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Introduction: Massmovements, such as landslides on slopes, are a type of slope
activityandacategoryofnaturalhazards that result in significantfinancial, human,
and environmental damages globally each year. Identification and classification
of regions susceptible to landslides are crucial components of environmental risk
evaluation and play a significant role in watershedmanagement.

Methods: The aim of this study is to assess the spatial susceptibility of landslides
utilizing sophisticated data mining techniques in the Kamyaran County, Iran.
Accordingly, the evaluation of landslide susceptibility was carried out employing
two advanced data mining approaches, namely, Random Forest and Support
Vector Machine. In this research, the variables considered for hazard potential
zoning included elevation, slope, aspect, slope curvature, distance from rivers,
distance from roads, distance from faults, land use, normalized difference
vegetation index, lithology, rainfall, and topographic wetness index. A dataset
of landslides was utilized for this purpose. The dataset included 103 recorded
landslides in Kamyaran County, which served as a map for the actual landslides
that took place in the area. To train and validate the models, the landslide
data points were split into two subsets, namely, training data (70 percent),
consisting of 72 points, and validation data (30 percent), comprising 31 points.
Ultimately, the efficacy of the models was assessed using the receiver operating
characteristic (ROC) curve.

Results: The findings from the ROC curve analysis revealed that the SVM and
RF models achieved AUC values of 0.91 and 0.95, respectively; thus, the RF
model exhibited the highest AUC value in comparison to the SVM, making it the
most effective model for forecasting landslide susceptibility in the study area in
the future.

Conclusion: Landslide potential maps are valuable tools that can be applied in
environmentalmanagement, landuseplanning, and infrastructuredevelopment.
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1 Introduction

Landslides represent one of the natural hazards that annually
result in significant loss of life and financial resources in regions
that aremountainous, prone to rainfall, or earthquake-affected. Such
hazard significantly contributes to the destruction of transportation
routes, grazing lands, residential areas, and lead to erosion
and sediment buildup in watersheds (Geertsema et al., 2009;
Ye et al., 2022). Research on landslides reveals that these events
occur frequently and are present on every continent, posing a
worldwide risk to human life, infrastructure, and the environment
(Broeckx et al., 2018). Iran, due to its predominantly mountainous
landscape, numerous tectonic and seismic activities, as well as a
variety of climatic and geological features, possesses the necessary
natural conditions for a vast array of landslides. The instability
of slopes is a key geomorphological-geological occurrence that
impacts the alteration of the earth’s form (Vittorio Blasio, 2011).
Mass movements are classified as morpho dynamic phenomena
occurring as influenced by multiple factors on the slopes of
mountainous regions, with landslides being the most significant
of these forms (Stoffel and Huggel, 2012). The initiation of this
phenomenon can stem from various geological, geomorphological,
hydrological, biological, and human factors. Geological processes,
vegetation, human actions (Giannecchini, 2006), rainfall, and
climate conditions (Xie et al., 2025) play a crucial role in the
intensity and diffusion of this phenomenon within the environment
(Cornforth, 2005). Moreover, landslides are proactive processes that
significantly impact and alter natural landscapes (Guzzetti et al.,
1999). When this process interferes with human activities, it
transforms into a hazardous event (Paoletti et al., 2013), escalating
risks to life and economic stability, which are often irreparable
or demand extensive resources and time for recovery. It is
anticipated that in the years to come, regions vulnerable to
landslides will increase due to urban expansion, developmental
efforts, deforestation, and shifts in climate patterns (Zhu et al., 2014).

Landslide susceptibility refers to the likelihood of landslides
happening in a particular region, which is influenced by a mix of
various driving factors.This includes pinpointing areas thatmay face
landslide events in the future. Such information is essential for land
use planning and mitigating risks (Sameen et al., 2020).

The use of remote sensing techniques and geographic
information systems using spatial data is widely used in geoscience
studies (Roy et al., 2022; Majumder et al., 2023; Roy et al., 2021),
including studies in the field of landslides.

Various techniques are applied to assess landslide susceptibility.
Each technique has its unique pros and cons when it comes
to generating landslide susceptibility maps. The assessment
of landslide susceptibility is on the rise globally; however,
there is no universally accepted standard methodology at
present. Consequently, individual researchers adopt their own
approaches to conduct a more precise sensitivity analysis regarding
landslides (Teng et al., 2024).

Creating landslide susceptibility zoning maps is a fundamental
step towards identifying unstable regions, allowing for necessary
planning to limit land use in these areas, thereby minimizing
the damages caused by this phenomenon. Therefore, developing
a landslide susceptibility zoning map is crucial. This study aimed
to incorporate the maximum number of parameters that impact

landslide occurrences, including topographic and geomorphological
factors. Based on this, a landslide susceptibility zoning map was
developed using two techniques, namely, Random Forest and
Support Vector Machine in the Kamyaran County.

