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influence of physical models for
Omori’s law
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Vulcanologia, Rome, Italy

Omori’s law states that the rate of aftershocks decays as a function of
inverse time. There are multiple physical explanations that we reduce into a
nonlinear mixed effects relation of three terms: (1) a Rate/State expression
that can account for static/dynamic and viscoelastic triggering caused directly
by the mainshock, (2) a fluid diffusion triggering term, and (3) a randomized
secondary triggering (cascade) term. We fit free physical-model parameters to
an observed aftershock sequence through two nonlinear regression methods
to find the relative contributions of physics-based models in an observed
aftershock sequence. Results from both methods show that Rate/State models
overpredict aftershock rates by ∼0–30%. Secondary aftershocks cause a net
negative contribution (seismicity rate reduction that corrects overprediction by
other terms) ranging between ∼0 and 30%. All regression solutions yield negative
secondary triggering contributions without being guided to do so. A physical
explanation for this is that aftershock occurrence relieves stress from the crust,
ultimately causing the sequence to extinguish itself. Fluid diffusion triggering
contributions range from ∼0 to 20%. Diffusion processes are observed to be
shorter in time than the full duration of an aftershock sequence and they are also
spatially limited, diminishing their influence. Our results apply to an aftershock
decay curve from the 2016 Central Apennines earthquake sequence, meaning
that our specific results may not be general. Our primary conclusion is that
any one physical model cannot alone fit the observed sequence as well as the
combination of three we investigated.
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1 Introduction

Aftershocks are defined as events of generally lesser magnitude following a larger main
shock that are distributed around the fracture area of the main shock (e.g., Uidas, 1999).
In 1894, Fusakichi Omori observed that the rate of aftershocks decays as the inverse
of time following a main shock (Omori and Coll, 1894). An improved fit to observed
aftershock rates can be made by applying Tokuji Utsu’s (1961) formulation as k/(c + t)p,
where k, c, and p, are constants that can vary with different sequences, with the exponent p
usually ranging from ∼0.7 to 1.5. Additional modifications to Utsu’s formula were made
by Shcherbakov et al. (2004) to incorporate earthquake magnitude scaling laws, as did
Hainzl and Marsan (2008). It was noted by Utsu et al. (1995) that the Epidemic Type
Aftershock Sequence (ETAS) models by Yosihiko Ogata (e.g., Ogata, 1988) achieved an
improved representation of aftershock characteristics because these models account for
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secondary triggering (cascades) of earthquakes by aftershocks of the
main shock (e.g., Ogata, 1998; Ziv, 2003).

In this paper we explore fits of a blend of physics-based
aftershock rate models to observations through regression methods.
We assess the relative roles of acknowledged physical causes of
earthquake triggering to better understand their role in Omori’s
law under the possibility that more than one cause is operating
in any given aftershock sequence. We consider three primary
modes of earthquake triggering within aftershock sequences and
their relationships to Omori’s law: (1) static stress and/or dynamic
triggering caused by slip of the mainshock, (2) fluid diffusion
triggering, and (3) secondary triggering through aftershock cascades
by static and dynamic earthquake triggering. Each of these
triggering modes have physics-based explanations for Omori’s law.
We explicitly do not include models that identify parameters based
on empirical observations, and the point of this study is to see if any
one, or a blend of physical models can fit observations. We do not
intend to solve aftershock occurrence globally. This paper is instead
intended to show amethod on howwemight assess the relative roles
of different physical models/concepts in aftershock sequences. We
intentionally fit a single aftershock sequence that is associated with
a very high-resolution catalog as a proof of concept.

We combine relations describing the three triggeringmodes into
one equation and we minimize the number of free parameters by
combining constants together to broadly represent the physics of
aftershock triggering. We use that relation and its parameters to fit
an observed aftershock sequence from a high-resolution earthquake
catalog of the 2016 Central Apennines, Italy earthquake sequence
that is complete to M1.04 (Tan et al., 2021). We focus on the
64-day series following the initial mainshock, the M6.0 Amatrice
earthquake, because this well-studied, high-quality catalog occurred
in a region where there is evidence that multiple physical processes
influencing aftershock occurrences have occurred. We use two
different nonlinear regression methods for fitting to assess method
dependence.

2 Physical models for aftershock
occurrence

Aftershocks occurring on or near the rupture plane have been
explained as a result of incomplete mainshock rupture and/or
heterogeneous slip (e.g., Bullen and Bolt, 1985). Elastic strain caused
by the mainshock has also been invoked to explain aftershocks away
from the primary rupture plane as early as Clarence Dutton’s (1904,
p. 62) statement, ‘‘. . . portions of the raised or sunken mass are
subject to stresses which from time to time give rise to further
movements. . . .’‘. Dutton’s (1904) and Bullen and Bolt’s (1985)
explanations are consistent with modern concepts of stress transfer
caused by fault slip that mostly correlate with the spatial pattern
of off-fault aftershocks (Figure 1) (e.g., Harris, 1998 and references
therein; Stein, 1999; Freed, 2005). Mancini et al. (2019) showed that
static stress-based forecasting during the 2016 Central Apennines
sequencewas as effective as statistical ETAS simulations, particularly
when secondary triggering by M ≥ 3 earthquakes was included.

