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Aquifer water yield property
prediction based on a hybrid
neural network model: a case of
yili no.4 colliery, Xinjiang

Jielin Yang, Wenping Li*, Jingzhong Zhu* and Dongding Li

School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China

With the gradual increase of coal production capacity, the mining-induced
roof water damage has become increasingly prominent. Accurately and
effectively predicting the water yield property of the roof aquifer based on
the hydrogeological data is of great significance for preventing and controlling
mine water damage. In this study, we select six evaluation factors, including
aquifer thickness (AT), permeability coefficient (PC), coring rate (CR), rock
brittleness-plasticity ratio (RBPR), equivalent thickness of sandstone (ETS), and
fold undulation (FU). A hybrid model is proposed, integrating the convolutional
neural networks (CNN) with long short-term memory (LSTM) optimized by the
Attention module to improve the model’s performance. The model is applied
to predict the water yield property of the Paleocene aquifer in the Yili No. 4
colliery by collecting 100 hydrogeological datasets. The model is trained to
predict the unit water inflow (UWI) of the roof aquifer, reflecting the water yield
property. Besides, comparative analysis with the CNN, LSTM, and the CNN-
LSTMmodels demonstrates that the prediction performance of the CNN-LSTM-
Attention model outperforms the three contrastive models. The CNN-LSTM-
Attention hybridmodel achieves higher prediction accuracy. This study proposes
a scientifically robust evaluation method for delineating WYPZ in mining areas
with limited hydrogeological exploration data.

KEYWORDS

water yield property, hydrogeological data, CNN-LSTM-attention, prediction
performance, unit water inflow

1 Introduction

Mine water disasters pose a serious threat to mining safety, especially the most common
and dangerous water in the roof aquifer (Yang et al., 2021; Zhu et al., 2024; Dong et al.,
2024). With the wide application and promotion of modern comprehensive mechanized
coal mining technology, the thickness of coal mining has been increasing to improve the
utilization efficiency of coal resources, leading to an increase in the roof collapse zone
and water-conducting fissure zone, thus exacerbating the impact of mining on the roof
aquifers, and correspondingly increasing the risk and threat of water hazards (Lu et al.,
2018; Hu and Tian, 2010). The degree of water abundance in the aquifer is one of the key
factors determining the severity of roof water damage (Wang et al., 2021; Zhu et al., 2021;
Song et al., 2016). Thus, before mining activities, a systematic and accurate evaluation of
the water yield property of aquifers and risk prediction of water inrush in coal mining can
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provide scientific guidance for the mine water prevention and
control work (Sun et al., 2017; Dong et al., 2020; Liu, 2021).

Against this backdrop, many domestic and foreign scholars have
dedicated their efforts to researching the water yield property of
aquifers. Currently, the traditional method for the identification of
the water yield property of aquifers is mainly the unit water inflow
(UWI). UMI is defined as the water yield per unit drawdown and
per unit time in a borehole, with the unit of L/(s·m), which is used to
quantitatively evaluate the water abundance of an aquifer (Zhu et al.,
2025). Namely, field hydrogeological tests reveal the water output
capacity and the water level response of aquifers. So, the calculation
of the UWI is the most direct means to evaluate the water yield
property of aquifers (Wang et al., 2019). However, this evaluation
method is usually constrained by the limited hydrogeological data.
The occurrence of roof water damage is closely related to the degree
of the water yield capacities of the roof aquifer. The water inflow per
unit of drilling is the most intuitive hydrogeological parameter of
the water yield property of the aquifer and accurate and effective
prediction of the water inflow per unit of the roof aquifer, the
definition of the key target area for prevention and control of roof
water damage, and the timely proposal of scientific and practical
preventive and control measures, which can effectively reduce the
occurrence of roof water damage accidents in coal mines (Song,
2017; Al-Abadi and Shahid, 2015; Sun et al., 2019; Dai et al., 2023).
The result can effectively reduce the occurrence of mine roof water
damage accidents.

The proposal of the ‘double-prediction based on triple-graph’
method achieved the spatial fusion of multi-source information
for the first time (Wu et al., 2000; Wu et al., 2009; Wu et al.,
2011; Wu et al., 2016). Nevertheless, it isn't easy to characterize
the nonlinear relationships, such as sandstone cementation
degree-fracture connectivity, by the linear weighting system. The
subsequent development of variable-weight fuzzy hierarchical
analysis (Hou et al., 2019; Li et al., 2022; Lu et al., 2018; Han et al.,
2012; Wang, 2016; Xue et al., 2018) reduces the expert experience
weight bias by introducing entropy constraints. However, it is still
limited by the subjective dependence of screening the main control
factors. Large-scale field experiments show that the prediction error
of traditional models grows exponentially when the brittleness-
plasticity ratio of the rock formation is more than 2.5 times
(Gong et al., 2018; Deng et al., 2019; Ki et al., 2020; Sal and
Bayu, 2021; Zhou et al., 2021; Hochreiter and Schmidhuber, 1997),
which exposes the inadequacy of the coupled mechanics-hydraulics
mechanism analysis.