2 Materials and methods

2.1 Study area

Kamyaran County, covering an area of 255.1 square kilometers,
is situated in the western part of Iran, in the southern region of
Kurdistan province, positioned at 46° 29ˈ 25ʺ to 47° 20ˈ 28ʺ eastern
longitude as well as 34° 44ˈ 19ʺ to 35° 13ˈ 55ʺ northern latitude. The
county’s average elevation is 1820 m above the sea level. It experiences
a temperate mountainous climate with annual precipitation ranging
from 400 to 600 mm. The distribution of rainfall varies across
different months, with the peak rainfall occurring frommid-October
to mid-May. In terms of flora, most parts of the area feature lush
pastures, while the western regions have relatively dense oak forests
on the heights of Shahu Mountain. Geologically, the region under
investigation lies within the Sanandaj-Sirjan and Zagros structural
zones. Regarding stratigraphy, the area encompasses rock formations
from the Cretaceous to Quaternary periods, with the oldest being
the Gurpi formation (composed of marl and shale interspersed with
clay limestone), with the youngest consisting of recent era sediments,
including alluvial cones and alluvial terraces (Ghasemian et al., 2022).
The placement of the study area within Iran and Kurdistan province
is illustrated in Figure 1.

2.2 Creating a landslide distribution map

With the map of the landslides in the area at hand, it is
feasible to statistically analyze the overall connection between the
factors that contribute to them and the landslides in the past,
which can serve as a basis for evaluating the landslide susceptibility
potential in the area (Hamza and Raghuvanshi, 2016). The point
file comprising 103 landslides that occurred in Kamyaran County,
developed by the General Department of Natural Resources of
Kurdistan Province through the analysis of satellite images and site
visits, was utilized as a map of actual landslides in the area. To train
and validate the developed models, the landslide points are split
into the two segments of training data (70 percent) containing 72
points and validation data (30 percent) encompassing 31 points that
was adopted based on common practices in landslide susceptibility
modeling, where such splits are widely used to balance model
training and validation while preserving sufficient data for testing
(Shirzadi et al., 2018; Dou et al., 2021).

2.3 Factors effective in the occurrence of
landslides

In this study, after analyzing earlier research (Wang et al.,
2020; Zhou et al., 2021; Dou et al., 2021; Ali et al., 2025) and
local conditions, the variables considered for landslide susceptibility
potential zoning included elevation, slope, aspect, slope curvature,
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FIGURE 1
Location map of the study area layout.

distance from rivers, distance from roads, distance from faults,
land use and land cover, normalized difference vegetation index,
lithology, rainfall, and topographic wetness index.

Initially, the Digital Elevation Model (DEM) with a resolution
of 12.5 × 12.5 m was created utilizing data from the ALOS
PALSAR satellite and the Alaska Satellite Facility website.The ALOS
PALSAR DEM (12.5 m resolution) provided a suitable balance
between computational efficiency and spatial detail for regional-
scale landslide susceptibility modeling. While finer resolutions
(<5 m) might enhance micro-topographic feature detection, they
require significantly greater computational resources and are

less practical for large areas. Coarser resolutions (>30 m) risk
oversimplifying slope and curvature dynamics, particularly in
heterogeneous terrains (Tan et al., 2015). Subsequently, the map of
elevation with six categories, the slope map with seven categories,
the aspect map with nine categories, and the slope curvature map
were developed using the DEM.

The Topographic Wetness Index (TWI) is a measure that
combines low and high elevations, indicating the ratio of slopes
within the basin. This index reflects the spatial distribution of
soil moisture across the landscape and can be calculated using
Equation 1 (Nefeslioglu et al., 2008), where As represents the area
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above the slope that drains to a specific point (m/m2) and β is the
slope angle at that point (radian).

TWI = ln(
As

tanβ
) (1)

The maps of the distance from the road and the distance
from rivers were created using the country’s mapping organization’s
1:50,000 digital topographic map by applying the Euclidean
distance function within the ArcGIS environment, each with five
classes. Additionally, the map of the distance from the fault was
developed by employing the digital topographic map of 1:50,000
and applying Distance functions in the ArcGIS environment with
five classes.

Geological formations exhibit variability in their structural and
lithological features, leading to changes in rock permeability, type,
and strength, which significantly influence the level of vulnerability
to landslides, playing a crucial role in the potential susceptibility of
landslides (Basu and Pal, 2020). To derive the lithology layer, the
geological map of 1:100,000 was utilized.

The NDVI, with a resolution of 10 m (Equation 2), was
generated using Sentinel two images (from 2022/5/12) sourced from
scihub. copernicus.eu website; where R = infrared band, NIR = near
infrared band.