It is also well established that earthquakes can be triggered
by changes in pore fluid pressure that can alter the frictional
state and contact area on a locked fault by forcing it open (Biot,

1941; Hubbert and Rubey, 1959). Human induced pore fluid
pressure changes are observed to trigger earthquakes (Evans, 1966;
Ellsworth, 2013 and references contained therein), and observations
have also been made of fluid pressure changes caused by an
earthquake that in turn triggers other earthquakes (e.g., Nur and
Booker, 1972; Malagnini et al., 2012; Tung and Masterlark, 2018;
Albano et al., 2019; Miller, 2020; Kato, 2024). Fluid diffusion
triggering is observed within the Central Apennines mainshock
sequence (e.g., Albano et al., 2019; Chiarabba, et al., 2020;
Malagnini et al., 2022) (Figures 2, 3). In Figure 2, earthquake clusters
are identified that have distinct progressions through time (t)
and space (d) as d(t) ∝ √t in a similar mode as observed in the
Apennines by Malagnini et al. (2012).

Additionally, elastic dislocation modeling by Malagnini et al.
(2022) of dilatation induced by mainshocks within the 2016 Central
Apennines sequence and modeled fluid flow changes imply that
higher fluid pressures might be expected at sequential mainshock
locations (Figure 3). While not proving a pore fluid pressure
earthquake triggering mode, these models and observations are
consistent with the process. That and the abundant observations
of human induced earthquakes (e.g., Evans, 1966; Ellsworth, 2013
and references contained therein) support the inclusion of a fluid
diffusion model in our exploration.

Earthquakes are also observed to be triggered dynamically by
passing seismic waves (e.g., Hill et al., 1993). The predominant
indicator of dynamic triggering is that its aftershock spatial decay
is more gradual than that from a static stress change, which
diminishes as a function of distance d, as d-3. Dynamic triggering
close to the mainshock is most likely caused by shorter period
direct P- and S-wave phases with amplitudes that decay with
distance more gradually than static stresses (e.g., Parsons and
Velasco, 2009). Interpretations of observed spatial aftershock decay
rates vary (e.g., Felzer and Brodsky, 2006; Richards-Dinger et al.,
2010), making it difficult to determine how important dynamic
triggering is in the near source region. Earthquakes can be
triggered at global distances by longer period surface waves (e.g.,
Velasco et al., 2008; Parsons et al., 2014 and references contained
therein). The proportion of earthquakes triggered dynamically was
estimated to be 34% vs. 66% static triggering after 3 M ≥ 7.0
California mainshocks by Hardebeck and Harris (2022), based on
the occurrence of aftershocks in static stress-reduced areas (also
visible in Figure 1). Similarly, Parsons (2002) found a ratio of 31%
dynamic vs. 69% static triggering from M ≥ 5 aftershocks of global
M ≥ 7.0 mainshocks.

Post mainshock viscoelastic relaxation in the deep crust and
upper mantle can increase stresses on upper crustal faults that
trigger earthquakes, and the duration of these processes can
be much longer than the early phases of aftershock production
(e.g., Freed and Lin, 2001; Pollitz and Sacks, 2002; Morikami
and Mitsui, 2020). Earthquakes also appear to be triggered by
adjacent slow slip zones (e.g., Sammis et al., 2016; Segou and
Parsons, 2018; 2020), this process can also take years to occur,
though Moutote et al. (2023) observed a slow slip process that
encompassed the 2017 Valparaiso M6.9 foreshock-mainshock-
aftershock sequence.Aftershocks have been attributed to viscoelastic
stress recovery on and adjacent to the mainshock fault (e.g.,
Yamashita, 1979; Zhang and Shcherbakov, 2016). Mikumo. (1979)

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2025.1619887
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Parsons et al. 10.3389/feart.2025.1619887

FIGURE 1
Example Coulomb spatial forecast of earthquake activity (M ≥ 3) following the 24 August 2016 M = 6.2 Amatrice mainshock in central Italy. Aftershock
epicenters (yellow circles) are superposed on static stress change calculations made after the mainshock up until the Visso (October 26, 2016) Red
colors show regions of increased failure stress (up to 0.2 MPa), and blue decreased (stress shadows). Note that not all aftershocks can be explained by
the initial static stress change but may be caused by dynamic and/or secondary triggering.

assumed a distribution of viscoelastic relaxation times, which then
numerically gave a power law decay in the rate of aftershocks.

