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Introduction: Controlling agricultural carbon emissions is an important part
of promoting the green development of agriculture. This paper explores the
relationship between data elements (DE) and agricultural carbon emissions
(ACE), which is an important manifestation of achieving green emission
reduction and sustainable agricultural development in agriculture.

Methods: Based on the empirical data of 30 provinces in China from 2012 to
2022, this paper evaluated the influence between the two by using the fixed
effectsmodel and themediating effectsmodel, and explored the heterogeneous
effects in geographical location and grain production areas.

Results: First, data elements have a significant inhibitory effect on agricultural
carbon emissions. Second, data elements have obvious heterogeneity in
agricultural carbon emissions. Thirdly, fintech and land use play a significant
mediating role in the impact of data elements on agricultural carbon emissions.

Discussion: This paper not only enriches the theoretical research on the
impact of data elements on agricultural carbon emissions, but also provides
corresponding empirical evidence. It offers significant reference for deepening
the green development reform of industry, optimizing the allocation of human
resources, promoting high-quality agricultural development, and achieving rural
revitalization in China.

KEYWORDS

data elements, agricultural carbon emissions, financial technology, land utilization,
green emission reduction

1 Introduction

Global climate change poses serious challenges to the world economy and the
human living environment (Liu et al., 2024; Shen and Zhang, 2024a). In the past course
of agricultural development, to ensure food security and adequate supply of various
agricultural products, the pursuit of output has become the priority, while the extensive
development mode relying on resource consumption has led to a huge cost to the ecological
environment, resulting in the constant increase of agricultural carbon emissions (ACE).The
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Food and Agriculture Organization (FAO) and the
Intergovernmental Panel on Climate Change (IPCC) have
consistently pointed out that China is the world’s largest greenhouse
gas emitter, its agricultural sector is the second source of greenhouse
gas emissions, and carbon dioxide emissions from the agricultural
and food system exceed 30% of the global total anthropogenic
emissions (Behera and Sharma, 2019; Lu et al., 2025a). With
the rapid development of modern agriculture, the application
of agricultural production factors such as fertilizers, pesticides,
and films in the production process has led to the tightening
constraints of resources and environment on the high-quality
development of agriculture (Huo et al., 2024). Although China’s
ecological environment has improved to some extent in recent
years, it is still facing a severe situation of carbon reduction and
reduction. Green low-carbon is an inherent requirement of high-
quality agricultural development, promoting ACE reduction and
sequestration is not only an important content of promoting
the construction of agricultural ecological civilization but also
an inherent requirement of implementing the strategy of rural
revitalization (Usman andMakhdum, 2021).Therefore, accelerating
the pace of ACE reduction, further implementing the concept
of green development, and exploring a green and low-carbon
transformation path of ACE reduction and carbon sequestration
are of great significance for the realization of green, modern, and
high-quality development of agriculture.

The digital economy is a new engine for rapid economic
growth (Shen and Zhang, 2023). Data elements (DE), as the
core production factors in the era of the digital economy, play
a key role in driving economic growth and promoting the
green development of agriculture (Shen and Zhang, 2024b). As a
kind of integration factor, the DE not only breaks the shackles
of the traditional agricultural factor market, and optimizes the
industrial division of labor, but also further promotes technology
spillover and reduces agricultural resource mismatch and market
distortion (Hu et al., 2022; Shen and Zhang, 2024b). Different
from traditional production factors, DE can not only be put into
agricultural production activities to generate value and exert the
additive effect of production factors like traditional production
factors, but also be integrated with other production factors to
stimulate the potential of traditional production factors and exert
the multiplier effect (Xu et al., 2025b). More importantly, DE has
the characteristics of infinite replication, non-scarcity, green, and
other high quality, and plays a role in agricultural production
different from the traditional elements. The role of DE is more
based on the actual application scenario of agriculture and indirectly
promotes the green development of agriculture by optimizing
the allocation of agricultural resources, influencing management
decisions, and doubling the value of factors, to better reduce
pollution emissions in agricultural development (Khan et al., 2009).
In this context, DE, as an important driving factor in dealing
with agricultural environmental pollution, plays an important role
in promoting China’s rural revitalization and agricultural green
emission reduction (Xie, 2023).

At present, the studies on DE mainly focus on three aspects.
First, from the perspective of economic development, studies have
analyzed how DE can optimize resource allocation (Shen et al.,
2022; Wang et al., 2023), improve the competitiveness of
enterprises (Bakator et al., 2019), realizing industrial upgrading and

transformation (Zhang et al., 2024; Zhao et al., 2024) and other ways
to promote economic development. Second, from the perspective
of technical application, the present studies have explored the
application of DE in large data processing (Maroufkhani et al., 2022;
Bose et al., 2023; Korherr and Kanbach, 2023), artificial intelligence
algorithm (Aldoseri et al., 2023; Jan et al., 2023; Salvagno et al.,
2023; Sohail, 2023), cloud computing Platform (Islam et al., 2023;
Katal et al., 2023; Kunduru, 2023) and how these techniques can
improve the efficiency and quality of data processing. Third, from
the perspective of law and ethics, the role of DE in the protection
of personal privacy (Tang, 2024), data security (Li and Liu, 2021;
Quach et al., 2022; Zwilling et al., 2022), and data property rights
and how to guarantee the rational use and healthy development of
DE by improving relevant laws, regulations and ethical norms.