In recent years, deep learning has been widely used in the field
of hydrogeology and geotechnical modeling to simulate subsurface
conditions, including thermal and flow behaviors (Ahmad et al.,
2019; Ahmad et al., 2021; Ahmad et al., 2025). Such as, artificial
neural network optimization techniques and Wavelet Support
Vector Machine (WA-SVR) model are applied to predicting
the groundwater level in the given terrain (Gaur et al., 2021).
Groundwater forecasting is significantly needed for groundwater
management. The advantage of convolutional neural networks
(CNN) in feature space mapping is that they enable implicit
association rules to be extracted from multi-scale geological
parameters. The FCNN model constructed (Cheng and Wang,
2023) achieved a cross-modal correlation between electromagnetic
response signals and water abundance grades through ‘end-to-end

learning’, with an accuracy of 91.7% in the test set.On the other hand,
extended short-term memory networks (LSTM) demonstrated
temporal prediction advantages, and the multivariate LSTM model
developed (Shi et al., 2023) reduced the mean square error of water
level dynamics prediction. Transformer structure demonstrates
more substantial long-range dependency capture in permeability
field reconstruction through a self-attentive mechanism (Sun et al.,
2020), and the Graph Neural Network (GNN) has also made
breakthroughs in modeling seepage paths in fault networks (Zhang
and Dai, 2022).

Current research is evolving from a single-model optimization
to multimodal fusion: the combined CNN-GRU model improves
the depth of memory for periodic seepage events through a
gating mechanism (Wang and Gupta, 2024), and the spatio-
temporal transformer (STT) achieves multi-resolution analysis of
geological parameters usingmulti-head attention (Yuan et al., 2025).
However, there are still two significant defects in the existing hybrid
architectures: Insufficient interaction of spatio-temporal features,
making it difficult to synchronously capture the mechanical-
hydraulic coupling effect of the rock rupture process; Lack of
geological a priori constraints on the allocation of attention weights,
causing a reduction in the identification of key control factors.
Recently, the Geo-Attentionmechanism proposed (Guo et al., 2022)
provided a new idea to solve the second type of problem, but its
computational complexity still restricts the engineering applications.

The main object is the Paleocene aquifer in the 12th panel area,
Yili No.4 colliery in this study. By analyzing the geological and
hydrogeological conditions, it is concluded that the main water-
filling water source is the Paleocene sandstone and conglomerate
aquifer overlying the main coal seam. The aquifer thickness (AT),
permeability coefficient (PC), coring rate (CR), rock brittleness-
plasticity ratio (RBPR), equivalent sandstone thickness (EST),
and fold undulation (FU) are selected as the evaluation factors
for predicting the water yield property of the Paleocene aquifer.
Neural network models are known for accurately reflecting the
nonlinear relationship between factors and water yield properties,
so they have broad application prospects. However, the reasonable
selection of hyperparameters inmachine learningmodelsmay affect
prediction accuracy. In this research, an advanced convolutional
neural network optimization algorithm has been proposed. The
accuracy of water yield property prediction is further improved by
extracting features with different weights using the CNN module,
based on which the long-time correlation of the LSTM neural
network is utilized. Finally, by innovatively integrating an Attention
module at the output stage of the LSTM model, the hybrid
CNN-LSTM-Attention framework dynamically prioritizes key data
features, leading to a significant improvement in prediction accuracy
for aquifer water yield properties. We take the 12th panel area of
the Yili No.4 colliery, Xinjiang, as an application case. The results
show that theCNN-LSTM-Attentionmodel has higher accuracy and
practical engineering application value to the water yield property of
the aquifers.

2 Study area profile

Xinjiang is located in the northwest of China and is
characterized by an arid and semi-arid area, where coal-bearing
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FIGURE 1
Schematic of the location of the study area. (a) Location of the Yili No.4 colliery; (b) Location of the 12th panel area in the Yili No.4 colliery; (c)
Schematic diagram of the 12th panel area; (d) Main aquifers within the 12th panel area.

strata aremainly distributed in theMesozoic Jurassic.The geological
structure of overburden is different from that of the eastern mines,
which has the characteristics of poor cementation, low strength, easy
weathering, and disintegration in water, and belongs to the weakly
cemented strata. With the gradual increase of coal production
capacity, the roof water damage has becomemore andmore serious.
Yili No.4 colliery is located in the southeast of Huocheng County,
Ili Kazakh Autonomous Prefecture, Xinjiang Uygur Autonomous
Region, as shown in Figure 1, with a general topography of high in
the northeast and low in the southwest, which is a low mountainous
and hilly terrain. Yili Basin is a Mesozoic depression basin with a set
of terrestrial clastic deposits.