3 Physical models for Omori-law
aftershock decay

Key questions addressed here are, how do the aftershock
triggering modes discussed above translate into Omori’s law, and
which are most influential? Dieterich (1994) showed that Rate/State
friction laws (Ruina, 1983) can explain Omori’s law by the spatial
distribution of times to instability of nucleation processes. The
concepts are also consistent with changes in stressing rate after a
mainshock caused by afterslip, and/or viscoelastic processes (e.g.,

Pranger et al., 2022). The aftershock rate R(t) can be expressed as

R(t) = r

(exp( −Δτ
aσ
) − 1)exp( −t

ta
) + 1

(1)

where r is a reference seismicity rate, Δτ is the static stress change
induced by themainshock, a is a dimensionless rate/state parameter,
σ is normal stress, and ta is the aftershock duration which, in this
paper, is the time from the 24 August 2016 Amatrice mainshock
up to the 26 October 2016 Visso mainshock (Figure 4). Dieterich
(1994) describes the process as “Seismicity is modeled as a sequence
of earthquake nucleation events in which the distribution of initial
conditions over the population of nucleation sources and stressing
history control the timing of earthquakes.Themodel is implemented
using solutions for nucleation of unstable fault slip on faults with
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FIGURE 2
Diffusion vs. time as interpreted by fitting time sequences to functions of t-1/2, and spatial migration from Malagnini et al. (2022). (A) three different
simultaneous diffusion processes may be recognized, mostly to the north of the Amatrice main shock. Map view to the right. (B) Diffusion process
associated with the mainshocks of Visso (October 26, 2016) and Norcia (October 30, 2016), with a map view to the right. (C) Capitignano. Diffusion
process associated to the seismic sequence of Capitignano (January 18, 2017). Map view to the right.

experimentally derived rate- and state dependent fault properties.”
Rate/State friction can also be applied to fit dynamically triggered
earthquakes to an Omori law decay if two assumptions are made:
(1) the experimental observation of a power-law distribution of
frictional contact areas (Dieterich and Kilgore, 1996) also occurs in
natural fault zones, and (2) there is a constant change (damage) to
the critical slip distance Dc of frictional contacts caused by passing
seismic waves (Parsons, 2005). Additionally, Rate/State friction can
be applied to the concept of time-varying viscoelastic stress recovery
and relaxation times Yamashita, 1979, Mikumo. (1979).

Fluid diffusion triggering is observed to be time
dependent, and Nur and Booker (1972) developed an expression
based on dislocation models in a porous medium as

dN
dT
= 1

Ω
∫
V

∂P
∂t

dV (2)

Where P is pore fluid pressure, V is volume and Ω is a constant.
Malagnini et al. (2012) derived an expression for 1-D fluid diffusion
under a steady state fluid pressure change based on the Nur and
Booker (1972) relation as

dN
dT
= 1
α
(P0 − P1)

2√πDt3
∫
∞

0
xexp(− x2

4Dt
)dx =
(P0 − P1)√D

Ω√π
1
√t

(3)

which implies that

dN
dT
∝ 1
√t

(4)

Thus, the rate of fluid diffusion triggered aftershocks differs from
the Omori-law time dependence of

dN
dT
∝ 1

t
(5)

meaning that fluid diffusion may need to be accompanied by
other aftershock-generating mechanisms to achieve Omori time
dependence.

Cascades of secondary aftershock triggering can have important
effects on the Omori decay after a mainshock. They create multiple
series of peaks and decays that overprint the primary decay curve
and scale with the magnitude of each aftershock (e.g., Ogata,
1998; Helmstetter and Sornette, 2002; Ziv, 2003; Ouillon and
Sornette, 2005; Hainzl and Marsan, 2008). We use a randomized
scaling term to fit secondary aftershock triggering because, while
the rate of triggered events by the mainshock is predictable, the
magnitudes of these events are not. This is an issue because
larger aftershocks can trigger enough secondary aftershocks to
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FIGURE 3
(A) Cumulative dilatation is calculated by Malagnini et al. (2022) assuming the SW dipping moment tensor solutions of M ≥ 3 earthquakes were the
rupture planes. Yellow circles are events associated with potential diffusion triggering shown in Figure 2. Dilatation is shown on horizontal planes at
5 km depth, and a cross section is shown to the right. (B) Expected relative flow magnitudes and directions resulting from coseismic dilatation changes
caused by M ≥ 3 earthquakes beginning with the 24 August 2016 Amatrice earthquake to times just before the Visso, Norcia, and Capitignano
earthquakes.
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FIGURE 4
Daily earthquake numbers vs. time during the 2016 multi-mainshock sequence in the Central Apennines region of Italy from the high-resolution
catalog by Tan et al. (2021). Inset shows the normalized aftershock rate during the first 64 days of the sequence after the first mainshock (Amatrice
M6.0) that we fit to physics-based models of Omori’s law.

significantly perturb the aftershock rate curve at unpredictable
magnitudes within a sequence.

Putting the three terms together (Equations 3–5) and combining
constant terms results in a nonlinear mixed effects problem as

dN
dT
= [[

[

rre f

(Δ − 1)(exp( −t
f
)) + 1
]]

]

+[ D
√t
]+ c(R0,1t) (6)

where t is time. The first term is the static and/or dynamic
triggering rate, with rref being the reference (background) steady
state seismicity rate. We treat rref as an unknown constant because
the high-resolution catalog contains only∼10 days of pre-mainshock
observations, which is not long enough to constrain the background

rate. We simplify the static stress change term exp( −Δτ
aσ
) from

Equation 1 as an unknown constant Δ. The value f is the aftershock
duration, which is constant. The second term is fluid diffusion
triggering, andwe apply anunconstrained constantD that represents
diffusivity (Malagnini et al., 2012). The third term is the secondary
triggering term with an unconstrained scaling constant c multiplied
by a random number generator ranging between 0 and 1 (R0,1).
Our philosophy is to allow unconstrained ranges of values for free
parameters tominimize bias, and to see if there are consistent trends
in the results that can teach us about the underlying physics of
Omori’s law. Of particular interest to us is the relative contributions
between static stress triggering with Rate/State decay, fluid diffusion,
and secondary triggering, allowing for the possibility that one or
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more terms might have ∼ zero contributions to solutions that match
the observed aftershock decay curve with minimum RMS (root
mean square) misfits.