In addition, studies on ACE are also mainly focused on three
aspects: (1) From the perspective of policy implementation, the
present studies analyze environmental policy (Carlsson et al., 2021),
political will (Colgan et al., 2021; Adebayo, 2022), land policy
(Lu et al., 2025c), and other policy tools to reduce ACE and
ensure sustainable agriculture. (2) From an environmental impact
perspective, by analyzing the impact of extreme weather on soil
organic carbon (Christensen et al., 2021; Kane et al., 2021), the
feedback effect caused by forest area reduction (Te Wierik et al.,
2021; Usman and Makhdum, 2021; Li et al., 2022), climate risks
to smallholder farmers (Mbuli et al., 2021; Mizik, 2021), and other
international typical ACE risk issues, the studies respond to the
issue of carbon mitigation at the risk level. (3) From the perspective
of agricultural development, the studies focus on improving the
level of agricultural technology (Shen et al., 2022; Zhang et al.,
2022), optimizing the production and supply system (Akintuyi,
2024), improving the level of economic development (Ergashev and
Ravshanov, 2021; Khudoynazarovich, 2021; Solarin et al., 2021), and
other methods to reduce carbon emissions to achieve high-quality
agricultural development. These strategies not only help reduce
greenhouse gas emissions but also enhance the climate resilience of
agricultural systems.

Therefore, to address the identified gaps regarding mechanisms
and heterogeneity, this study specifically asks: (1) Does DE exert a
significant inhibitory effect on ACE in China? (2) Through what
mechanisms, (particularly via financial technology (FT) and land
utilization ratio (LUR) does DE influence ACE? (3) Does the
effect of DE on ACE vary across regions with different economic
development levels and agricultural functional orientations? What
mechanism does DE employ to have an impact on the ACE? This
paper aims to establish the mechanism assessment of DE’s impact
on ACE through scientific exploration methods, provide decision-
making guidance for the government to promote agricultural
ecological construction, and provide reference significance for
other developing countries to manage agricultural pollution and
promote agricultural digitalization construction.Thepurpose of this
study is to make use of the advantages of DE to better promote
the improvement of the agricultural ecological governance system
and realize the dual benefits of agricultural digital transformation
and agricultural green development under the background of a
digital economy.

To sum up, this studymakes the following distinct contributions
to the existing literature, addressing key gaps identified. (1)
Building upon the theoretical potential of DE for environmental
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improvement, yet acknowledging the limited empirical evidence
on its specific pathways to reduce ACE, this research pioneers a
systematic empirical investigation into the mediating mechanisms.
By rigorously introducing and validating FT and LUR as critical
transmission channels, we provide robust evidence on how DE
acts to curb ACE. This significantly advances beyond studies
focusing solely on direct effects or descriptive potential, offering
a deeper understanding of the causal pathways linking digitalization
to agricultural decarbonization. (2) Recognizing the notable
neglect of regional heterogeneity in prior assessments of DE’s
environmental impact, particularly within China’s diverse economic
and agricultural landscape, this paper conducts a granular
heterogeneity analysis. We reveal that the inhibitory effect of DE
on ACE is significantly more pronounced in western regions,
major grain-producing areas, and major grain-selling areas. This
critical finding challenges the assumption of uniform effects and
underscores the imperative of tailoring data-driven agricultural
carbon reduction policies to local contexts, providing a crucial
supplement to homogeneous perspectives in existing research. (3)
Confronting the scarcity of comprehensive, empirically grounded
analysis linking DE theory to ACE outcomes within the Chinese
context, this study delivers robust empirical validation. Utilizing
a meticulously constructed multi-dimensional DE index and
applying rigorous econometric techniques (including fixed-effects
modeling, mediation analysis, endogeneity controls via IV-2SLS,
and extensive robustness checks) to a rich provincial panel dataset,
we furnish concrete, China-specific evidence supporting the
proposition that DE empowers agricultural green transformation.
This substantially enriches the empirical foundation in the
intersecting fields of data economics and agricultural environmental
management.

2 Theoretical mechanism

2.1 Theoretical mechanism of DE on ACE

Data has typical characteristics such as high flow, easy
replication, and increasing marginal effect. Data is the basis of the
digital economy, without which there is no digital technology. The
development of DE promotes the improvement of digital technology
and the reduction of ACE intensity. To be specific, firstly, in the
application of digital technology, Chinese agricultural enterprises
often face the problem of agricultural pollution in the production
and operation process (Zou and Mishra, 2024; Shen and Zhang,
2024c). To better respond to the call for green emission reduction,
enterprises will constantly promote the upgrading of agricultural
technology and increase the application of digital technology. The
rational use of satellite remote sensing, land detection, smart
agriculture, and other digital technologies to optimize the use of
chemical pollutants such as agricultural fertilizers and pesticides,
further reduce the generation of ACE and then promote the green
development of agriculture. Secondly, in terms of capital investment,
through the advantages of the Internet, DE can help farmers
better access financial support, promote the popularization and use
of digital inclusive finance, improve the liquidity and utilization

efficiency of farmers’ funds, reduce the threshold for farmers to
use financial services, contribute to the digital transformation
of the agricultural industry, promote the green development of
agricultural enterprises, and better reduce agricultural pollution (He
and Jiang, 2024; Shen et al., 2023). Finally, in terms of agricultural
green development, through analyzing, and controlling agricultural
production data, DE can scientifically and accurately locate the
source of agricultural pollution through the collection, promote
the transformation of traditional agricultural development to the
development of digital agriculture, and realize agricultural green
emission reduction (Chen et al., 2023). Based on this, this paper
proposes the following hypothesis:

Hypothesis 1: DE helps to inhibit ACE production.

2.2 DE influences carbon emissions
through fintech

Leveraging advanced technologies such as big data, cloud
computing, and blockchain, FT significantly enhances the efficiency
of data collection, processing, and application. Crucially, in the
agricultural context, FT acts as a key mediator through which
DE reduces ACE via three primary pathways. Firstly, AI-driven
agricultural technology tools such as satellite imaging, Internet of
Things sensors, and farm management applications have enabled
real-time monitoring of soil conditions, crop health, and weather
patterns (Sarker et al., 2021). By integrating these DE, FT platforms
provide farmers with dynamic credit scoring and customized
insurance premiums (Liu et al., 2023). This helps to obtain loans
for precision agricultural equipment in projects such as variable
fertilizer applicators and intelligent irrigation systems, directly
reducing the excessive application of synthetic fertilizers, pesticides,
and irrigation water, which are the main sources of ACE caused
by energy-intensive pumping. Secondly, the big data analysis
within the fintech platform has identified significant agricultural
decarbonization opportunities such as biogas digesters and solar
cold storage facilities. By developing green financial products
specifically for agriculture, such as low-interest loans for farms
using renewable energy or “carbon sink” mortgage loans for
agroforestry, and empowering fintech with data, capital can be
directed towards sustainable practices. Take platforms like Ant
Forest as examples. They combine carbon footprint tracking with
small loans for environmental protection investment, significantly
reducing the agricultural carbon emission intensity in the pilot
areas (Bose et al., 2023). Finally,blockchain-based fintech solutions
can trace the agricultural product supply chain and reduce food
loss by optimizing logistics and warehousing financing (Bu et al.,
2024). Meanwhile, artificial intelligence models process data related
to drought and flood prediction climate risks to provide parametric
insurance payouts. This mechanism has stabilized farmers’ income
and curbed preventive logging or excessive hoarding, which are
the main drivers of agricultural carbon emissions in developing
economies (Wang et al., 2020).