NDVI =
[NIR−R]
[NIR+R]

(2)

In this study, the OLI sensor data from the Landsat 8 satellite
dated June 25, 2021, were utilized to create the land use map.
Additionally, the digital topographic map of 1:25,000 and Google
Earth images of the area were employed for geometric correction
and identification of teaching points. All processing procedures
were conducted using ENVI 5.3 and ArcGIS 10.8 environment. The
accuracy of the generated land use map was evaluated using the
Kappa index, which recorded a value of 0.88. The land use layer was
further categorized into various classes according to different uses.

To produce the rainfall layer, data from 20 years (2003–2023)
derived from five rain gauge stations both within and
outside the study area were used, and the annual average
was calculated. Subsequently, the rainfall map was generated
utilizing the Kriging interpolation method across four layers.
These data were obtained from the General Directorate of
Meteorology (Figure 2).

2.4 Multicollinearity test

Theexistence of a significant correlation between dependent and
independent variables within the data set results inmulticollinearity.
The presence of a collinear effect causes inaccurate predictions
of the independent variable (either an overestimation or an
underestimation). Hence, prior to utilizing any multiple regression
model or machine learning technique, it is essential to conduct
a multicollinearity test, as these models are particularly prone
to the effects of multicollinearity. Particularly in evaluating
the susceptibility of landslides, it is crucial to examine the
multicollinearity between landslides and the factors that influence
their occurrence (Chowdhury and Hafsa, 2022; Segoni et al.,
2020). Consequently, to identify multicollinearity, the variance

inflation factor (VIF) and tolerance (TOL) were calculated using
Equations 3, 4.

Tolerance(TOL) = 1−R2
j (3)

VIF = 1
Tolerance

(4)

where R2
j represents the regression coefficient of the jth explanatory

variable in relation to the other explanatory variables. The values
of VIF> 10 and TOL <0.1 indicate a variable with a significant
multicollinearity issue (Arora et al., 2019). Values that exceed this
threshold should not be included for further examination (Al-
Juaidi et al., 2018). The multicollinearity test was conducted
using SPSS software. The outcomes of the multicollinearity
assessment revealed that there is no collinearity among all the
independent variables utilized in this study. Consequently, the
12 variables can be employed to assess the potential for landslide
susceptibility.

2.5 Statistical index technique

The statistical index technique is a statistical method involving
two variables. Specific weight values for each category of influential
factors in landslide susceptibility mapping are derived as the natural
logarithm of the landslide density within each category, divided by
the landslide density across the entire map. The formula for this
technique is as follows the Equation 5:

wSI = Ln(
Eu
E
) = Ln(

Lij
LT
Pij
PL

) (5)

Wsi is specific weight for each distinct class i of parameter j, Eij
is landslide density in class i, parameter j, E is total landslide
density across the entire map, Lij is the count of landslides
in class i, parameter j, Pij is the number of pixels for Class
i, parameter j, Lt represents the overall number of landslides
in the entire map, and Pl indicates the total count of pixels
on the map.

Ultimately, the rates derived for each class through this approach
were utilized in the ArcGIS environment for the respective layers.

2.6 Random forest method (RF)

The RF method, introduced and developed by Breiman (1999),
is recognized as one of the most effective approaches for assessing
issues linked to target variables or pattern classification.Thedecision
forest, segments the input space into a collection of distinct areas
and allocates a value to each segment of the output (Trigila et al.,
2015). In its most basic form, this output can be determined by
calculating the average value of the target regression associated
with the patterns in each area. When employing the RF method
to construct a tree, distinct classes of the existing pattern are re-
chosen with the aim of substituting any selected pattern (Stumpf
and Kerle, 2011). The size of these samples corresponds to the
total number of available models. To establish the priority of
each effective parameter, two factors are utilized, including the
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FIGURE 2
(Continued).

declining average of accuracy and the declining average of Gini.The
declining average of accuracy proves to be more consistent than
Gini’s significance index in assessing the significance of effective
factors (Nicodemus, 2011). Ultimately, by importing the data
pertaining to the effective factors and the landslide distribution
map (in CSV format) into the Weka software (WEKA 3.8.6), the
modeling is conducted (Cheng et al., 2021) to determine the role
of the effective factors in landslide occurrences. Subsequently, the

derived weights for the effective factors in Weka software were
transferred to the ArcGIS environment, leading to the creation of
the final landslide map with five classes. The number of trees being
100 and the random split variable set at one yielded the highest
accuracy with the shortest time to achieve results. These settings
were selected based on prior studies (Nicodemus, 2011; Cheng et al.,
2021) that demonstrated their effectiveness for landslide
susceptibility mapping.
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FIGURE 2
(Continued). Landslide conditioning factors used in this study (A) Elevation map (B) Slope map (C) Aspect map (m) (D) Curvature map (E) TWI (F)
Distance to fault (G) Geology (H) Distance to road (I) Distance to river (J) LULC (K) Rainfall map (mm) (L) NDVI.