4 Fitting an observed aftershock
sequence with nonlinear regression

We use two regression approaches for fitting Equation 6 to
an observed aftershock sequence, which in this case is the 64-
day sequence after the 24 August 2016 M6.0 Amatrice earthquake
up to and just prior to the 26 October 2016 M5.9 Visso and 30
October 2016 M6.5 Norcia mainshock earthquakes (Figure 4). We
are fitting the high-resolution earthquake catalog of the 2016Central
Apennines, Italy earthquake sequence by Tan et al. (2021) that is
complete to ML>0.3 (M > 1.04). It is important to have as complete
a catalog as possible to best represent Omori’s law because many
smaller events can be undetected, especially during the earliest
parts of the sequence when so many low-magnitude aftershocks are
occurring that it can be difficult to resolve all of them.

Our hypothesis is that there is a mix of at least three physical
causes of aftershocks that operate simultaneously. We thus have four
unconstrained parameters to solve for in the equation for combined
physical models of Omori’s law (Equation 6). The first method
we use is a simulated annealing regression (Kirkpatrick et al.,
1983; Černy, 1985) to find minimum RMS misfits to the observed
sequence. Minimizing RMS error is a nonlinear and multivariable
optimization procedure because the observed and theoretical decay
curves (Equation 6) are nonlinear functions in time. Simulation
of the observed curve is begun by using a stochastic sampling
method for four free parameters. It starts from a random initial
state and continues until a maximum of one million steps have
been taken to minimize the RMS misfit between the model
and the observed curve (Figure 4). All parameters are completely
unconstrained in the simulated annealing regression and can be
negative or positive, which can mean over or under predicting
aftershock rates.

The underdetermined nature of the problem requires multiple
iterations, so we calculate groups of 100 solutions minimized over
one million attempts, which are then sorted for the lowest RMS
misfit. Parameter values form the lowest RMS solution are then
used as a starting point to explore neighboring points for better
fits by perturbation within ±20% of their values. We allow those
that increase the objective by returning higher RMS misfits to avoid
trapping in local minima. Finally, the solutions are again refined by
perturbing parameters within ±10% of their values and are limited
to solution parameters that have lower RMS misfits than the input
values. The compute cost is low enough that no cooling schedule is
needed, which is sometimes used in simulated annealing to begin
restricting the solution space to reduce the computational load. We
run 1,000 independent regressions following the above-described
steps to reasonably explore the solution space, and to identify trade-
offs between parameters. We show the best fit solution, and the
disaggregation of the three components fromEquation 6 in Figure 5.
This solution shows the contributions of physical models to be
114% static stress/Rate-State triggering, 9%fluid diffusion and−23%
secondary triggering. We achieve low RMS misfits because the
random secondary triggering term enables fitting to rate fluctuations

associated with higher magnitude aftershocks; these fluctuations
are not noise, but are an important part of the overall signal (e.g.,
Ogata, 1998; Helmstetter and Sornette, 2002; Ziv, 2003; Ouillon and
Sornette, 2005; Hainzl and Marsan, 2008).

We employ a second regression to test if there is method
dependence on the results. We use a local interior-point
optimization method for each of 1,000 random realizations of
the secondary triggering term to minimize misfit to Equation (6).
Interior-point regression involves a gradient search method
(Forsgren et al., 2002; Boyd and Vandenberghe, 2004) that achieves
optimization by going through the middle of a solid (e.g., convex
hull) defined by the constraints rather than around its surface.
The constraints together with the objective function (minimizing
misfit) are combined using a logarithmic barrier function with the
necessary Karush-Kuhn-Tucker (KKT) conditions. The nonlinear
system of equations is then solved using Newton’s method. Interior-
point implementations rely heavily on very efficient code (e.g.,
Cholesky decomposition) for factoring sparse symmetric matrices.
Convergence for the interior-point method is determined by an
augmented Lagrangian merit function (Birgin and Martínez, 2014).
The interior-point method differs slightly from our application of
the simulated annealing regression because the Rate/State reference
rate (r), parameter (Δ), and diffusivity constant (D) are subject to
positivity constraints.

We found that regularization was required for the interior-point
approach to get low misfit solutions. This is the process of adding
an additional constraint to the model to reduce its complexity by
forcing certain predictor variables to have a smaller impact on
the outcome or, no effect at all. We use LASSO (Least Absolute
Shrinkage and Selection Operator) (Tibshirani, 1996) to help with
feature selection and reduce the complexity of the model. It does
this by regularizing the coefficients of each predictor variable,
meaning it applies an L1 penalty for large coefficient values to
bring them down to a size that is more manageable. This helps
overall model accuracy by reducing the number of variables used
while improving predictive power. LASSO can set the coefficient
of some predictors toward zero, effectively eliminating them from
the model. This helps to reduce complexity further and improve
interpretability by reducing the number of variables included in a
model.

