displayed consistent statistical significance 
across spatial scales. For instance, POPI became insignificant 
at the 5 km and 10 km grid levels, MSTI lost significance at 
the administrative level, and GDPI weakened from significant at 
1 km to marginally significant or nonsignificant at coarser scales. 
These outcomes can be attributed to scale dependency and spatial 
averaging effects. Population pressures often lead to localized 
ecological impacts such as habitat fragmentation, heat island 
formation, and green space encroachment that are more effectively 
detected at finer resolutions. Likewise, thermal heterogeneity 
captured by MSTI may be diluted at the district level (Wang et al., 
2020c). As for GDPI, its relationship with ecological outcomes may 
vary due to mixed land-use types and blurred functional zones at 
larger scales. These findings reinforce the importance of matching 

spatial scale with ecological process when interpreting regression 
outcomes (Cohen et al., 2016; Ferrer Velasco et al., 2020).

Beyond direct regression relationships, spatial autocorrelation 
and spillover effects suggest that pressures in one area can 
propagate to neighboring zones. For example, pollution from 
urban cores may diffuse into adjacent suburban blue-green 
spaces, while conservation in peri-urban forests and wetlands may 
provide cooling and purification services that benefit urban areas 
(Fan et al., 2022). This bidirectional dynamic reflects the concept of 
telecoupling in socio-ecological systems (Felipe-Lucia, Comín, and 
Bennett, 2014), emphasizing the need for integrated cross-boundary 
management.

These urban to rural spillover mechanisms are further evident in 
our spatial coordination analysis. High-intensity development and 
concentrated EPs in urban centers result in ecological degradation 
beyond core areas, reflected in the declining BGSSI of peri-
urban zones. In contrast, suburban and rural BGS, particularly in 
forested and wetland regions, serve as ecological buffers that absorb 
environmental spillovers. Therefore, regional governance strategies 
should consider not only localized environmental control but also 
the absorptive and adaptive capacity of surrounding ecosystems. 
Incorporating spillover dynamics into spatial planning will allow 
policymakers to more effectively address the hidden ecological costs 
of urban expansion and promote balanced, sustainable urban and 
rural interactions.

The variance in regression strength and clustering patterns 
across scales (Tables 3, 4; Figure 4) underscores a fundamental 
insight: the mechanisms governing EPI-BGSSI interactions are 
hierarchical and scale-dependent.

At the fine 1 km grid scale, our analysis captures direct, localized 
anthropogenic disturbances. The strong negative correlations with 
PMI and MSTI likely stem from immediate, micro-level stressors 
such as traffic emissions, industrial point sources, and the urban heat 
island effect. These pressures directly fragment and degrade small 
urban blue-green spaces (e.g., pocket parks, urban canals), reducing 
their stability. This scale is highly sensitive to the morphological 
changes in the landscape mosaic.

Conversely, the broader 10-km and administrative scales 
integrate local variations, thereby revealing the macro-regulatory 
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TABLE 4  Regression results of BGSSI and EPIs. (Steinberg ∗. P < 0.1; ∗∗. P < 0.05; ∗∗∗. P < 0.01).

Scale Variable
(Regression model)