2.7 Support vector machine method (SVM)

The SVM algorithm is employed to assess and test a dataset
(Yao et al., 2008).This approach has garnered considerable attention
due to its effective classification capabilities, as well as its resilience
to errors and suitable generalization. The SVM methodology is
a technique based in random sampling that simplifies problem

definition by preserving the intrinsic information. Introduced by
Vapnik in 1995 (Vapnik, 2000), the SVM algorithm is rooted
in the dimensional theory and the statistical learning theory,
encompassing a training phase involving input, presentation, and
output target values. According to this learning theory, the limit
of the machine learning error rate for unclassified instances can be
perceived as the generalized error rate.These limits are a function of
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TABLE 1 Number of pixels, number of landslides, and weight of each class of parameter in the statistical index technique.

Variable Class No. of pixels in domain % of domain No. of landslide % of landslide Weight

Slop (Degree)

0–5 1,658,285 0.13 9 0.13 0.50

5–10 2,045,856 0.16 17 0.24 1.52

10–15 2,025,551 0.15 8 0.11 0.72

15–20 2,211,755 0.17 9 0.13 0.74

20–30 3,544,866 0.27 24 0.33 1.24

30–40 1,409,238 0.11 5 0.07 0.65

>40 273,517 0.02 0 0.00 0.00

Elevation (m)

980–1,300 254,267 0.02 0 0.00 0.00

1,300–1,600 2,685,699 0.20 15 0.21 1.02

1,600–1900 5,370,786 0.41 33 0.46 1.13

1900–2,200 3,667,068 0.28 21 0.29 1.05

2,200–2,500 952,174 0.07 3 0.04 0.58

2,500–2,929 257,935 0.02 0 0.00 0.00

Aspect

Flat 1,499,377 0.11 3 0.04 0.37

North 1,463,118 0.11 4 0.06 0.50

Northeast 1,306,261 0.10 2 0.03 0.28

East 1,499,810 0.11 4 0.06 0.49

Southeast 1,653,717 0.13 8 0.11 0.88

South 1,803,907 0.14 18 0.25 1.83

Southwest 1,499,137 0.11 14 0.19 1.71

West 1,264,529 0.10 11 0.15 1.59

Northwest 1,179,212 0.09 8 0.11 1.24

Distance to river (m)

0–500 5,608,991 0.43 33 0.46 1.07

500–1,000 4,120,284 0.31 24 0.33 1.06

100–1,500 2,473,714 0.19 12 0.17 0.89

1,500–2000 832,177 0.06 3 0.04 0.66

>2000 117,481 0.01 0 0.00 0.00

Distance to fault (m)

0–1,000 3,568,241 0.27 32 0.44 1.64

1,000–2000 2,870,585 0.22 19 0.26 1.21

2000–3,000 2,011,275 0.15 8 0.11 0.73

3,000–4,000 1,541,301 0.12 3 0.04 0.36

>4,000 3,161,245 0.24 10 0.14 0.58

(Continued on the following page)
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TABLE 1 (Continued) Number of pixels, number of landslides, and weight of each class of parameter in the statistical index technique.

Variable Class No. of pixels in
domain

% of domain No. of landslide % of landslide Weight

Distance to road (m)

0–500 5,041,409 0.38 32 0.44 1.16

500–1,000 3,393,863 0.26 18 0.25 0.97

100–1,500 2,040,278 0.16 13 0.18 1.16

1,500–2000 1,062,424 0.08 6 0.08 1.03

>2000 1,614,673 0.12 3 0.04 0.34

LULC

Residential area 73,309 0.01 0 0.00 0.00

Agriculture 3,701,943 0.28 22 0.31 1.09

Bare rocks 9,538 0.00 0 0.00 0.00

Forest 2,488,863 0.19 11 0.15 0.81

Gardening 1,274,847 0.10 4 0.06 0.57

Pasturage 5,568,164 0.42 35 0.49 1.15

Woodland 36,046 0.00 0 0.00 0.00

Rainfall (mm)

381–420 728,970 0.06 0 0.00 0.00

420–460 1,975,098 0.15 4 0.06 0.37

460–500 3,428,769 0.26 12 0.17 0.64

500–561 7,019,810 0.53 56 0.78 1.46

Curvature

Concave 5,291,681 0.40 27 0.38 0.93

Flat 2,644,375 0.20 19 0.26 1.32

Convex 5,251,873 0.40 26 0.36 0.91

TWI

1.2–4.4 4,595,821 0.34 29 0.4 1.15

4.4–5.9 4,824,521 0.36 24 0.33 0.91

5.9–8.1 2,496,279 0.19 13 0.18 0.94

8.1–11.5 941,444 0.07 6 0.08 1.16

11.5–23.1 273,939 0.021 0 0 0

NDVI

−0.07–0.15 2,597,342 0.19 24 0.33 1.68

0.15–0.2 3,903,572 0.29 18 0.25 0.84

0.2–0.25 3,203,529 0.24 17 0.23 0.96

0.25–0.3 1,666,713 0.12 4 0.05 0.43

0.3–0.56 1,781,741 0.13 9 0.125 0.92

(Continued on the following page)
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TABLE 1 (Continued) Number of pixels, number of landslides, and weight of each class of parameter in the statistical index technique.