Based on the related data derived from the geological boreholes,
the fracture structure in the mine area is not developed, the
groundwater recharge condition is poor, and the hydrogeological
boundary is simple. The main aquifers that have a more significant
impact on the mine production and ecological environment during
mining are the Quaternary alluvial floodplain pore aquifer, the
Paleocene conglomerate pore aquifer, and the Jurassic crushed rock
pore-fissure aquifer. Groundwater recharge in the region mainly
originates fromprecipitation infiltration, with its quantity controlled
by rainfall characteristics, terrain features, and aquifer properties.
The long-term average annual precipitation in the mine field is
290.4 mm. In the hilly ridge area, the thick loess layer causes
dispersed rainfall runoff, resulting in minimal infiltration recharge.
Theporewater in theQuaternary andPaleogene systems is primarily
recharged by precipitation from the northern mountainous areas
and bedrock fissure water, while also receiving surface water
recharge in the river valley region. The fissure-pore water in clastic
rocks is primarily recharged by precipitation and surface water

in the outcrop areas, secondarily by seepage from Quaternary
and Paleogene pore water, and locally by water accumulation in
goaf areas.

The coal seams are characterized by shallow, large thicknesses
with many layers, and the mechanical properties of the overlying
stratum are very weak.Themainmining coal seams are No.21−1 and
No.23−2 coal seams currently. The main water-filling source is now
the Paleocene gravel aquifer overlying the coal seams, and the water
yield property is extremely uneven vertically and horizontally. Itmay
become the direct and indirect water-filling source for the mining
No.21−1 and 23–2 coal seams in the hidden outcrop area, or through
the mining-induced fissures. In this study, we mainly analyze the
water yield property of the Paleocene aquifer in the 12th panel area.

3 Materials and methods

3.1 Materials

Many factors affect the water yield property of aquifers, and
a close relationship exists between the influencing factors. To
effectively evaluate the water yield property of aquifers, combined
with the previous research and analysis, we select six factors to
analyze the aquifer’s water yield property, including the aquifer
thickness (AT), the permeability coefficient (PC), the coring rate
(CR), the rock brittleness-plastic ratio (RBPR), the equivalent
sandstone thickness (EST), and the folds undulation (FU).

The data of the six evaluation factors is derived from drilling,
pumping tests, and other operations, but the data is not easy to
obtain, and their distribution in the study area is scattered. To
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get continuous and reliable data from the limited information,
the spatial interpolation method is applied for processing, and
the Kriging interpolation method is used. Contour maps of each
evaluation factor are plotted.

(1) AT

Usually, the thickness of an aquifer is a key indicator of
its water storage capacity. Greater AT indicates a larger volume
of groundwater and a more water-abundant aquifer. By utilizing
borehole data, we can determine the thickness at various boreholes
and apply the interpolation method to create a continuous spatial
distribution to quantify the aquifer’s water storage potential,
as shown in Figure 2a. In the western region of the study area, the
aquifer thickness is considerable, averaging around 120 m.

(2) PC

The PC reflects the water-conducting capacity of an aquifer
and is closely related to the degree of rock fissure development,
connectivity, and pore structure. A high PC indicates low resistance
towater flow and high groundwater transport efficiency.ThePC, as a
key parameter for evaluating the hydraulic conductivity of aquifers,
can be calculated directly from the field pumping test data. The
lithology of the Paleocene aquifer in the 12th panel area consists
of coarse sandstone, sandstone conglomerate, and conglomerate,
with thin layers of sandy mudstone. According to the existing
hydrogeological borehole pumping test data, the PCof the Paleocene
aquifer within the 12th panel area decreases from the south to the
north, with a PC of 0.05–1.65 m/d, and the permeability grades
range from weak to medium, as shown in Figure 2b.

(3) CR

The CR is an indirect measure of the fragmentation of the rock
formation, defined as the ratio of the core length extracted to the
total number of feet drilled. A low CR suggests the development
of fractures within the rock, increasing both the water storage
capacity and the pathways for water conduction per unit volume,
thereby enhancing the water yield property of the formation.
The information can be obtained from drilling logs, which are
straightforward to operate and effectively reflect the distribution
characteristics of aquifer fractures. In the study area, the CR is
estimated to be approximately 0.47∼ 0.77, as shown in Figure 2c.

(4) RBPR

The stratigraphic lithology mainly consists of siltstone,
mudstone, fine sandstone, medium to coarse sandstone, and
conglomerate. Mudstone and siltstone belong to plastic rocks, while
sandstone belongs to brittle rocks. Brittle rocks (e.g., sandstone)
are prone to develop fissures, while plastic rocks (e.g., mudstone)
inhibit the expansion of fissures. The phenomenon of alternating
layers of sandstone and mudstone often occurs in the rock layer at
the coal seam roof. The RBPR refers to the ratio of the thickness of
brittle rock to that of plastic rock. When the thickness of the aquifer
does not change much, and the rock layer is affected by tectonics,
the RBPR is high, indicating that the brittle rock layer accounts
for a large proportion, which is conducive to the development of
fissure networks and the enhancement of water-abundant nature.
The sandstone-mudstone interbedded structure of weakly cemented
strata is applied to the lithological layering statistical calculation.

Analyzing the hydrogeological data, the larger the RBPR, the
larger its PC, indicating the more substantial permeability of the
aquifer. The sandstone’s thickness in the study area’s southeast side
is greater than that of mudstone, so the adequate aquifer thickness
in the southeast region of the study area is more prominent, and
the water-abundant nature is good. For example, the RBPR is
0.18 in the ZK1206 location, and its PC is 0.053 m/d. The RBPR
in the borehole is large, and the water quantity is abundant, as
demonstrated in Figure 2d.