As an alternative to using independent random variables for the
secondary triggering term as given in Equation 6, the interior point
algorithm also applied 1,000 realizations of an Ornstein-Uhlenbeck
(O-U) random walk. The O-U random walk has random variations
from a central expectation (zero for the secondary triggering term)
that grow with time, and a restoring force that pulls values back
toward that expectation (reversion parameter) that controls the
dominant period of random fluctuations. We experimented with
different reversion values to minimize cumulative RMS misfits. We
show the best fit solution in Figure 6, which shows the relative
contributions of physical models to be ∼120% static stress/Rate-
State triggering, and −20% secondary triggering, with fluid diffusion
triggering being effectively zero. The best-fit solutions from the
interior point methods come from applying independent random
variables for the secondary triggering term, whereas applying the O-
U random walk to solutions causes consistently larger RMS misfits
(see Supplementary Figure S2).

Frontiers in Earth Science 07 frontiersin.org

https://doi.org/10.3389/feart.2025.1619887
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Parsons et al. 10.3389/feart.2025.1619887

FIGURE 5
(A) Best fit model to observed by simulated annealing regression. Summed contributions from the three terms in Equation 6 are given, as well as the
four free parameter values. In (B) the three weighted models are disaggregated so that each of their effects on the model fit can be seen.

FIGURE 6
Best fit model to observed by interior point regression. Parameter
values and sums from Equation 6 are given.

5 Results

We find multiple regression solutions with varying RMS misfits.
We calculate 1,000 regressions with each method to understand
the relative contributions to the overall model from each term
representing a physical model. We find the contributions by

summing up the number of predicted earthquakes made by each
term and dividing that number by the total prediction of all three
terms. In Figure 7 we show distributions of the relative contributions
of each of the three terms in Equation 6. The range of contributions
from both methods are remarkably consistent (Figures 7A,B) with
distributionmeans and standard deviations that are nearly the same,
with the Rate/State contribution mean of 1.170 for the simulated
annealing regression vs. 1.169 for the interior point, with standard
deviations of 0.064 and 0.063. For the secondary triggering term,
the means are the same at −1.19 with standard deviations of 0.059
and 0.063. The fluid diffusion distributions are non-Gaussian. In
general, the Rate/State model alone overpredicts the aftershock
rate by ∼0–30%, while secondary aftershocks cause a negative
contribution ranging between ∼0 and 30%, with a fluid diffusion
contribution ranging from ∼0 to 20%. These results come from very
different regression methods, implying that this may be a necessary
outcome based on the how the mixed effects problem was posed
in Equation 6, as well as our choice of the observed sequence.
Additionally, Rate/State parameters can be distance dependent (e.g.,
Page et al., 2024), meaning that applying a fixed set of parameters
for the entire sequence could cause misfit. Most aftershocks of
the M6.0 Amatrice are contained within a 25 km radius of the
mainshock (Figure 3A).

While the two regression methods show very similar
distributions of relative physical-model contributions, we find that
the distributions of RMS misfit differ (Figure 8) between methods.
There is overlap but the interior point regressions tend to have higher
misfit values than do the simulated annealing regressions.

We explore further to see if there are characteristic sets
of parameters that cluster in a lower RMS state, which might
lead us to further conclusions about the relative influence of
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FIGURE 7
(A) Distributions of the sum contribution to predicted number of
earthquakes from the Rate/State model (red histogram), the fluid
diffusion model (blue histogram), and secondary triggering (green
histogram) for random secondary triggering using the simulated
annealing regression. In (B) the same information is shown from the
interior point regression. The results from both regression models
are similar.

different physical models for Omori’s law. We plot the relationships
between the Rate/State static stress change term, secondary
triggering term, RMS misfit, and number of solutions for both
regression methods (Figure 9). These plots reveal that the most
frequent solutions are not associated with the lowest RMS misfits.

We plot each parameter against RMS misfit for both regressions
(Figures 10, 11) in isolation to determine if there are any weights or
parameter values that have relatively stronger influences on fitting
the observed aftershock sequence. We do not find what appear
to be functional relationships between the free parameters and
RMS misfits when they are isolated. We show linear regression
fitting to the broadly scattered data for reference, but the data are
not related through linear functions. We note that the simulated
annealing regression results showparameters that aremore scattered
as function of RMSmisfit, whereas the interior point values aremore
tightly clustered.

We find that all solutions from both regressions for the c
parameter in the random secondary triggering term of Equation 6

FIGURE 8
Histogram plots show the distributions of RMS misfits for 1,000
solutions from simulated annealing (red columns) and interior point
(blue columns) regressions. In general, these plots show a wide range
of possible values, but the most frequent values in the weighting
parameters correlate with the lower RMS misfits identified in Figure 6.

yield negative values. It is the only parameter to have negative
values amongst those that have no positivity constraints (positivity
is limited to weighting the Rate/State reference rate (r), Rate/State
parameter (Δ), and the diffusivity constant (D) in only the
interior point method). Thus, because of the consistently negative
c parameter in our solutions, the third term in Equation 6 is always
subtracted from the first two. We provide a physical explanation of
this in a later section of the paper.