Variable Class No. of pixels in
domain

% of domain No. of landslide % of landslide Weight

Geology

Limestone 2,899,798 0.22 3 0.04 0.18

Conglomerate and
sandstone

1,752,511 0.13 8 0.11 0.83

Dark grey shale 483,741 0.03 7 0.09 2.64

Flysch turbidite, sandstone 2,219,085 0.16 15 0.21 1.23

Marl 143,694 0.01 0 0.06 0

Peridotite 476,527 0.03 5 0.09 1.91

Piedmont fan and terrace
deposits

1,941,755 0.14 7 0.06 0.65

Serpentinite 332,944 0.02 5 0.069 2.74

silty shale, sandstone, marl 369,621 0.02 5 0 2.47

Sandstone and shale 238,723 0.01 0 0.23 0

Volcanics 2,294,248 0.17 17 0.23 1.35

TABLE 2 Selection of the most important factors affecting the occurrence of landslides using the IGR index.

Factors influencing AM ± St.D Factors influencing AM ± St.D

Rainfall (mm) 0.41 ± 0.025 Aspect 0.085 ± 0.011

Geology 0.23 ± 0.039 LULC 0.08 ± 0.012

Distance to fault 0.098 ± 0.019 Elevation (m) 0.018 ± 0.053

Distance to road (m) 0.094 ± 0.039 Slop (degree) 0.011 ± 0.022

TABLE 3 Performance of landslide spatial prediction algorithms using
training data.

Train SVM RF

True positive 56 69

True negative 68 72

False positive 16 3

False negative 4 0

Sensitivity (%) 0.79 0.95

Specificity (%) 0.93 0.95

Accuracy (%) 0.87 0.97

Kappa 0.72 0.95

RMSE 0.37 0.15

AUC 0.86 0.99

the overall training error rate, which reflects the complexity of the
classifiers (Awad and Khanna, 2015). In the SVM algorithm, Weka
software (WEKA 3.8.6) was utilized for the modeling process.

2.8 Evaluation of performance and
efficiency of algorithms

The assessment of the performance of landslide prediction
algorithms is conducted by analyzing the percentage of the area
under the ROC curve (Wubalem, 2021), as well as metrics such
as accuracy, precision, and Kappa index. In this context, a model
that approaches a value of one for these criteria is considered more
appropriate (Shirzadi et al., 2018).

3 Results

Twelve factors influencing the likelihood of landslides were
utilized to assess the landslide susceptibility in the study area
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FIGURE 3
Landslide potential map using the two models of SVM and RF.

TABLE 4 Area and area percentage of landslide classes based on the two models of SVM and RF.

Classes SVM RF

Area of classes (ha) Area of classes (%) Area of classes (ha) Area of classes (%)

Very low 29,154 14.2 30452.6 14.8

Low 60878.1 29.7 53222.5 25.9

Moderate 39581.6 19.3 55551.6 27.1

High 47,806 23.3 43780.6 21.3

Very high 27,790 13.5 22200.8 10.8

following the collinearity test. The findings illustrating the
correlations between each influential factor and the locations
of landslide occurrences via a statistical index algorithm are
detailed in Table 1. It is evident that slopes of 5–10° and more
than 20–30° have the most significant impact on landslide
events, whereas the least landslide activity was noted on slopes
less than 40°. Conversely, the highest frequency of landslides
was recorded in the elevation range of 1,600–1,900 m, with the
fewest occurrences in the elevation ranges below 1,300 m and
above 2,500 m. The northeast direction (0.28) and the southern
direction (1.8) exhibited the least and greatest influence on landslide
occurrences, respectively. The weighting results indicated that as
the distance from the river increases, the likelihood of landslides
decreases, while there is an inverse relation between distance from
the road and landslide potentials, where decreased distance from
the road corresponds to an increased likelihood of landslides.
Additionally, as the distance from faults increases, the probability
of landslides decreases. Regarding land use, the greatest frequency
of landslides was observed in pastures, while bare rocks showed
the least incidences. An increase in rainfall was also correlated with
a rise in landslide events. An analysis of the slope curvature map
indicated that the majority of landslides occurred in areas without

curvature. Geologically, the highest landslide occurrence potential
is found in Serpentinite and Dark grey shale formations. The least
landslide activity was noted in regions with the highest TWI values,
whereas the greatest incidences were associated with the lowest
NDVI values.