Hypothesis 2: FT plays amediating role in the effect of DE on ACE.
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2.3 DE influences carbon emissions
through land utilization ratio (LUR)

Relying on advanced information technology means, the
collection, processing, analysis, and application of land use data can
be more accurate and efficient, thus promoting the improvement
of LUR and reducing carbon emissions. Firstly, through the
intelligent planning technology driven by DE, big data analysis
can be used to optimize the allocation and use of land resources,
reduce waste and ineffective use of land resources, and avoid
the increase of carbon emissions caused by over-development
and inefficient use (Lu et al., 2020). For example, using GIS
(Geographic Information System) and remote sensing technology,
key indicators such as land cover type, land use intensity, and
ecological environment quality can be accurately measured and
monitored to provide a scientific basis for land use planning,
reduce land resource waste, and thus reduce carbon emissions.
Secondly, by elevating LUR, DE can promote the development of
green agriculture and ecological industries, and further promote
the development of the low-carbon economy (Ge et al., 2022).
For example, through precision agriculture technology, farmers
can make optimal planting plans according to soil, climate, and
crop growth data, reduce the use of fertilizers and pesticides,
and reduce carbon emissions in agricultural production. Finally,
data-driven land resource management and policy formulation
can help the government accurately formulate the “dual carbon”
target path and promote the implementation of related policies.
For example, through the establishment of a land use carbon
emissions database and monitoring platform, the government
can also identify the carbon emissions risk in the process
of land use in advance, take timely measures to intervene
and adjust, promote the improvement of land use efficiency,
and reduce carbon emissions (Udara Willhelm Abeydeera et al.,
2019). Therefore, this study puts forward the following research
hypotheses.

Hypothesis 3: LUR plays a mediating role in the influence
of DE on ACE.

2.4 Heterogeneity in the effect of DE on
ACE

Due to the significant differences in economy, resources, and
digitalization degree in various regions of China, the inhibition
effect and effect of DE on ACE in different regions are different
according to the actual situation in China. On the one hand, the
degree of DE inhibition is more significant in regions with general
economic conditions. In areas with average economic conditions,
more attention is paid to the green development of agriculture,
and the energy released by DE may be greater. Relatively speaking,
government departments may pay more attention to agricultural
green emission reduction and more attention to the agricultural
environment, and DE may have a more obvious inhibitory effect on
ACE. On the other hand, there will be different effects in various
grain-producing areas, especially in the main grain production and
sales areas. In these two regions, as the core areas of agricultural
production, the higher the level of mastery and application of

agricultural digital technology, the more popular the analysis and
use of data. At the same time, these production areas themselves
have a higher level of agricultural capital, and the investment of
capital in production areas may be more used in the field of
data. In addition, while vigorously developing agriculture in these
producing areas, they also attach great importance to the degree
of agricultural ecological pollution and devote themselves to the
development of efficient and green agriculture to a certain extent,
which is conducive to the green transformation of agriculture and
better achieve agricultural emission reduction. Based on this, this
paper proposes the following hypothesis:

Hypothesis 4: There is regional heterogeneity in the effect
of DE on ACE.

3 Data and methods

3.1 Measurement model and estimation
method

From the above theoretical analysis, it can be seen that DE
can effectively inhibit agricultural carbon emissions. To alleviate
heteroscedasticity and reduce the order of magnitude, this paper
performs logarithmic processing on some variables and uses a fixed
effect model to evaluate the relationship between them. The specific
formula is shown in Equation 1:

ACEit = α0 + a1DEit + a2Xit + μi + δt + εit (1)

In Equation 1, ACE is agricultural carbon emission; DE
represents data elements, X represents a series of control variables;
μi represents an individual fixed effect that does not change over
time; δt represents time fixed effect; εit is a randomdisturbance term.
According to the theoretical part mentioned above, DE may inhibit
ACE through the path mechanism of promoting the development
of fintech and improving land utilization rate, so it is necessary
to test whether fintech and land use efficiency are intermediary
variables between them. Specific testing steps are as follows: On
the basis of testing the coefficient significance of linear regression
model (1) ofDE on agricultural carbon emissions, two intermediary
variables of financial technology and land use efficiency are selected
for regression again, and the intermediary variables are represented
by Z. The significance of regression coefficients such as β1 and γ1
was used to determine whether the intermediary effect existed. The
specific calculation formulas of the above regression models are as
follows: Equations 2, 3:

Zit = β0 + β1DEit + β2Xit + μi + δt + εit (2)

ACEit = γ0 + γ1DEit + γ2Zit + γ3Xit + μi + δt + εit (3)

3.2 Definition and description of variables

3.2.1 Explained variables
Agricultural carbon emissions (ACE). Some scholars believe

that the carbon emissions of the planting industry are limited to
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TABLE 1 Main carbon emission sources and carbon emission coefficient of the planting industry.