(5) EST

The EST is one of the main indices for evaluating aquifers’
water yield property; the more significant its thickness, the stronger
the water yield property is. Given the porosity and permeability
difference of different sandstones, EST is introduced in this study.
The porosity ratio of sandstone is used as the scale factor for
sandstone thickness conversion, which is multiplied by the actual
thickness of each sandstone type, and the calculation formula is
expressed by Equation 1.

Meq =
n

∑
i=1
(C(i)coarse · αcoarse +C

(i)
medium · αmedium +C

(i)
fine · α fine) (1)

Where Meq is equivalent sandstone thickness, m; C(i)coarse,
C(i)medium and C(i)fine stand for the actual thicknesses of the ith
layer coarse sandstone, medium sandstone, and fine sandstone,
respectively, m; αcoarse, αmedium and α fine denote porosity scale factors
(dimensionless) are 0.85, 0.72, and 0.58, respectively.

By integrating the differences in porosity and permeability of
different sandstone types (coarse, medium, and fine sandstone),
the actual thickness is normalized to the equivalent thickness by
the porosity ratio, which more accurately reflects the sandstone’s
contribution to water enrichment. The larger EST in the
southeastern region of the study area indicates that the adequate
aquifer thickness is larger and the water yield of the aquifer is more
water-abundant, as shown in Figure 2e.

(6) FU

The degree of FU characterizes the path of groundwater
convergence controlled by the fold structure. Folds in the coalfield,
especially the core and sides of the syncline, have developed fissures,
and surface water from the two flanks converges in the middle
and seeps down to become groundwater, which flows down the
layers and slopes to form a catchment space in the syncline, and
the syncline structure is favorable to groundwater recharge. Usually,
the greater the degree of FU, the better the effect of water catchment
and the greater the water abundance. The FU can be quantitatively
expressed by Equation 2. After the above analysis, we determined
the FU distribution characteristics, as shown in Figure 2f.

Fund =
1
N

N

∑
j=1
(H(j)base −Hbase,min) (2)

Where: Fund is the degree of fold relief; H(j)base denotes
the elevation of the aquifer floor at the jth sampling point;
Hbase,min stands for the minimum elevation of the bottom
surface of the aquifer; N is the total number of sampling
points.
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FIGURE 2
Contour mapping of each indicator in the 12th panel area. (a) AT. (b) PC. (c) CR. (d) RBPR. (e) EST. (f) FU.

3.2 Methods

Convolutional neural network (CNN) is an excellent feature
search algorithm with strong convolutional ability, but it ignores

the intrinsic connection between intermittent data. In contrast, a
long-term memory network (LSTM) has good long-term memory
properties. It can effectively portray complex correlations in time-
series data, but deepmining still has some deficiencies.We study and
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FIGURE 3
Flowchart of CNN-LSTM-Attention algorithm.

discuss whether the combination of the two can improve prediction
performance.

It has been shown that a multilayer neural network (CNN-
LSTM) can be constructed by combining the CNN with LSTM,
which can not only mine the intrinsic features of the sequences
but also avoid the problem of “lost” information due to long-time
sequences to a large extent. It can not onlymine the intrinsic features
of sequences but also prevent the problem of “lost” information
caused by long sequences to a greater extent and ensure the
correlation between the pieces.

Compared with traditional models, the use of hybrid deep
learning and multi-physical frameworks, as seen in recent
geotechnical and soil property modeling efforts (Rizvi et al., 2018;
Rizvi et al., 2020; Rizvi et al., 2022), can improve parameter
sensitivity and accuracy. A CNN-LSTM hybrid model performs
well in aquifer water yield property prediction compared to a single
model, but there is still an opportunity for further optimization. As
such, an approach that combines CNN and LSTMwith an Attention
module can substantially improve the prediction performance
of neural network models. The workflow of the CNN-LSTM-
Attention algorithm is shown in Figure 3. Based on this observation,
a hybrid deep learning model based on CNN-LSTM-Attention
on water yield property prediction is proposed to solve the issue

of relying on evaluation factors. The proposal of this hybrid
model provides new insights for predicting the aquifer water yield
property.

A CNN-LSTM-Attention hybrid model is constructed, and its
algorithmic flow is shown in Figure 3. Water yield property and
its evaluation factors are normalized, and input into the CNN-
LSTM-Attention hybrid model, and a cross-validation strategy was
adopted, in which 89% of the data is used for training, and the
remaining 11% is used for testing. Through multiple rounds of
iterative training, the weights of each layer in the neural network
gradually converge to the optimal state. Finally, the hybrid model
outputs the water yield property prediction results. Based on the
prediction results, the average accuracy and root mean square
error (RMSE) are calculated as the evaluation indices for model
performance.