In this study, the Information Gain Ratio (IGR) and Average
Merit (AM) methods were employed to assess the predictive ability
of the factors influencing landslide occurrences (Table 2). The
findings indicated that from the 12 significant factors analyzed,
four, namely, distance from the river, NDVI, TWI, and slope
curvature, were excluded from the final model due to an average
merit value of zero. Consequently, only 8 factors were utilized
in forecasting the landslide occurrence locations, which included
rainfall, lithology, distance from the fault, distance from the road,
aspect, LULC, elevation, and slope. Furthermore, the variables of
rainfall and lithology exhibited the most significant impact on
landslide occurrences compared to the other factors.

Following the training of RF and SVM models, their
effectiveness in the area of landslide potential detection was
evaluated using statistical measures (Table 3). Consequently,
regarding the training samples, the RF model (0.97) exhibited
greater accuracy compared to the SVM model (0.87). The
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sensitivity index values for the RF and SVM models were
0.95 and 0.79, respectively, indicating that the RF model can
accurately identify 95% of landslide pixels as regions dominated by
landslides, demonstrating a stronger predictive capability than the
SVMmodel.

In this study, maps for predicting landslides were created
utilizing RF and SVM algorithms (Figure 3). The resulting maps
were categorized into five classes employing the natural break
classification method. The area and the percentage of the land
associated with different landslide potential classes based on
the two models, RF and SVM, are presented in Table 4. Given
that the rainfall factor significantly influenced the likelihood
of landslides compared to other factors, classes exhibiting
high and very high sensitivity (indicated in red on the maps)
are primarily found in regions receiving the most rainfall.
Furthermore, the findings indicated that the RF and SVM
models identified 32.1% and 36.8% of the area within the
high and very high landslide potential classes, respectively.
In both algorithms, the regions with very low to moderate
susceptibility potential are consistently categorized, whereas the
zones with very high landslide susceptibility potentials constitute a
relatively minor fraction (RF and SVM models encompass 10.8
and 13.5 percent of the examined region, respectively) of the
whole area.

The ROC curve was utilized to assess the potential maps for
landslide occurrences. The AUC values for the models examined
in accordance with the validation data are shown in Table 5.
Additionally, the ROC curve for the assessed models based on the
validation data is displayed in Figure 4. Between the RF model and
the SVM model, the RF received the highest accuracy rating (0.95);
thus, in the field of detecting landslide potentials, the RF model
outperforms the SVMmodel.

4 Discussion

In this study, zoning for landslide susceptibility in Kamyaran
County was conducted utilizing two sophisticated data mining
techniques, namely, RF and SVM, with their assessment performed
through ROC curve analysis. The selection of Random Forest
(RF) and Support Vector Machine (SVM) for this study was
based on their proven effectiveness in landslide susceptibility
mapping, as demonstrated in prior literature. For instance, RF
is widely recognized for its robustness against overfitting, ability
to handle high-dimensional data, and automatic feature selection
through variable importance measures, making it highly suitable for
geospatial applications (Breiman, 2001; Trigila et al., 2015). SVM, on
the other hand, excels inmanaging non-linear relationships through
kernel functions and performs well with limited training samples
(Yao et al., 2008; Dou et al., 2021).

While alternatives like logistic regression (LR) and XGBoost
are also popular, LR assumes linearity between predictors
and outcomes, which may oversimplify complex geospatial
interactions (Arora et al., 2019). Neural networks require extensive
computational resources and large datasets, which were constraints
in this study. XGBoost, though powerful, demands meticulous
hyperparameter tuning, whereas RF and SVM provided a

TABLE 5 AUC values for the models predicting landslide potentials.

Row Predicting model Validation data

1 RF 0.95

2 SVM 0.91

FIGURE 4
ROC curve of the models used based on validation data.

balance between accuracy and computational efficiency for our
regional-scale analysis (Shirzadi et al., 2018; Zhou et al., 2021).

Prior studies in similar mountainous regions (e.g., Kamyaran)
have highlighted the superior performance of RF and SVM in
landslide prediction compared to traditional models (Wang et al.,
2020; Cheng et al., 2021). For example, RF achieved higher
AUC values (0.92–0.95) than LR (0.78–0.85) in landslide-prone
areas of Iran (Al-Juaidi et al., 2018). These findings align with our
results (AUC: RF = 0.95, SVM = 0.91), reinforcing their suitability.

The point file comprising 103 landslides that occurred in the
area was utilized as a map of actual landslides. After analyzing
earlier research and local conditions, the variables considered for
landslide susceptibility potential zoning included elevation, slope,
aspect, slope curvature, distance from rivers, distance from roads,
distance from faults, LULC, NDVI, lithology, rainfall, and TWI.
The Table 6 presents the results of a multicollinearity test conducted
for 12 independent variables used in a landslide susceptibility
study. Tolerance (Tol) and Variance Inflation Factor (VIF) values
were calculated to assess potential multicollinearity issues among
the variables. According to Arora et al. (2019), a Tolerance value
below 0.1 or a VIF exceeding 10 indicates severe multicollinearity.
However, the results demonstrate that all variables fall within
acceptable thresholds. For instance, “Distance from road” has a
Tolerance of 0.83 and a VIF of 1.2, while “Lithology” shows a
Tolerance of 0.65 and a VIF of 1.5. The highest VIF observed is
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TABLE 6 Multicollinearity Test between independent variables.