Carbon sources Carbon emission factor Reference sources

Diesel oil 0.59 kg/kg IPCC

Fertilizer 0.89 kg/kg Oak Ridge National Laboratory, United States

Pesticides 4.93 kg/kg Oak Ridge National Laboratory, United States

Agricultural Film 5.18 kg/kg Institute of Agricultural Resources and Ecological Environment

Irrigation 266.48 kg/hm2 IPCC

Plowing 312.60 kg/km2 College of Biotechnology, China Agricultural University

the greenhouse gas emission effect directly or indirectly caused by
human activities in the production process (Bhatti et al., 2024; Rabbi
andKovács, 2024).This paper, referring to themethods by published
literature (Li and Liu, 2021; Shen et al., 2023; Wu et al., 2024),
surveys 6 aspects including the chemical fertilizers, pesticides,
agricultural film, diesel oil, irrigation, and plowing, to calculate the
carbon emissions of the planting industry using the relevant carbon
emission coefficients of each carbon source. The specific formula
is as follows:

E =∑Ei∑Ti × εi (4)

In Equation 4, E represents the total carbon emissions of the
planting industry, Ti represents the input amount of the carbon
source, εi and represents the carbon emission coefficient. The main
carbon emission sources and carbon emission coefficient of the
planting industry are shown in Table 1.

3.2.2 Explanatory variables
Data element (DE). As an intangible production factor, DE

is different from traditional production factors such as capital
and labor which are difficult to be characterized by a single
indicator. As the core driving force of agricultural modernization,
the configuration of DE affects carbon emissions by penetrating
the entire agricultural industrial chain. Meanwhile, this paper
constructs DE from four dimensions: data unit management (CP1),
data development and innovation (CP2), data dissemination and
sharing (CP3), and data application scale (CP4). The role of
data on agricultural digital infrastructure, agricultural innovation
environment, and agricultural market is explored by measuring DE,
and the entropy method is adopted to measure DE scientifically
and reasonably, capturing the data ecosystem more macroscopically
rather than being limited to specific agricultural variables. And there
are already references (Yu et al., 2024). The specific construction
indicators and weights are shown in Table 2 below.

3.2.3 Intermediary variables
Financial technology (FT), is represented by a digital financial

inclusion index.The digital financial inclusion index coversmultiple
dimensions of access, use, and quality of financial services, and
quantifies how fintech complements and improves traditional
banking services, especially in remote areas and among low-income
groups. The digital financial inclusion index not only measures the

coverage of financial services but also includes users’ satisfaction
with financial services and the innovation capability of financial
services (Liu J. et al., 2024); LUR, measured by the ratio of the total
agricultural output value to the total sown area of crops (100 million
yuan/thousand hectares), which reflects the maximum economic
output that can be obtained by rational allocation of agricultural
resources on a given land area, is the priority emission reduction
measure in the food system (Cui et al., 2024).

3.2.4 Control variables
Based on the practice of existing literature, this study selected

five indicators as control variables: rural financial industry (RFI),
agricultural processing industry (API), traditional infrastructure
construction (TIC), agricultural mechanization intensity (AMI),
and dependence on agricultural product exports (DAPE). From
a practical point of view, the popularity of rural finance has
a direct impact on farmers’ ability to access financial services.
The more rural financial institutions have outlets, the easier it
is for farmers to obtain financial support such as loans and
insurance, thereby reducing production risks, increasing productive
investment, and improving agricultural production efficiency.
The level of development of the agricultural processing industry
reflects the added value and processing capacity of agricultural
products. The more enterprises in the agricultural processing
industry, the stronger the processing capacity, which can reduce
carbon emissions during the transportation and storage of primary
agricultural products. The quality and density of traditional
infrastructure construction directly affect the transportation
efficiency of agricultural production. The higher the ratio of
rural road mileage to rural resident population, the higher the
fuel efficiency of vehicles, and the fewer times and distances of
transportation, thus reducing carbon emissions. The intensity of
agricultural mechanization reflects the level of mechanization of
agricultural production. The higher the ratio of the total power of
agriculturalmachinery to the total sown area of crops, the higher the
agricultural production efficiency and the lower the carbon emission
intensity per unit area. The degree of dependence on agricultural
exports reflects the degree of internationalization of agricultural
production.The higher the ratio of the export volume of agricultural
products to the added value of the primary industry, the stronger
the international competitiveness of agricultural production,
more advanced technologies, and management experience can be
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TABLE 2 Index system of data elements.

Target layer Primary indicators Secondary indicators Weights Quality

DE

Data unit management

Degree of enterprise informatization 0.034 +

Number of R&D institutions in high-tech industries 0.101 +

Number of high-tech industry projects 0.074 +

R&D funds for high-tech industries 0.096 +

High-tech industry R&D personnel full-time equivalent 0.080 +

Data transmission and sharing

Number of Internet domains 0.062 +

Number of Internet access users 0.028 +

Total postal services 0.088 +

Number of Internet pages 0.101 +

Mobile phone penetration 0.011 +

Innovation in data development

Technology market turnover 0.087 +

Number of patent applications in high-tech industries 0.099 +

The proportion of enterprises carrying out product and process innovation 0.007 +

Index of innovation and entrepreneurship in core digital industries 0.014 +

Intensity of R&D investment 0.020 +

Data application scale

Optical cable line length 0.029 +

Postal outlet service area 0.040 +

Proportion of enterprises with e-commerce transaction activities 0.016 +

Overall population coverage of TV programs 0.002 +

Digital Economy Index 0.011 +

introduced to optimize the export structure, reduce the export of
agricultural products with high carbon emissions, and increase
the proportion of low-carbon agricultural products. In a word, the
above variables are closely related to DE and ACE, so it is scientific
and reasonable to add the above variables to empirically test the
relationship between DE and ACE. Their specific measurement
methods and references are shown in Table 3 below.

3.3 Data sources and descriptive statistics

The panel data of 30 provinces and cities from 2012 to 2022 are
collected in this paper. Due to serious deficiencies in the data of
Hong Kong, Macao, Taiwan, and Xizang, it is not included in the
statistical category.The basic data involved in the calculation of ACE
and DE are mainly from official websites such as China Statistical
Yearbook, China Rural Statistical Yearbook, and the National Bureau
of Statistics. In the actual analysis, for the data gaps and omissions of
some indicators in individual years, the linear interpolation method

and the mean interpolation method are used to complete them. For
individual outliers, necessary corrections are made. The description
of variables and descriptive statistics are shown in Table 4.