In Figure 4, we illustrate the overall architecture of the
CNN-LSTM-Attention hybrid model, which consists of five key
components. Firstly, in the input layer, a matrix consisting of
the main influencing factors of aquifer water yield property is
generated based on batching for sliding batch processing. Next, in
the CNN layer, which is mainly used to extract spatial features, an
approach similarly applied in damage localization and subsurface
heterogeneity detection (Moreh et al., 2024a; Moreh et al., 2024b;
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FIGURE 4
CNN-LSTM-Attention overall architecture.

Moreh et al., 2024c), the input matrix is subjected to one-
dimensional convolution and pooling operations with a specific
convolution kernel to extract features. In addition, a discarded
layer is introduced to enhance the model’s generalization during
training and to avoid overfitting. The CNN layer is mainly used
to extract spatial features, which is conceptually similar to how
CFD models capture spatial pressure and flow field distributions
in constrained domains (Haroon et al., 2017). Then, in the LSTM
layer, we extract high-level abstract features from the output of the
CNN layer to achieve the conversion from the fine-grained features
extracted from the front-end to the coarse-grained features, and
meanwhile cleverly resolve the key dilemmas in extended sequence
learning, i.e., memory retention and gradient diffusion difficulties.
Next, the introduced attention module, which dynamically adjusts
the weight assignment of each feature, can solve the model’s
shortcomings in recognizing feature saliency and ensure that each
element receives precise attention. Finally, in the fully connected
layer of the output layer, the processed information is converted into
the final aquifer unit inflow prediction value and prediction of the
aquifer water yield property grades.

The processes for each layer in the model are as follows:

(1) Input preprocessing. The preprocessing step is executed for
the measured unit surge data and key influence factors. To
enhance the training efficiency and the prediction accuracy,
data standardization means are adopted to normalize the
values. The data processed will be used as inputs to the model,
denoted as X = [x1 . .xt-1,xt . .xn]T.

(2) CNN layer. The CNN layer is concerned with the extraction of
information features of the data. Its outputHc = [hc1 .hct-1,hct .
.hcj]T is represented as follows (Equation 3):

{{{{
{{{{
{

C = Relu(X⊗W+ b)

P =max(C) + b

Hc = Tanh(P×W+ b)

(3)

WhereC is the output of the convolutional layer,P is the output
of the pooling layer,W is the weight, b is the bias, and ⊗ is the
convolutional operation.

(3) LSTM layer. The LSTM layer is constructed to learn the
regularity of the CNN layer’s output. The output of the LSTM
layer ht is represented as follows (Equation 4):

ht = LSTM(Hc.t−1,Hc,t), t ∈ [1, i] (4)

(4) Fully Connected Layer-Attention Layer. The result of the
LSTM is used as input to the Attention layer, and the weights
are solved using the probabilistic weighting method. The
following (Equation 5) expresses the weighting coefficients of
the Attention layer:

{{{{{{{{
{{{{{{{{
{

gt = utanh(wht + b)

at = exp(gt)/
t

∑
j=1

ej

St =
i

∑
t=1

atht

(5)
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Attention layer assigns feature-specific weights to highlight key
information. In the prediction of aquifer water yield property, it
dynamically adjusts geological parameter weights according to their
hydrological significance.

For output layer, its input is the output of the attention layer.
The formula (Equation 6) for the output layer is:

Yt = Relu(Wjst + bo) (6)

where Y t is the output at moment t;W j is the weight system, and bo
is the bias vector.

Overall, the CNN module is utilized to extract features with
different weights from the data series of the influencing factors.
Based on this, the long-term correlation of the LSTMneural network
is used to further enhance the accuracy of water yield property
prediction. Finally, the innovative integration of an attentionmodule
at the terminal of the LSTM model aims to allow the model to
focus on key data features, thereby significantly improving the
prediction accuracy.

Aquifer water yield property prediction is divided into five steps:
(1) Firstly, the drilling data and geophysical survey data are collected
and calculated, and the main controlling factors are selected and
analyzed; (2) the data of the main controlling factors of water yield
property are statistically calculated by using Kriging interpolation
method, and the relevant contour plots are drawn; (3) the aquifer
water yield property is predicted by using different neural network
models, such as CNN-LSTM-Attention prediction of aquifer water
yield property; (4) we derive the accuracy of different models by
comparing the predicted and actual values of UWI; (5) Finally, we
discuss the zoning of aquifer water yield property by using the
predicted UWI and the measured values of CNN-LSTM-Attention
model. The research route is shown in Figure 5.

4 Results

4.1 Correlation analysis

Correlation analysis is a statistical analysis method used to
determine the degree of correlation between two variables, and the
index is the correlation coefficient (r), which ranges from −1.0 to
1.0. The greater the absolute value of the correlation coefficient, the
higher the correlation between the two factors. A negative value
indicates a negative correlation, and a positive value indicates a
positive correlation [24,25].