R-squared Coefficient Constant Lambda

1 km grid

NLI(SEM) 0.6776 −0.4251∗∗∗ 0.629,174∗∗∗ 0.849,243∗∗∗

GDPI(SEM) 0.6689 −0.2725∗∗∗ 0.5745∗∗∗ 0.8448∗∗∗

POPI(SEM) 0.6695 −0.0812∗∗∗ 0.5429∗∗∗ 0.8627∗∗∗

PMI(SEM) 0.6683 −0.8341∗∗∗ 1.1660∗∗∗ 0.7502∗∗∗

MSTI(SEM) 0.6688 −0.5458∗∗∗ 0.9982∗∗∗ 0.8402∗∗∗

DEMI(SEM) 0.6805 −0.6121∗∗∗ 0.8924∗∗∗ 0.7926∗∗∗

SLI(SEM) 0.6884 −0.2984∗∗∗ 0.5841∗∗∗ 0.8492∗∗∗

CEPI(SEM) 0.699 −1.2844∗∗∗ 1.1016∗∗∗ 0.7415∗∗∗

5 km grid

NLI(SEM) 0.6458 −0.3273∗∗∗ 0.4574∗∗∗ 0.8714∗∗∗

GDPI(SLM) 0.6162 −0.0539 0.0699∗∗∗ 0.8589∗∗∗

POPI(SEM) 0.6178 0.0162 0.3549∗∗∗ 0.8636∗∗∗

PMI(SEM) 0.6773 −0.7648∗∗∗ 0.9373∗∗∗ 0.6358∗∗∗

MSTI(SEM) 0.6664 −0.6787∗∗∗ 0.9629∗∗∗ 0.7570∗∗∗

DEMI(SEM) 0.6854 −0.6472∗∗∗ 0.8547∗∗∗ 0.6907∗∗∗

SLI(SEM) 0.6487 −0.4499∗∗∗ 0.5147∗∗∗ 0.7974∗∗∗

CEPI(SEM) 0.6757 −1.0457∗∗∗ 0.9046∗∗∗ 0.7305∗∗∗

10 km grid

NLI(SEM) 0.5405 −0.3741∗∗∗ 0.4378∗∗∗ 0.8226∗∗∗

GDPI(SEM) 0.4895 −0.2657∗∗ 0.3919∗∗∗ 0.7565∗∗∗

POPI(SEM) 0.4778 −0.1039 0.4091∗∗∗ 0.7852∗∗∗

PMI(SEM) 0.7287 −0.8528∗∗∗ 0.9269∗∗∗ 0.6134∗∗∗

MSTI(SEM) 0.6833 −0.8574∗∗∗ 1.0645∗∗∗ 0.6844∗∗∗

DEM(SEM) 0.8181 −0.9932∗∗∗ 1.0427∗∗∗ 0.7694∗∗∗

SLI(SEM) 0.7472 −0.7785∗∗∗ −0.7578∗∗∗ 0.6496∗∗∗

CEPI(SEM) 0.7588 −1.3584∗∗∗ 1.0428∗∗∗ 0.7732∗∗∗

district scale

NLI(OLS) 0.7936 −0.8288∗∗∗ 0.9715∗∗∗ 0.0389

GDPI(SLM) 0.9459 −0.6721∗∗∗ 0.5313∗∗∗ 0.3501

POPI(SLM) 0.9309 −0.6636∗∗∗ 0.5404∗∗∗ 0.4135

PMI(OLS) 0.8877 −1.0089∗∗∗ 1.1483∗∗∗ 0.0217

MSTI(OLS) 0.1442 −0.3952 0.7461∗∗ 0.2543

DEMI(OLS) 0.5578 −0.7599∗∗ 0.9877∗∗∗ 0.2528

SLI(OLS) 0.5141 −0.7669∗∗ 0.9858∗∗∗ 0.0399

CEPI(OLS) 0.8906 −1.1299∗∗∗ 1.1377∗∗∗ 0.6931
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role of regional policies and socio-economic trends. The stronger 
spatial autocorrelation at these scales highlights the aggregate impact 
of zoning and conservation strategies. For instance, the high-high 
clustering of DEMI/SLI and BGSSI in the northwestern suburbs 
aligns with land-use policies that restrict urban expansion into 
mountainous areas, preserving large, contiguous forest patches. The 
weakening significance of POPI and GDPI at larger scales suggests 
their influences are highly localized and may be mitigated by broader 
land-use planning decisions.

In summary, fine scales expose the anatomy of urban ecological 
stress, while coarse scales reveal the physiology of the landscape 
system in response to macroscopic governance. This scale 
dependency necessitates a multi-scale diagnostic approach for 
formulating effective ecological management strategies, ensuring 
policies are neither too generalized to address local crises nor too 
fragmented to achieve regional sustainability.

The coupling coordination stage distribution adds another layer 
of interpretation. The dominance of the Coordination Stage (CS) in 
suburban forests and wetlands, such as the Meiling area and Poyang 
Lake reserves, illustrates the effectiveness of ecological protection 
in maintaining stability under moderate pressures. Conversely, the 
prevalence of the Running-in Stage (RS) in central urban areas 
reflects a spatial mismatch between pressure and ecological capacity, 
pointing to the urgency of retrofitting green infrastructure in 
core zones (Świerkosz et al., 2014).

Finally, the scale-driven shift from CS to RS as grid size 
increases (Figure 6) suggests that finer resolutions are better suited 
to capturing localized coordination patterns, while coarser scales 
may obscure them. This underlines the importance of place-based 
strategies responsive to micro-scale ecological realities (Bai et al., 
2020). The rise in RS1 (low EPI and low BGSSI) at broader scales 
is likely a result of data smoothing and spatial aggregation, which 
may obscure critical ecological hotspots if not carefully interpreted. 

4.2 Suggestions on coupling coordination 
between BGSSI and EPIs

In the study area, the BGSSI and EPIs present three coupled 
coordination stages and nine coupled coordination types, each with 
different spatial distributions and proportions. This intricate nature 
presents difficulties in enhancing comprehensive management. 
Consequently, it is crucial to formulate practical and feasible 
measures that consider local specificities. These measures aim to 
strengthen the capacity and potential for regional development. 