4 Results and discussion

4.1 Panel model regression results

Based on research Hypothesis 1 and Equation 1, this study
calculated and obtained the results in Table 5.

Before the baseline regression is carried out, it is first verified
whether there is collinearity among variables. After testing, the
VIF value is 1.53 and less than 10, so it is considered that there
is no collinearity problem between variables. At the same time,
after the Hausman test (Hausman value is 13.76, the p-value is
0.08), the fixed effect model is chosen in this paper. Model (1)
in Table 5 is a direct regression equation for the effect of DE on
ACE. The observation results show that DE significantly inhibits
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TABLE 3 Control variables.

Indicator Information Variable name Symbol Variable description Literature

Control variables

Rural finance industry RFI Number of outlets of rural financial
institutions by province

Liu et al. (2024b)

Agricultural processing industry API Quantity and stock of Agricultural
product processing enterprises by

province (number)

Aguilera et al. (2019)

Traditional infrastructure
construction

TIC Rural road mileage and rural
population by province (sq.

m/person)

Waheed et al. (2018)

Agricultural mechanization
intensity

AMI Total power of agricultural
machinery/Total sown area of crops

(kW∗10/ha)

Xu et al. (2025a)

Dependence on agricultural product
exports

DAPE Trade volume of Outlet of
agricultural products/Value added

of primary industry (%)

Udara Willhelm Abeydeera et al.
(2019)

TABLE 4 Descriptive statistics of variables.

Variables Sample Mean Standard
error

Min Max

ACE 330 335.686 227.656 13.913 995.728

DE 330 0.110 0.110 0.015 0.785

FT 330 260.910 90.543 61.47 475.23

LUR 330 0.445 0.246 0.147 1.799

RFI 330 2653.894 1625.816 360 6166

API 330 14158.43 14954.2 613 107859

INF 330 24064.59 31135.19 6.897 114187

AGR 330 0.654 0.232 0.281 1.387

AED 330 0.130 0246 0.004 1.839

ACE at a 1% level regardless of whether control variables are
added, preliminarily verifying the Hypothesis 1 mentioned above.
The results of adding control variables indicate that the influence
coefficient of DE is −0.241, significant at the 1% level. This suggests
that increasing DE by 1 percentage point can effectively reduce
ACE intensity by 0.241 percentage points. It indicates that DE
can enhance the quality and efficiency of agricultural production
by improving resource utilization efficiency, optimizing production
mode, enhancing regulatory transparency promoting scientific and
technological progress, andmaking joint efforts to achieve the target
of ACE reduction. From the perspective of other control variables,
the three control variables rural finance, agricultural processing
industry, and agricultural mechanization significantly promoted
ACE growth, however, traditional infrastructure construction
significantly inhibited ACE. Besides, the influence of agricultural

outlet dependence on ACE was not significant. Specifically, the
expansion of rural finance made it easier for farmers, large
grain growers, and agricultural enterprises to obtain loans and
investments, which also affected ACE from many aspects, such as
the expansion of production scale, The increased use of fertilizers
and pesticides, and the change of land development and utilization
(Sun et al., .2024). The reason why the agricultural processing
industry promotes the growth of ACE may lie in the lack of proper
management and control in energy consumption, waste disposal,
transportation, and logistics of agricultural processing enterprises
(Karwacka et al., 2020). The main reasons for the increase of
ACE by agricultural mechanization are the increase of fuel, the
increase of fertilizer and pesticide use, and the destruction of the
soil carbon pool (Guan et al., 2023). In terms of inhibiting ACE
control variables, the higher the level of traditional infrastructure
construction, the higher the transportation efficiency of agricultural
products, in this way, it can reduce the carbon emissions in the
transportation process, and inhibit ACE.

4.2 Mediating effect

Above, from the perspective of FT and LUR, the conduction
mechanism of DE’s influence on ACE was theoretically analyzed.
As shown in model (3) in Table 5, DE still significantly inhibited
the generation of ACE even after the addition of FT and
LUR. In addition, the results showed that FT and LUR showed
significant inhibition at the level of 1% and 5% respectively. These
results indicate that both FT and LUR are important mediating
variables of DE inhibition of ACE, which supports the hypotheses
Hypothesis 2 and Hypothesis 3 mentioned above.

By providing wider coverage of financial services and deeper
use of financial services, FT can significantly reduce agricultural
production risks, increase productive investment, and promote
cropland scale management. These factors help optimize resource
allocation and improve agricultural output level (AOL), thereby
effectively reducing carbon emissions per unit of output. Specifically,
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TABLE 5 Results of baseline regression and mediation effects.

Variable Model (1) Model (2) Model (3)

AEC ACE FT LUR ACE ACE

DE −0.151∗∗∗ (0.014) −0.241∗∗∗ (0.029) 0.858∗∗∗ (0.047) 0.393∗∗∗ (0.035) −0.164∗∗∗ (0.043) −0.107∗∗∗ (0.032)

FT −0.089∗∗ (0.036)

LUR −0.340∗∗∗ (0.044)

RFI 0.854∗∗∗ (0.090) 0.760∗∗∗ (0.143) 0.313∗∗∗ (0.109) 0.922∗∗∗ (0.093) 0.748∗∗∗ (0.083)

API 0.071∗∗∗ (0.027) 0.068 (0.043) 0.155∗∗∗ (0.033) 0.078∗∗ (0.027) 0.124∗∗∗ (0.026)

INF −0.008∗∗∗ (0.002) 0.009∗∗ (0.003) 0.001 (0.002) −0.008∗∗∗ (0.002) −0.008∗∗∗ (0.002)

AGR 0.063∗ (0.035) 0.039 (0.055) 0.183∗∗∗ (0.042) 0.067∗ (0.034) 0.125∗∗∗ (0.033)