Variable Tol VIF Variable Tol VIF

Distance from road 0.83 1.2 TWI 0.93 1.06

Slope 0.95 1.04 Lithology 0.65 1.5

Aspect 0.81 1.2 LULC 0.88 1.2

Curvature 0.88 1.1 NDVI 0.81 1.25

Elevation 0.74 1.3 Rainfall 0.63 1.59

Distance from fault 0.68 1.5 Distance from river 0.78 1.3

1.59 (Rainfall), and the lowest Tolerance is 0.63 (Rainfall), both well
within the safe range.

These findings, consistent with the methodology of Al-
Juaidi et al. (2018) using SPSS, confirm that no significant
multicollinearity exists among the variables. Low multicollinearity
ensures the stability and reliability of regression models, as
high intercorrelations between predictors can distort coefficient
estimates and undermine interpretability. Consequently, all
12 variables—including geomorphological factors (e.g., slope,
curvature), hydrological features (e.g., TWI, distance from river),
and environmental parameters (e.g., NDVI, lithology)—are deemed
suitable for inclusion in the landslide potential analysis without
compromising the model’s validity. This outcome underscores the
robustness of the selected variables in capturing diverse influences
on landslide susceptibility.

Nevertheless, the IGR and AM methods indicated that from
the 12 significant factors analyzed, four, namely, distance from the
river, NDVI, TWI, and slope curvature, were excluded from the
final model due to an average merit value of zero. Consequently,
only eight factors were utilized in forecasting the landslide
occurrence locations, which included rainfall, lithology, distance
from the fault, distance from the road, aspect, LULC, elevation,
and slope. The exclusion was based on the Information Gain
Ratio (IGR) and Average Merit (AM) metrics, which are widely
used in feature selection to evaluate the relevance of variables
in predictive modeling (Shirzadi et al., 2018; Nicodemus, 2011).
As shown in Table 2, factors with AM = 0 (e.g., distance from
river, NDVI, TWI, slope curvature) contributed negligibly to the
model’s predictive power. This indicates that these variables lacked
statistical significance in explaining landslide occurrence in the
study area, as their inclusion did not improve model accuracy.
For instance, NDVI (vegetation cover) showed minimal influence,
likely due to the dominance of sparse vegetation in landslide-
prone zones (Phillips et al., 2021), while TWI (topographic wetness)
may have been less critical in a region where rainfall and lithology
dominated hydrological triggers.

Rainfall is one of the elements influencing landslide occurrences
(Guo et al., 2021). An increase in rainfall within an area typically
leads to a rise in landslide events (Wei et al., 2022). Regions receiving
over 500 mm of precipitation have shown a more significant impact
on landslide occurrences due to the increased load on slopes
from precipitation’s reverse slope. From a geological engineering
perspective, it can be asserted that heightened humidity in the

region exacerbates landslides, as elevated water levels elevate pore
water pressure, thereby diminishing effective stress and ultimately
lowering the soil’s load-bearing capacity. Furthermore, the moisture
infiltration into the topsoil after substantial rainfall increases the
moisture content to its saturation threshold, thereby increasing the
likelihood of slippage (Zhang and Shen, 2024).

A combination of factors has rendered landslides highly
probable in certain sections of the study area. Nonetheless, the
occurrence of specific geological formations that create exceedingly
favorable conditions for mass instability is paramount. Most
landslides in the region have occurred in Serpentinite and Dark
grey shale geological units. According to the zoning results and
spatial predictions from both employedmodels, the areas associated
with these units exhibit a high probability for landslide incidents.
This poses a significant risk to settlements and infrastructure
situated in these areas. The construction of transportation routes
over these landslide-prone units has not only escalated landslide
risks but can also serve as a catalyst for slope instability. In this
context, factors such as slope, aspect, and elevation are critical in
determining landslide occurrences in these geological units, where
certain calcareous formations susceptible to water erosion further
enhance the likelihood of landslides (Pham et al., 2019).

Major geological features like faults and thrusts are considered
concerning elements for slope failures and instabilities. The risk
of slope failure escalates in proximity to major faults, which
consequently triggers tectonic activity in the area and intensifies
landslide frequency (Xiao et al., 2018). In the examined region, most
landslides have occurred near fault lines. Also, the result of Das et al.
(2024) indicated that areas closer to fault zones have higher landslide
probability.