We plot parameters as histograms (Figures 12, 13) that enable
us to identify the most frequent values. If there is more than one
peak on the histograms, then we have a suggestion of a tradeoff
between parameters. We find that the same tradeoffs that were
evident in Figure 7 are also seen in the histogram plots, between
weighting of the Rate/State and secondary triggering components.

5.1 Overfitting?

We attempt to fit the first 64 days of the observed Amatrice
aftershock sequence (Figure 4) as closely as possible using
Equation 6, including small perturbations in aftershock rates. In
machine learning there can be issues when fitting observed training
data too closely because matching noise in the data can yield
parameter values that cannot be generalized for prediction. Here
we are not trying to find universal parameter values, but instead
are interested in the relative roles of different physical processes
involved in a single sequence. Additionally, if a given aftershock
sequence is complete above a magnitude threshold, then we can
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FIGURE 9
(A) Simulated annealing regression results: Left side shows a plot of summed contribution from Rate/State static stress triggering vs. the summed
contribution from random secondary triggering vs. RMS misfit. Cooler colors show lower RMS values. The right side has the same axes except the
relative frequency of solutions are colored with the summed number of solutions shown as a hit count. In (B) the same results are shown for the Interior
Point regression. The frequency of solutions is very similar to the simulated annealing results (Figure 7), but the RMS misfit distributions are different.

expect that temporal fluctuation is not measurement error or noise
intrusion but is instead the result of physical processes. Indeed,
we can show that daily rate fluctuations are a result of the largest
magnitudes of events and their secondary aftershocks occurring in
each bin by comparing against daily moment sums (Figure 14).
We have chosen to fit these rate fluctuations using a
random function because, while the overall rate decay is
predictable, the distribution of higher magnitude aftershocks
that provoke rate changes is less so, as we discuss in the next
section.

6 Explanation of results and
parameter values

In this section we discuss two initially surprising results
that are consistent across both regression methods. These are:
(1) the uniformly negative c parameter values that scale the
random secondary triggering factors of Equations 6, and (2) The
relatively low weighting of fluid diffusion processes in fitting the
observed aftershock sequence including near-zero weighting from
the interior point algorithm, despite independent observations
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FIGURE 10
Plots of 1,000 simulated annealing regression parameter value results vs. RMS misfit. In (A) the log of the Diffusion parameter (D) is plotted with a
simple linear regression applied that does not show a significant relationship vs. RMS. In (B) the stress change parameter (Δ) in the Rate/State
expression (Equation 6) is plotted that shows a slight regression relationship. In (C) the reference rate term (rref) in the Rate/State
expression (Equation 6) is plotted that also has a possible inverse relationship vs. RMS. In (D) it appears that the random secondary triggering parameter
(c) seems to yield lower RMS values when c is more negative.

of these processes in the Apennines (Malagnini et al., 2012;
Albano et al., 2019; Chiarabba et al., 2020; Malagnini et al., 2022).
These results make sense to us upon reflection as described
below.

6.1 Negative secondary triggering
parameter

In our formulation, the exponential decay of aftershocks with
time can be attributed to the declining array of nucleation zones
in Rate/State theory, the diffusive nature of pore fluid pressure
changes, and the occurrence of the aftershocks themselves and
their secondary triggering. The uniform negative solutions for the
random triggering parameter c are consistent with aftershocks
decreasing an additional net differential stress state over time.
According to static stress changes, each earthquake (including

the mainshock) during the sequence creates volumes where the
differential stress state is increased and decreased. Earthquakes are
the response to the gradual increase in tectonic stress on faults that
accumulates because of plate motions (e.g., Reid, 1910), and can
be triggered if they are close to failure. While each aftershock can
trigger others, they remove more stress than they create (Figure 15).
We expect that the region under the influence of the mainshock
and aftershocks will have a lower stress state than existed before
they happened. In this way, the occurrence of aftershocks is
a self-extinguishing process that must be subtracted from the
exponential theoretical decay curves to most accurately fit observed
sequences.

It is abundantly clear that larger aftershocks and their associated
secondary aftershocks do temporarily increase the total number of
events as can be seen in the complete Amatrice series (Figure 4),
where larger (M > 3.5) earthquakes cause significant temporary
rate increases. We used a random distribution to include secondary
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FIGURE 11
Plots of 1,000 interior point regression parameter value results vs. RMS misfit. Generally, the interior point results vs. RMS misfit are more tightly
clustered than the simulated annealing regression results (Figure 10). The apparent relationships between parameter values vs. RMS have similar trends
vs. RMS as do the simulated annealing regressions (Figure 10).

earthquake triggering, meaning that we assume that the ratio of
larger magnitude events to smaller ones is constant. In other words,
we are assuming that the b-value is relatively constant throughout
the sequence. The b-values vs. time in the Amatrice aftershock
sequence was measured by Van der Elst (2021) who noted using
what is called the β+ estimate, that the “b-value drops significantly
after the first M6.2 earthquake in August but shows only a gradual
increase and recovery after the final M6.6 earthquake in October.”
Additionally, Mitsui (2024) noted that “Our findings indicated that
the estimates produced by the b-positive method showed negligible
variation between the 10-day and 1000-day aftershock periods
(correlation coefficient of 0.95)”. This was found by Davidsen and
Baiesi (2016), who noted self-similarity and that “the GR relation for
triggered events needs to be modified if only triggered events over
short time intervals are considered.”