In this study, the degree of correlation between the two factors
of water yield property is evaluated by the Pearson correlation
coefficient with the formula (Equation 7):

r =
∑n

i=1
(Xi −X)(Yi −Y)

√∑n
i=1
(Xi −X)

2
√∑n

i=1
(Xi −Y)

2
(7)

Where: n is the number of samples; Xi, Yi is the sample value i of
X, Y; X, Y are the sample mean. When |r| ≤ 0.2, the two evaluation
factors are extremely poor correlated or uncorrelated, when 0.2 <
|r| ≤ 0.4, the two evaluation factors are poor correlated, when 0.4 <
|r| ≤ 0.6, the two evaluation factors are moderately correlated, when
0.6 < |r| ≤ 0.8, the two evaluation factors are highly correlated, and

when 0.8 < |r| ≤ 1.0, the two evaluation factors are extremely highly
correlated. The results and the heat map of correlation are shown in
Table 1 and Figure 6.

As shown in Figure 6, the higher the correlation between the two
factors, the darker the color and the larger the radius. Among them,
the absolute value of Pearson’s correlation coefficient between fold
undulation degree and aquifer thickness is more significant than 0.6,
indicating that they are strongly correlated. The absolute values of
Pearson’s correlation coefficients between RBPR and AT, EST and
CR, PC, RBPR, EST, and FU range from 0.2 to 0.4, indicating that
they are poorly correlated.

When |r| ≥ 0.6, the correlation between the two factors reaches a
high or very high state, and 0.6 is used as the threshold in this study.
When the correlation between the two factors is more significant
than 0.6, one of the factors is excluded, and the other is analyzed
in the follow-up. The correlation coefficient between FU and AT
is more significant than 0.6; one of the control factors needs to be
eliminated, calculated, and analyzed, and the correlation between
the remaining four control factors and AT is even lower compared
with FU, so the AT factor is eliminated.

4.2 Engineering application results

To verify the performance and accuracy of the model selected,
the evaluation factors in each group were extracted from the
contour plots drawn, five evaluation factors in total. Firstly, the
proportion of the training set was defined as 89% of the total
dataset. Robustness tests showed that the method proposed—using
an 89% training dataset and an 11% test dataset—significantly
outperforms conventional splits. Traditional approaches typically
involve training set divisions of 80%, 85%, and 90%, corresponding
test datasets of 20%, 15%, and 10%, respectively. The proposed
method demonstrated a 19.3% reduction in the RMSE for prediction
accuracy and a 66% reduction in the JS scatter for distribution
consistency. Consequently, we selected a dataset splitting ratio of
89% for the training dataset and 11% for the test dataset to ensure
the model maintains sufficient temporal continuity while achieving
effective generalization capabilities. Thus, the 89 sets of sample data
are selected as the model training dataset, and the remaining 11 sets
of sample data (measured data) are treated as the testing dataset.

The study presented encompasses 100 valid data samples,
representing a 3.5 km2 area across the 12th panel area in the Yili
No.4 colliery.The data’s spatial resolution is set at a 50 m× 50 m grid,
resulting in 140 spatial cells. Data collection time came from January
2020 toDecember 2023, with samples takenmonthly, culminating in
forty-eight time steps. Each sample comprises six evaluation factors,
as detailed in Table 2.

Next, the types of missing values are classified as either missing
at random (MAR) or missing not at random (MNAR). Missing
values are then filled using methods such as Kriging interpolation
and LSTM time-series prediction. Following this, the local outlier
detection is performed using an improved version of the Local
Outlier Factor (LOF) algorithm. In contrast, global outlier detection
utilizes theMahalanobisDistanceThresholdingmethod to eliminate
certain outliers. Finally, the data are normalized by applying Min-
Max normalization to the static parameters. The normalized data
is then arranged into a four-dimensional array to meet the input
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FIGURE 5
The research workflow chart.

requirements of the deep learning model. This four-dimensional
array is converted into different cells, each containing one sample’s
feature data, completing the raw data’s preprocessing.

The dataset includes both measured field data and interpolated
data. It is essential to specify the spatial and temporal characteristics
of the data, including the spatial grid structure and time steps. Data
preprocessing steps must also be outlined, such as normalization,
handling missing information, and transforming the data into a
format suitable formodel input.The first step in this process involves
the hierarchical integration of various data sources. This integration
occurs through two layers: the core data layer and the derived data
layer, aiming for improved preprocessing accuracy. Measured data
is included in the core data layer, such as borehole permeability
coefficients and core take rates, along with their corresponding 3D
spatial coordinates (x, y, z) and time stamps (t). Continuous field
data generated by kriging interpolation is provided in the derived
data layer, including the permeability coefficient field and fold
undulation contours. The grid resolution in this layer is designed

to match the geological body variability scale. Finally, strategies
for constructing spatial local correlation and enhancing data are
implemented to bettermeet the requirements of CNNs.This ensures
that the dataset is well-suited for the temporal characteristics of
the LSTM networks through time series structuring and long-range
dependency guarantees.

In the stage of constructing the neural network model, a
blank network structure is created using the layer graph function,
network layers such as the input layer, sequence folding layer,
and convolutional layer are added, respectively, and the connect
layers function is used to connect the layers. Among them, the
convolutional layer uses a 1 × 1 convolutional kernel, and the
number of channels is set to 32 and 64, respectively. The training
options function is used to set the training parameters, including
the maximum number of iterations, the initial learning rate, the
learning rate degradation factor, etc., affecting the stability of the
model training and the length of training.Themaximum number of
iterations (epochs) is set to 100, the initial learning rate is 0.01, the
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TABLE 1 Pearson’s correlation coefficients between control factors.