4.2.1 Suggestions for regions in AS
Specifically, regions within the AS such as Xihu District and 

Qingyunpu District, identified in the 1 km grid and administrative 
unit levels, should address the primary contradictions, improve 
the constraints of spatial development, and reverse the unfavorable 
situation of imbalances. AS1, situated in the urbanized area of the 
city, primarily stems from intense urban development, resulting 
in concentrated pressure. The BGS is scarce and fragmented, 
leading to its limited stability. We should pay attention to 
economic development and nurturing ecological construction. This 
entails directing our efforts towards bolstering investments and 
maintenance of ecological protection facilities, as well as facilitating 

the expansion of BGS; one effective approach could be the utilization 
of urban idle land to create pocket parks. AS3 refers to Anyi 
County, which is currently constrained by the slow pace of urban 
development. It is crucial to address these constraints by prioritizing 
the exploration of opportunities for urban development. This 
includes a focus on introducing and promoting green industries, 
leveraging the natural environmental advantages of BGS to drive 
industrial growth, and comprehensively enhancing the overall 
quality of development. 

4.2.2 Suggestions for regions in RS
On the grid scales, RS2 and RS3 are widely distributed across 

BGS rich areas such as the eastern lake region, Meiling forest area, 
and Xinjian District, as revealed in the spatial clustering of the 
1 km and 5 km grid levels. On the administrative scale, Xinjian 
County is a typical RS3 region. It is essential to preserve the natural 
characteristics of these various BGS land uses including rivers, lakes, 
farmland, and forest, and explore an integrated development approach 
that combines primary and tertiary industries. This will facilitate 
spatial optimization and promote coordinated development between 
ecological protection and regional growth. 

4.2.3 Suggestions for regions in CS
The regions in the coordination stage such as Honggutan 

New District, Qingshan Lake District, Donghu District, and parts 
of Jinxian County possess significant potential for economic 
development and ecological quality improvement. It is important 
to actively promote regional spatial development within the limits 
of existing resources and environmental capacity. On the ecological 
scale, the BGS in the city center is mainly in CS1 and CS2, and 
on the administrative scale, Honggutan, Qingshan Lake, Donghu, 
and Nanchang County are in CS2. These regions have sufficient 
economic vitality. While pursuing urban development, attention 
should be paid to the improvement of BGS quality, such as the 
restoration and protection of river and lake water ecology and 
waterfront environments. 

4.3 Implications for similar cities

This study provides a transferable framework for urban 
ecological planning in river-lake cities across the Yangtze River Basin 
(e.g., Wuhan, Nanjing, Hefei), which face comparable urbanization 
and ecological pressures (Xu, Jing, and Yan, 2025). A recurrent 
challenge is the “dual ecological dilemma” of central fragmentation 
and peripheral sensitivity: metropolitan cores in cities such as 
Wuhan and Nanjing exhibit severe blue-green space fragmentation 
and intensified urban heat islands, while peripheral water bodies 
and wetlands are increasingly threatened by urban sprawl, pollution, 
and hydrological changes (Hu, Wang, and Li, 2023; Yuan et al., 
2024). Addressing this dilemma requires spatially differentiated 
governance strategies—urban cores (e.g., Xihu District) should 
emphasize “restoration and augmentation” via pocket parks and 
waterway rehabilitation, while ecologically sensitive peripheries 
(e.g., Poyang Lake wetlands) necessitate “protection and buffering” 
through strict ecological redlines and pollution buffers. We further 
propose a “Multi-scale Collaborative Governance Framework” to 
structure interventions: macro-scale (city/regional) analyses to
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define ecological security patterns, meso-scale (district) planning 
to coordinate resource allocation, and micro-scale (community) 
targeting of green infrastructure and precise restoration. This 
integrated approach offers a adaptable model for diagnosing 
environmental pressure-stability relationships and guiding targeted 
sustainable development strategies in analogous urban contexts. 

5 Conclusion

This study highlights the spatial heterogeneity between EPs and 
BGSS across various ecological and administrative scales. Small-
scale differences decrease as the grid size increases. Negative spatial 
correlation between EPIs and BGSSI is prevalent at the grid scale. 
The spatial clustering effect between NLI, GDPI, POPI, PMI, 
MSTI, and BGSSI diminishes with increasing scale, and the spatial 
clustering effect between DEMI, SLI, and BGSSI increases. We 
revealed three stages of coupling coordination between EPIs and 
BGSSI. As the grid size increases, the coupling coordination level 
between EPIs and BGSSI decreases, with notable variations in the 
role of specific pressure factors, such as PM2.5 and temperature, in 
influencing landscape stability.

Our findings provide valuable insights for urban planners and 
policymakers by demonstrating how multiscale analysis of EPs 
and BGSS can improve ecological governance. By understanding 
how pressures affect BGSS differently, targeted interventions can be 
designed to enhance ecological stability in vulnerable regions. While 
the study offers useful perspectives, its conclusions are subject to 
some limitations, such as data constraints and the use of regular 
grids at different spatial scales. Future research should aim to expand 
the range of EPs considered and explore the impact of irregular grid 
configurations to refine spatial analysis.
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