The regression methods, while providing good overall fits,
are not able to capture the initial rate increase spikes caused by
secondary triggering from aftershocks of equal or greatermagnitude

as the mainshock. However, the methods do capture smaller spikes
and the broader net decrease in aftershocks caused by reduced stress
in the crust from the occurrence of thousands of earthquakes. We
note that the very large (M > 5) aftershocks/mainshocks within the
Amatrice sequence all occurred just at the edge of static stress change
influence (Figure 3), implying that the physical processes driving the
largest secondary events may be spatially more distinct from the
initial aftershock decay of the initiating M6 Amatrice shock.

6.2 Low fluid diffusion weighting, and
near-zero weighting from the interior point
regression

Given the high pore fluid pressure that exists in the
Apennines (e.g., Bonini, 2007), we were initially surprised
that the regressions were returning such low weighting on
fluid induced aftershock triggering following the Amatrice
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FIGURE 12
Distributions of free parameters from 1,000 simulated annealing regressions fitting Equation 6 to the observed aftershock sequence. The secondary
triggering parameter (c), stress change parameter (Δ), and the reference rate (rref) appear to be approximately normally distributed. The distribution of
the Log diffusivity (D) appears consistent with the observed range for faults and intervening rock (with Log(D) ranging from −1 to −5 (e.g., Brodsky and
Saffer, 2020). The stress change parameter Δ (shown in panel b) has a higher variance with the majority of values ranging between 0.04–0.06 (see inset
panel), though there are some values that reach as high as 25.

earthquake. There are however factors associated with fluid
diffusion that likely mute their overall contributions to an
Omori-law aftershock sequence that is extensive in time
and space.

One factor we note is somewhat dependent on our regression
methods. We find that the fluid diffusion term in the interior
point regression method is weighted at ∼ zero, which is much
lower than the simulated annealing regression, which has
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FIGURE 13
Distributions of free parameters from 1,000 interior point regressions fitting Equation 6 to the observed aftershock sequence. The parameters appear
are more narrowly distributed than the simulated annealing values. The distribution of the Log diffusivity (D) is mostly consistent with the observed
range for faults and intervening rock (with Log(D) ranging from ∼10−1 to 10−5 (e.g., Brodsky and Saffer, 2020).

values up to 20% (Figure 7). This appears to be a result of
regularization that is required for convergence in the interior point
regression. Regularization seeks a smoother fit by minimizing
parameters of lesser influence on the solution that could be
interpreted as noise. The LASSO regularization applied in the
interior point method seeks to essentially zero out parameters of low
influence on the solutions, which explains the different outcomes in
weighting fluid diffusion.

While there are methodological reasons for low weighting of
fluid diffusion, there are also physical reasons. Previous modeling
of diffusion processes within the Central Apennines indicate that
the durations of the fluid pulses are short, being limited to 10
days or less (Figure 2) (Malagnini et al., 2012; Malagnini et al.,
2022). Thus, they might not strongly influence the full 64-day-
long sequence that we are fitting. Additionally, there are spatial
constraints associated with high-pressure fluids such that they can
be trapped within linear fault zones, or deep beneath the brittle

crust in horizontal decollements (e.g., Bonini, 2007).Malagnini et al.
(2012) noted that a diffusion signal could only be identified in a
limited area where seismicity was migrating across a fault plane.
Thus, given the massive number of small earthquakes (∼350,000
with M ≥ 1.04; Tan et al., 2021) that were broadly distributed
temporally and spatially across the region following the Amatrice
shock, the fluid diffusion signal is likely masked because of spatial
and temporal limitations. Though in some cases fluid diffusion
can be a dominant factor in seismicity rates (e.g., Miller, 2020;
Jia et al., 2020). We did investigate a shorter duration catalog (8
days after the Amatrice mainshock and did find a larger proportion
(0.356) as compared with of fluid diffusion triggering than we found
using the full sequence up to the Visso shock (0.086). However,
as we note in Supplementary Figure S2, the shorter sequence we
analyzed is noisier and lacks the curvature we observe in longer
sequences, diminishing our confidence in the fit to competing
parameters.
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FIGURE 14
Comparison between observed aftershock sums in daily bins and daily moment sums indicate the effects of secondary earthquake triggering and their
attendant aftershocks (e.g., Ogata, 1998; Helmstetter and Sornette, 2002; Ziv, 2003; Ouillon and Sornette, 2005; Hainzl and Marsan, 2008).

FIGURE 15
In (A) we simulate the stress change from a M3 within a 5 km cube. We then sum up the cumulative stress change within the cube (B), quantifying the
sum of the stress change volume and verifying that it is indeed negative, which supports the regression solutions that are uniformly negative for the
secondary triggering term.