Parameters AT PC CR RBPR EST FU

AT 1

PC 0.042 1

CR −0.079 −0.153 1

RBPR 0.245∗ 0.07 0.074 1

EST −0.151 −0.145 −0.230∗ 0.106 1

FU −0.670∗∗ 0.253∗ −0.116 −0.282∗∗ 0.400∗∗ 1

Note:∗the 0.05 level (two-tailed), the correlation is significant,∗∗the 0.01 level (two-tailed),
the correlation is significant.

learning rate decreasing factor is 0.5, and the learning rate decreasing
period is 700. The dataset is disrupted at the beginning of each
epoch,which helps themodel generalizewhen learning and prevents
the model from relying on a specific order of the data.

After training, the RMSE of the CNN-LSTM-Attention model
are 1.76e−3 and 1.98e−3 for the training and the testing datasets,
respectively. The RMSE of the overall datasets is calculated as
1.87e−3, and the fitting result of the training dataset is 0.9725.

5 Discussion

To prove that the water yield property prediction results are
better through the CNN-LSTM-Attention model, we compare and
analyze the prediction results with other neural network models,
including the CNN, LSTM, and CNN-LSTMmodels.

5.1 Correlation of layers and geological
features

When using the CNN-LSTM-Attention model to predict and
evaluate the water-richness of aquifers, with the selection of six
indicators including aquifer thickness, hydraulic conductivity, core
recovery rate, sand-mud ratio, equivalent sandstone thickness,
and formation undulation degree, the following analyzes the
correlation between different layers/features in the model and
specific geological phenomena:

(1) The main function of the CNN layer is to extract local features
of the input data. In the problem of predicting the water yield
property of aquifers, the CNN layer can extract local features
from the six input geological indicators, and these local features
are closely related to specific geological phenomena.The CNN
can capture the local variation features of the aquifer thickness
in space. It can extract the features of high-value or low-value
areas of the hydraulic conductivity in a small range. The CNN
can capture the local fluctuations of the core recovery rate.The
local features of the sand-mud ratio can reflect the changes in
the sedimentary environment. The CNN can identify the local
changes in the equivalent sandstone thickness. It can extract

local features such as the curvature and slope of the formation
undulation.

(2) The LSTM layer is mainly used to process sequential data
and can capture long-term dependencies in the data. In the
prediction of the water yield property of aquifers, it can
correlate geological information at different time or spatial
positions, which is related to the geological evolution process.
By inputting the six geological indicators into the LSTM layer
in chronological or spatial order, it can learn the variation
rules of the geological indicators over time or space.The LSTM
can process the sequential information of geological structural
activities.

(3) The function of the Attention layer is to assign different
weights to different features and highlight important feature
information. In the prediction of the water yield property of
aquifers, theAttention layer can dynamically adjust theweights
of the geological indicators according to the influence degree of
different geological phenomena on the water yield property.

In summary, different layers of the CNN-LSTM-Attention
model are associated with specific geological phenomena in aspects
such as local feature extraction, sequential information processing,
and feature weight assignment in the prediction of the water yield
property of aquifers, thus more comprehensively capturing the
relationship between geological information and the water yield
property of aquifers.

5.2 Comparative analysis

To compare and analyze the superiority of the CNN-LSTM-
Attention hybrid model with other neural network prediction
models, the same sample dataset as that of the CNN-LSTM-
Attention model is selected, with the first eighty-nine sets of sample
data as the training set, and the remaining eleven sets of sample data
as the test dataset, for CNN, LSTM, and CNN-LSTMmodels.

Based on the training test results, we plotted the actual
value of the test dataset of different methods compared with the
predicted value, as shown in Figure 7. The RMSE in the CNN
model is 1.29e−2, the RMSE in the LSTM model is 1.19e−2, and
the RMSE in the CNN-LSTM model is 2.98e−3. The prediction
results from CNN, LSTM, and CNN-LSTM models, compared to
the actual UWI, show accuracy rates of 78.9%, 85.7%, and 91.6%,
respectively. Compared with the CNN-LSTM-Attention model, the
three prediction models have a relatively large error, which quickly
causes the wrong classification of water yield property grades.
As such, the CNN-LSTM-Attention hybrid model outperforms
the other three models in terms of UWI. Although the CNN-
LSTM-Attention hybrid model performs well, some limitations
remain, particularly in generalizability across variable geological
domains, which has been noted in simulation-based assessments
of cemented and backfilled geomaterials (Rizvi et al., 2020).
In future research, further model optimization and validation
under different geological settings are needed. Previous FEM-
based studies on subsurface geometry effects (Alsabhan et al.,
2021) highlight how structural heterogeneity can influence
local stability, a principle relevant to aquifer yield
classification.
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FIGURE 6
Heat map of Pearson correlation between control factors.

TABLE 2 Sources and other information of the sample data.