AED 0.010 (0.019) −0.012 (0.030) −0.166∗∗∗ (0.023) 0.009 (0.019) −0.047∗∗ (0.019)

Con 5.063∗∗∗ (0.035) −2.213∗∗∗ (0.728) 1.158 (1.158) 0.615 (0.878) −2.109∗∗∗ (0.723) −2.004∗∗∗ (0.666)

R2 0.284 0.497 0.921 0.828 0.507 0.581

N 330 330 330 330 330 330

Note: ∗means p < 0.1; ∗∗means p < 0.05; ∗∗∗means p < 0.01, standard deviation in parentheses (same below).

the wider coverage of financial services has made it easier for
farmers to obtain financial support such as loans and insurance,
thus reducing the shortage of funds and risks that farmers face
in the production process. For example, by increasing the number
of outlets of rural financial institutions, farmers can more quickly
apply for low-interest loans to buy advanced agricultural equipment
and technology and improve production efficiency (Yi et al., 2021).
Simultaneously, the widespread adoption of insurance services can
assist farmers in managing uncertainties, including natural disasters
and market price fluctuations, and reduce resource waste and
carbon emissions caused by production disruptions. The deeper
use of financial services helps farmers better manage production
and market risks and optimize resource allocation by providing
diversified financial products and services, such as futures and
options. For example, participation in the futures market for
agricultural products allows farmers to lock in prices in advance and
reduce production decision-making errors caused by market price
fluctuations, thereby improving resource utilization efficiency and
reducing unnecessary carbon emissions (Zhou, 2022). In addition,
FT can also enhance the scale management of cultivated land and
decrease the carbon emission intensity per unit area through large-
scale production. Scale management can introduce more advanced
management expertise and production techniques, enhancing the
overall efficiency of agricultural production and reducing carbon
emissions per unit of output.

At the same time, the promotion of LUR means more rational
allocation of land resources and more efficient land use, which
is directly related to the reduction of carbon emissions in the
agricultural production process. Optimized land use can achieve
this in several ways, including reducing the overuse of fertilizers
and pesticides, increasing crop yields, and reducing the carbon

intensity of agricultural production. First, by optimizing land use,
the overuse of fertilizers and pesticides can be reduced. Rational
planning of land use to avoid continuous cropping of single crops
can reduce the frequency of pests and diseases, thus reducing the
need for pesticides (Xu and Lu, 2025). At the same time, precision
fertilization technology is adopted to accurately apply chemical
fertilizers according to the specific conditions of the soil and the
actual needs of the crops to avoid environmental pollution caused
by excessive use. Second, optimizing land use can improve crop
yields. Reasonable cultivation methods such as crop rotation and
intercropping can make full use of land resources and improve
crop growth quality and yield. Crop rotation can improve soil
structure, increase soil organic matter content, and improve soil
fertility, thus promoting crop growth. Intercropping enhances land
use efficiency and boosts yield per unit area by leveraging the
complementary effects of different crops. In addition, soil fertility
can be maintained and carbon emissions caused by over-cultivation
can be reduced through proper crop rotation and fallow. Crop
rotation and fallow not only help restore the natural fertility of the
soil but also reduce soil erosion and degradation and extend the
useful life of the land (Shah et al., 2021).

4.3 Robustness testing

(1) Endogeneity test. Although this paper has mitigated the
endogeneity problem caused by missing variables as much
as possible by introducing multiple control variables, there
may still be endogeneity bias caused by reverse causality in
the model setting. For example, regions with high carbon
emissions may require the agricultural sector to actively
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TABLE 6 Results of endogeneity test regression.

Variables (1) (2) (3) (4)

One-phase-lag
regression

IV- tool change
measurement

Sample of
excluded

municipalities

Replace the
explained
variable

Increase control
variables

DE −0.572∗∗∗ (0.074) −0.054∗∗ (0.025) −0.463∗∗∗ (0.151) −0.080∗∗ (0.033)

L1.DE −0.143∗∗∗ (0.033)

Control Variable Control Control Control Control Control

Con −2.357∗∗∗ (0.732) −6.594∗∗∗ (0.452) 1.239∗∗ (0.552) −8.268∗∗ (3.481) −0.465 (0.803)

R2 0.622 0.802 0.594 0.174 0.597

N 300 300 286 330 330

Unrecognizable Test 295.391∗∗∗

Weak Instrumental
Variable Test

9356.351

Sargan P 0.234

develop and adjust DE to achieve higher productivity or
meet environmental requirements, in which case the causality
may run in both directions. To effectively identify the causal
effect of DE on ACE, this paper uses the research ideas of
Wang et al. (2018) and adopts the method of regression of
core solution variables with a one-stage lag and the method
of instrumental variables (2SLS) to deal with the potential
endogenous problems. In terms of instrumental variables,
referring to the research of Lu et al. (2025b), the interaction
terms of DE with a one-period lag in the number of telephones
per 100 people in each province in 1984 and the national IT
service income in the previous year are selected as instrumental
variables. The results in Table 6 show that the DE coefficients
of the two endogenous tests are significantly negative, and
the P of the instrumental variable method over recognition
test is 0.234. It does not reject the null hypothesis that all
instrumental variables are exogenous, thus the setting of
instrumental variables can be considered valid. In addition, the
results of the under-recognition test and weak instrumental
variable test also prove the validity of the instrumental
variables, which proves the rationality and validity of the
regression results.

(2) The sample of municipalities is excluded and then regression
is performed. Municipalities are usually important economic
centers of the country, and their economic structure is
significantly different from that of ordinary provinces, usually
dominated by the tertiary industry, and agriculture accounts
for a very small proportion of their total economy. Therefore,
their performance in ACE may not be representative, and by
excluding the sample of municipalities, the robustness of the
study results can be improved to ensure the applicability of
the conclusions to most regions and the effectiveness of policy
recommendations. The results show that the results are still

significant whenmunicipalities are excluded, which once again
proves that DE can effectively inhibit ACE.