6.3 Covariance

We computed a covariance matrix, which shows the potential
tradeoffs between sets of parameters used in the regressions
(Figure 16). Each parameter is also plotted against all the others
(Figure 16).We note that, for themost part, the associations between

parameters show relatively small values with absolute values less
that 0.08 (Figure 16). The exception is the relationship between the
fluid diffusion parameter (log(D), where D is a diffusivity constant)
and the stress change parameter Δ), which has a covariance value
that is two orders of magnitude higher than the combination of the
other variables. When these two parameters are plotted against one
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FIGURE 16
Plots of each variable from Equation 6 against all other variables. These plots identify variable covariance, which would be evident if there is an
identifiable trend where there is an apparent functional relationship. The strongest example of this is the plot of reference rate vs. the stress change
parameter Δ.
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FIGURE 17
(A) The best fit model from the simulated annealing inversion based on all three terms of Equation 6. In (B) the best fit to observed to a Rate/State
model only. In (C) and (D) the best fits applying only fluid diffusion and secondary triggering are shown. No individual model achieves as good a fit as
the combined terms do.

another, there is a wide semi-horizontal spread (Figure 16), which
may imply that these two parameters are more poorly constrained
than the others.

7 Conclusions

We apply two regression methods towards fitting an
aftershock sequence to an equation that represents three physical
models/concepts for earthquake triggering to understand the
relative influences of: (1) static/dynamic stress changes from the
mainshock, (2) fluid diffusion triggering, and (3) the random
magnitude distribution vs. time amongst secondary triggering by
aftershocks.There are four unconstrained parameters in Equation 6,
which combines the three physical model terms. These are a
reference seismicity rate, a static stress change term, a fluid

diffusivity term, and a scaling constant for random secondary
triggering. These four constants are solved by minimizing misfit
to the first 64 days of aftershocks following the 24 August 2016M6.0
Amatrice mainshock (Figure 4). We calculate 1,000 solutions from
each regression method and find some consistent patterns amongst
the solutions.

In all solutions the Rate/State model alone overpredicts
the aftershock rate by 100%–130%, which is balanced by the
random secondary triggering model which underpredicts by 0% to
−30%. The fluid diffusion model predicts a 0%–20% contribution.
Both regressions methods we used returned very similar and
consistent results (Figure 7), including negative scaling factors
for secondary triggering that appears to be required to fit the
observed sequence that were not imposed. We conclude this is a
necessary subtraction because while each earthquake that follows
the mainshock triggers subsequent aftershocks, the net effect of
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each of them is to remove stress from the crust, leading to a self-
extinguishing process (Figure 15).

Fluid diffusion triggering is consistently weighted low in both
regression methods despite evidence that it is an important process
in the Apennines (e.g., Bonini, 2007; Malagnini et al., 2012;
Albano et al., 2019; Chiarabba, et al., 2020; Malagnini et al., 2022)
(Figures 2, 3). We conclude that this is because diffusion processes
are limited in time and space and thus do not have a strong signal
over a long aftershock sequence.

Unaddressed by our regressions are the physical causes of
secondary triggered earthquakes that each have their own Omori
Law sequences that contribute to the overall signal. We have
modeled this as rate effects from a uniform aftershock magnitude
distribution (Figure 15b) that is subtracted from the expected
sequence of the primary mainshock. We note here that there may be
more opportunities for dynamic triggering within the sequence than
from a single mainshock, to which roughly a third of the aftershocks
have been attributed if fluid diffusion causes are neglected (e.g.,
Parsons, 2002; Hardebeck and Harris, 2022). These relatively small
rate fluctuations that might be construed as noise are influential in
our solutions such that they have as much as a 35% contribution to
the overall aftershock time series distribution. This likely explains
why statistical (e.g., Ogata, 1998; Ziv, 2003) or static stress change
aftershock forecasts (Mancini et al., 2022) that update and account
for secondary triggering are more accurate, which is a consideration
for operational aftershock forecasting.

Results from regressions have enabled us to quantify ranges of
the relative influences of physical processes on an aftershock rate
distribution provided that the three models expressed in Equation 6
are correct and comprehensive.The primary conclusion that we reach
is thatanyonephysicalmodelcannotalonefit theobservedsequenceas
wellas thecombinationofall threethatweinvestigated(Figure 17).The
concept of inverting for parameter values can be adapted to additional
and/or alternative physical models in the future.

Plain language summary

Aftershocks are most numerous immediately after a mainshock
occurs, and we have known since Fusakichi Omori’s work in 1894
that they decay roughly as a function of 1/time. There are multiple
observations/models for why this happens, and we are curious
whether a mixture of these concepts is responsible, and if so, what
is the relative importance of each. We distill these ideas into an
equation of three terms: (1) a model of time-dependent friction on
faults that causes a delayed response to stress changes instigated by
themainshock, (2) increased fluid pressure caused by themainshock
that pushes open fault walls enabling aftershocks to occur, and
(3) aftershocks that can trigger additional aftershocks (secondary
triggering). We use two different computational methods to find
the best combinations of models that fit an observed aftershock
sequence. We find that time dependent frictional responses to stress
changes is the dominant cause of aftershocks as modified by the
effects of secondary triggering. We find the impact of fluids in the
crust is smaller for a long aftershock sequence but can be more
important over shorter time periods, and that secondary aftershocks
reduce stress in the crust and suppress continued seismicity.
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