Parameter name Data volume Data source Unit/Range

AT 100 On-site borehole histogram m (5.86–160.63)

PC 100 Pumping test m/d (0.002–2.029)

CR 100 Borehole cataloguing Dimensionless (0.45–0.81)

RBPR 100 Drill hole cataloguing + Lithological testing Dimensionless (0.005–5.922)

EST 100 Borehole cataloguing + Porosity testing m (54.36–91.62)

FU 100 DEM Elevation Model Dimensionless (0.04–539.72)

5.3 Water yield property zone

In the study, the UWI value predicted by the test dataset
of the CNN-LSTM-Attention model is used to discriminate the
water yield property zone (WYPZ) of the Paleocene aquifer in
the 12th panel area of the Yili No.4 colliery (Figure 8a), with
the four classifications (weak, weak-medium, medium, and strong
WYPZs). The results are as follows: the stronger water yield
property areas are mainly distributed in the southern region of
the 12th panel area, and a small region is distributed in the
northeastern region. The strong water yield property distribution
area coincides with the area that has the highest CR. It aligns with
the regions with a more significant PC and FU, indicating that
the water yield property of the aquifer positively correlates with
these three influencing factors. It conforms to the area with less
brittle and plastic rocks and smaller equivalent sandstone thickness,
indicating that water yield property negatively correlates with the
two factors.

To verify the reliability of the CNN-LSTM-Attention hybrid
model, we plotted the second WYPZ based on the actual value of
the UWI of the Paleocene aquifer, and the classification threshold
range of the two methods used for the WYPZ is consistent in
this study. The WYPZ based on measured UWI is discriminated,
as shown in Figure 8b. By comparing the predicted WYPZ results
(Figure 8a) with actual results (Figure 8b), it indicates that the
differences between the two zoning results are slight, so the reliability
and accuracy of the CNN-LSTM-Attention hybrid model are better.

5.4 Limitations and prospects

In this study, we selected 100 datasets from the hydrogeological
exploration of Yili No.4 coal mine in the Western China
mining area during 2020–2023. As such, the applicability of
the CNN-LSTM-Attention hybrid model in the Eastern China
mining area remains to be verified. Besides, constrained by
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FIGURE 7
Comparison of predicted results from different models.

FIGURE 8
WYPZ of the Paleocene aquifer. (a) WYPZ based on the CNN-LSTM-Attention model. (b) WYPZ based on measured UWI.
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the extent of coal mine hydrogeological exploration, this study
employs a relatively small dataset, constituting a machine
learning case study with limited samples. It should be noted
that the advantages of deep learning algorithms become more
pronounced with larger sample sizes. Lastly, relying solely on
limited borehole-specific water inflow data within the study area
to validate the accuracy of the model’s predictions lacks sufficient
persuasiveness. In subsequent research, we will conduct further
verification based on geophysical exploration (e.g., transient
electromagnetic method, TEM) and actual mining production
conditions.

In conclusion, with the emergence and promotion of
new exploration techniques and theoretical research methods,
studies on the prediction of aquifer water abundance
will continue to advance, better serving mine safety
production and the protection and utilization of groundwater
resources.

6 Conclusion

1. Taking into consideration the geological characteristics in the
study area, AT, PC, the rock coring rate, RBPR, EST, and
FU are adopted as the main evaluation factors of the roof
aquifer to address the problem of water damage. Through
correlation analysis, the AT indicator is eliminated, and the
four evaluation factors are subsequently analyzed to obtain
the UWI of the aquifer, a more accurate index of water yield
property.

2. The average accuracy and root mean square error (RMSE)
are adopted as model performance evaluation indices. To
ensure the robustness and credibility of the prediction, the
eighty-nine sets of sample data are used as the training
dataset, and the remaining eleven sets of sample data
(measured data) are considered as the test dataset, totaling
100 independent data for repeated validation, inputted into a
single CNN, a LSTM, and a hybrid CNN-LSTM, respectively,
to compare their respective prediction effects. The results
show that the prediction model based on the CNN-LSTM-
Attention algorithm has higher accuracy and better prediction
effect than other comparative models (CNN, LSTM, and
CNN-LSTM).

3. The predicted values are highly fitted with the actual
values, the average error is only 1.73e-3, and the prediction
accuracy is as high as 99.05%. Utilizing the predicted
UWI, the water yield property of the Paleocene aquifer is
identified. Besides, comparing the WYPZ results based on
the predicted UWI with the WYPZ results based on the
actual UWI. The results show that the prediction accuracy
of the CNN-LSTM-Attention hybrid model is better, and
the water yield property zoning coincides with the actual
situation.

The innovation of the study is that the evaluation factors
can be derived from the geological drilling under the rare
hydrogeological exploration, such as pumping tests. And
then, an optimized algorithm model is applied to predict
the UWI of the aquifer accurately and rapidly, and identify

the WYPZ of the target aquifer. Thus, this research can address
the cost and time-consuming issues of the hydrogeological
exploration. This method is universally applicable to the
study of WYPZ evaluation in mines with various geological
conditions.
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