(3) Replace the explained variables and then regression. The
ACE measurement method was changed, and the principle of
“electric (thermal) carbon allocation” was adopted. The ACE
intensity of each province from 2012 to 2022 was recalculated
based on the CO2 emissions from thermal power generation
(heating), taking into account the proportion of electricity
and heat consumption in the agricultural sector within the
final energy consumption. The regression was carried out
by replacing the explained variables, and the result was still
robust. It is proved that DE does have a significant inhibitory
effect on ACE.

(4) Add control variables. Increasing the control variables financial
support and forest coverage rate, and financial support
for agriculture will affect the research development and
promotion of agricultural technology, such as the use of low-
carbon agricultural machinery, improving the efficiency of
fertilizer and pesticide use, improving irrigation system and
other aspects of ACE. However, forest cover may reduce
ACE through carbon storage and absorption, ecosystem
improvement, microclimate regulation, and other aspects. The
results showed that the control variables of financial support
intensity and forest cover were added, and the results were still
robust, indicating the validity of baseline regression.

4.4 Further test analysis

According to the classification criteria of geographical location
and economic development level of theNational Bureau of Statistics,
the samples in the observation period were divided into three
groups: eastern, central, and western regions. The regression results
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TABLE 7 Regression results of regional heterogeneity test.

Variables Geolocation zoning Agricultural function zoning

Eastern Central Western Grain
producing

areas

Grain-
consuming

areas

Grain
balance areas

DE −0.324 (0.052) −0.136∗∗∗ (0.029) −0.077 (0.050) −0.148∗∗∗ (0.026) −0.388∗∗∗ (0.079) 0.070 (0.060)

Control Variable Control Control Control Control Control Control

Con −4.815∗∗∗ (1.608) −1.213 (1.009) 1.962∗∗ (0.921) 1.383 (0.894) −10.531∗∗∗ (2.882) 3.625∗∗∗ (0.953)

R2 0.676 0.774 0.390 0.660 0.704 0.440

N 121 88 121 143 77 110

are shown in Table 7. The results showed that DE inhibited ACE in
the eastern, central, andwestern regions, and its influence coefficient
and influence significance gradually decreased. After the provinces
were divided into main grain-producing areas, main grain-selling
areas, and balanced grain-selling areas, the regression results showed
that DE in the main grain-producing areas and main grain-selling
areas have obvious inhibition on ACE, while the balanced grain-
selling areas have no significant effect on ACE.

The influence efficiency of DE on ACE shows a gradual
decreasing gradient in the east, middle, and west, which may be
mainly due to the following four aspects: First, there are differences
in the levels of economic development. The East has a higher
level of economic development and a more advanced industrial
structure. In the allocation and utilization of DE, the eastern
region may be more inclined to adopt efficient and low-carbon
technologies and management methods, to have the most obvious
inhibition effect on carbon emissions. The degree of economic
development in the central region is between the eastern and
western regions, and although new technologies are being actively
introduced, the overall technology and management level may be
slightly worse than that of the eastern region, so the inhibition
effect is relatively weak. In the western region, the economic
development is relatively backward, traditional agriculture accounts
for a large proportion, and the application of modern technology
and DE is relatively limited, leading to the weakest inhibitory
effect. Second, there are differences in technological level and
innovation ability. The eastern region, with its higher level of
technology and stronger innovation capacity, can translate DE into
actual productivity improvements more quickly, thus effectively
reducing carbon emissions. In the central and western regions,
where technology and innovation capabilities are insufficient, the
impact of DE on carbon emissions takes longer to emerge. Third,
there are certain differences in policy and institutional environment.
The eastern region has strong policy support, and the government
may have formulated more policies to encourage low-carbon
agriculture, and the implementation is strong, to ensure that DE
can better serve the agricultural carbon reduction. The relatively
weak policy support in the central and western regions may lead
to less effective DE allocation than expected. Fourth, there are
differences in the level of infrastructure and talent education. The

eastern region has better information technology and infrastructure,
more professionals, and higher education levels, and can effectively
interpret and apply DE to optimize agricultural production. The
infrastructure in the central and western regions is relatively
backward, and the level of talent and education is low, so the
collection, transmission, application, and effective use of DE are all
limited to a certain extent (Wang et al., 2024).

The primary grain-producing regions, the main grain-selling
regions, and the production-marketing balance regions indicated
that the main grain-selling regions have the most significant
inhibitory effect on ACE, followed by the primary grain-producing
regions, while the production-marketing balance region exhibited
no inhibitory effect. The reasons may be the following three aspects:
First, the level of economic development and technical application
gap. The main grain-selling regions are usually economically
developed areas, which are more receptive to new technologies and
managementmodels.The efficientmodern agricultural technologies
and management practices, such as precision agriculture, smart
irrigation, data-driven cropmanagement, and other new production
models, can significantly improve AOL and reduce carbon
emissions. The primary grain-producing regions may not be as
widely used as major marketing areas due to economic conditions
or limitations in technology promotion, however, due to the large
production scale, the application of any effective technology can
still bring some emission reduction effects. The economic level
and technical application of the production-marketing balance
regions are usually behind other regions, due to the limitations of
resource allocation, and the goals of production and marketing,
on which the effectiveness of emission reduction measures is
not significant enough (Zaller et al., 2022). Second, the market
demand and driving force are inconsistent. The proximity of the
main grain-selling regions to consumer markets leads to a higher
demand for green and sustainable products, and this market driving
force encourages agricultural producers to adopt low-carbon and
environmentally friendly production methods. The primary grain-
producing regions, where the main goal is to produce high-yield
grain for national supply or Outlet, may not have as strong an
incentive to reduce emissions as major selling areas. The market
pressure of the production-marketing balance regions is relatively
small, and the external demand for low-carbon production may
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not be as urgent as that of the main marketing areas. Third, the
disparity in resource allocation and efficiency is evident. The main
grain-selling regions possess superior resource distribution and
exhibit greater efficiency in the utilization of labor, land, and capital,
which contributes to lower carbon emissions per unit of output
(Xu et al., 2025c). Due to the large scale of production, the efficiency
of resource allocation in primary grain-producing regions may be
limited, but they still have certain emission reduction potential. The
production-marketing balance regions may face more balancing
problems in resource allocation, leading to less obvious emission
reduction effects (Lu et al. (2025b)).