The greatest number of landslides has been recorded close to
roadways, with landslide intensity diminishing as the distance from
the road increases. Lu et al. (2024) obtained similar results as well.
This phenomenon can be attributed to the disruption roads cause
to the natural stability of the slopes (Wei et al., 2022), creating
vertical cuts that exert additional pressure on the lower sections
of the roadway, thereby increasing landslide occurrences nearby
(Nefeslioglu et al., 2008). On the other hand, roads may variation
the path of groundwater flow, and the soil near roads is vulnerable to
erosion by rainfall, augment the suseptibility of landslides (Yi et al.,
2022). In summary, while road construction is vital for the region’s
economic progress, it can cause slope instability if not executed
methodically, as numerous studies highlight roads as a significant
influencing factor in landslides.

In the aspect factor, it can be observed that the southern
orientation has the greatest weight, with the majority of landslides
taking place in this direction. Conversely, the northeast direction
has experienced the fewest landslides. The region’s mountainous
characteristics allow for increased sunlight in the south, which
facilitates the melting of snow, thus moistening the soil in these
aspects. In simpler terms, water seeps gradually into the earth and
flows down the slope under gravitational influence. Additionally, the
soil’s expansion during daylight and contraction at night contribute
to the instability and loosening of these soils, serving as another
factor leading to landslides (Gorokhovich and Vustianiuk, 2021).

The analysis of LULC revealed that the majority of landslides
occurred in pastures. Because of grazing by livestock in these regions,
the presence of vegetation is minimal, which creates conditions
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conducive to landslides. Since vegetation cover be an effective
measure for landslide reduction by increasing slope stability through
root reinforcement, thus providing effective cohesion to slopes and
reducing the likelihood of landslide incident (Phillips et al., 2021).

The findings indicate that the frequency of landslides is greater
at mid-altitudes. As elevation increases in the examined area, the
susceptibility to landslide declines. This is due to the highlands
lacking suitable conditions for soil formation and the resilience of
geological formations, resulting in fewer landslides (Pachauri and
Pant, 1992). In lower altitudes, the number of landslides might also
be diminished due to the impact of other influencing factors. The
results of Hamza and Raghuvanshi (2016) and Lu et al. (2024) also
indicate that the most landslides occur at mid-altitudes.

The analysis of the impact of slope on landslide occurrences
demonstrated that the highest number of landslides occurred
at a slope range of 5%–10% and 20%–30%. Landslides are less
frequent on gentler slopes (0%–5%), where shear resistance forces
prevail over shear stress, and on very steep slopes (40%<),
where there is insufficient development and thickness of soil.
The slope angle and its variations can be considered critical
factors in landslide occurrences (Pandey et al., 2019) because
even if other elements like rainfall, lithology, proximity to faults,
or additional factors are unfavorable for domain stability, sliding
will not occur until the slope angle exceeds a critical threshold.
Another significant point is that in stabilizing steep slopes, the
most effective initial method for achieving maximum reliability is
to adjust the slope itself, followed by measures such as drainage and
vegetation creation (Kamal et al., 2023).

Regarding the percentage of the area classified as high and
very high susceptibility, both techniques yield nearly equivalent
outcomes; it can be stated that approximately 35% of the examined
area falls within the high and very high-susceptibility class,
necessitating protective actions at critical locations.

Factors such as elevation, slope, and aspect are unchangeable.
However, other factors like road construction can be regulated
and largely mitigated by avoiding improper and unnecessary road
building, alongside effective management of other construction
initiatives and the restoration and enhancement of vegetation to
avert landslide occurrences. Additionally, in landslide-prone areas,
issuing any type of exploitation permit should be prohibited. To
diminish the relative susceptibility and enhance the stability of the
slopes, and given the conditions of the area, all investments and
structural constructions should align with the geomorphological
and geological attributes of the area and refrain from altering uses
in zones with a high potential for landslides.

The performance results from the models utilizing the ROC
curve indicated that the SVM and RF models achieved AUC values
of 0.91 and 0.95, respectively; hence, theRFmodel possesses a higher
AUC value than the SVM and stands out as a more effective model
for forecasting the susceptibility of landslides in the futurewithin the
study area.The results of Liu et al. (2024) also indicate the superiority
of RF over SVM.

5 Conclusion

The annual incidence of landslides leads to significant
human and economic repercussions, including the damage and

accumulation in dam reservoirs, destruction of housing areas,
and the obstruction of transportation routes, etc. Therefore, it
is essential to identify and be aware of regions at susceptibility
for landslides, and effective management and planning should be
implemented tomitigate andminimize the damages caused by these
events. The area examined also contains formations susceptible to
landslides and a varied topography, making it constantly vulnerable
to mass movements (particularly landslides). The findings of this
study reveal that both the RF and SVM models exhibited effective
performance in assessing landslides susceptibility in the region;
however, the RF algorithm demonstrated superior capability in
detecting landslide susceptibility. The machine learning models
applied in this research can also be utilized in other regions, though
results may vary based on the unique conditions of the area studied
and the number of factors considered.
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