5 Discussion and policy
recommendations

5.1 Conclusion and discussion

This study selected data from 30 provinces in China (excluding
Hong Kong, Macao, Taiwan, and Xizang) from 2012 to 2022
as samples to investigate the impact of DE on ACE. The
results show that:

(1) The panel model regression results show that DE can
significantly inhibit (Yuet al., 2023)ACE intensity, and this result
remains stable after theadditionof control variables, proving that
ACElevelwill significantlydecreasewith thecontinuous increase
of DE level. To a certain extent, it explains the achievements
of developed countries in promoting intelligent agriculture. By
improving the level of data configuration, ACE can be reduced
and low-carbon and sustainable development of agriculture can
be promoted (Song et al., 2021; Yu et al., 2023). AlthoughChina,
as a big agricultural country, has consistently paid attention to
promoting low-carbon and green development of agriculture,
thereare still someproblems inagriculturaldevelopment, suchas
lowDElevels, largeregionaldifferences,andpoortransformation
andapplication.Theroot cause is that thegovernmenthasnotyet
built a perfectDE systemand failed to promote the integrationof
DE and the agricultural industry (Pei et al., 2019). This suggests
that in the context of the digital age, while promoting the low-
carbon and green development of agriculture, we should pay
attention to the important role of improving the level of DE and
driving the transformation and upgrading of agriculture.

(2) The heterogeneity test shows that DE has the most obvious
inhibitory effect on ACE in the economically developed east
and regions, the inhibitory effect is weak in the middle
region of the middle level of development, and the weakest
effect in the economically underdeveloped western region.
Therefore, it can be observed that in economically more
developed areas, governments can enhance the level of data
allocation, which can effectively inhibit the ACE quantity.
The main reason is that the DE level is closely related to
economic development. In economically developed areas,
the level of data management, sharing, development and
application, and environment is higher, and the change of DE
can quickly affect the development of agricultural production,
thus more effectively inhibiting ACE, while in economically
backward areas, the data infrastructure hardware is not perfect,

and the reflection efficiency of DE changes is low. For
example, in the big data analysis of crop irrigation, areas
with sufficient data samples can more accurately grasp the
agricultural irrigation scheme to save water resources, and
reduce energy consumption, thereby promoting the greener
and more sustainable development of agriculture at a faster
pace (Yu et al., 2023; Zou and Mishra, 2024). This suggests
that the government should directly promote the green
development of agriculture by enhancing the level of data
allocation in areas with sufficient funds and high management
levels. In areas with insufficient funds and low management
levels, the government should first promote the coverage of
data infrastructure, promote the data-oriented and intelligent
transformation of agriculture, and increase policy support.

(3) The mediation effect test shows that AOL has an intermediary
effect in the process of DE’s influence on ACE, which indicates
that the improvement of AOL level is an important factor of
DE’s inhibition of ACE, and plays a bridge role between DE
and ACE. By improving AOL, the configuration of DE makes
agricultural production more environmentally friendly and
efficient, thus reducing carbon emissions (Zou and Mishra,
2024). The specific configuration of DE is affected by many
factors. Under the requirements of promoting green and low-
carbon agricultural development, the government should take
the improvement of AOL as its guiding principle, formulate
specific DE mechanisms, promote intelligent agricultural
technology, utilize big data and AI technology to optimize
the agricultural production process and enhance resource
utilization efficiency (Zhou et al., 2021).

5.2 Policy recommendations

Based on the empirical findings and theoretical insights, this
study proposes the following targeted policy recommendations:

(1) The data empowerment strategy for specific regions. Establish
county-level agricultural data hubs integrating satellite, soil,
and climate data with open APIs, enabling smallholders
to access precision farming tools. Prioritize FT-enabled
microloans for solar irrigation and biogas projects, leveraging
DE’s highest marginal emission reduction effect. Implement
field-level carbon accounts linking IoT-collected machinery or
fertilizer data to subsidies. Develop blockchain-based supply
chain finance to accelerate payments for high land-utilization
ratio farms, reducing storage emissions. Scale carbon data
mortgages allowing farms to collateralize verified emission
reduction data, lowering green tech financing costs.
(2) Integrate financial data to control the emission mechanism.
Second, finance-data Integrated Emission ControlMechanisms.
Create agricultural carbon reduction bonds funding solar-
smart greenhouses, with returns tied to blockchain-tracked
ACE reductions. Mandate carbon-inclusive procurement for
state-owned enterprises, prioritizing high-LUR suppliers and
deducting carbon credits via FT platforms.

(3) Establish a market-oriented data governance framework.
Establish agricultural data asset exchanges. Formulate
agricultural carbon data valuation standards covering
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indicators. Offer to refinance for FT loans funding DE
applications. Allocate quotas based on regional ACE
decline. Certify third-party carbon audit firms to validate
farm emission data, enabling participation in national
carbon markets.

5.3 Research deficiencies and prospects

Future research can be in-depth from the following two levels.
Firstly, deepen the sample data. The data samples used in this
study are at the provincial level, which can provide us with a
macro-level analysis, but the impact of DE on ACE in deeper and
more detailed geographical areas can be discussed from a deeper
perspective. Future studies can refine the granularity of DE and
ACE data from the perspective of prefecture-level cities or even
county-level cities, which will help to more accurately show the
role of DE in different geographical, and economic backgrounds
and resource endowments, and further evaluate the role of DE on
ACE. Secondly, deepen the evaluation of the implementation and
effects of DE. Although this paper uses the fixed effect model to
evaluate the relationship between DE and ACE, the consideration
of the application and implementation of DE is still missing. Future
studies can choose to use a richer andmore detailed DE system as an
evaluation index and use amore comprehensive evaluationmodel to
explore the long-term effect and potential impact of DE on ACE.
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