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Editorial on the Research Topic

Prevention, mitigation, and relief of compound and chained natural
hazards, volume II
s

Introduction

In the face of global climate change and intensifying environmental variability, the
frequency, magnitude, and complexity of natural hazards have significantly increased
(Masson-Delmotte et al., 2021; Xu and Xu, 2021; Huang et al., 2023; Gao et al., 2024;
Wang et al., 2025; Wu et al., 2025; Xu et al., 2025). These events rarely occur in isolation.
Instead, they interact spatially and temporally, generating compound and chained disasters
that amplify impacts across interconnected systems (Pescaroli and Alexander, 2015; Gill
and Malamud, 2017; Zscheischler et al., 2018; Van Wyk de Vries, 2025). This presents
unprecedented challenges to disaster risk science and emergency management.

Building upon the success of the first volume of this Research Topic, which focused
on earthquake-related hazard chains and geohazards (Xu et al., 2024), the second volume
expands its scope to encompass a broader array of hazard interactions, covering geophysical,
hydrological, and anthropogenic domains. It directly responds to the original call for
papers, which emphasized five core themes: (1) formation and evolution mechanisms
of compound and chained hazards, (2) multi-hazard model building and chain-breaking
strategies, (3) source detection and database construction, (4) intelligent early warning and
risk assessment technologies, and (5) emergency equipment and post-disaster recovery.

This editorial provides a structured synthesis of the 14 accepted contributions inVolume
II.The articles are grouped thematically and highlight emerging research frontiers including
artificial intelligence (AI), high-resolution geospatial analysis, integrated physical and
empirical modeling, and intelligent sensing technologies for real-time hazard monitoring.
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Mechanisms and models of
earthquake-triggered chained hazards

Earthquakes remain key initiators of cascading hazard
sequences such as landslides, ground ruptures, and surface
deformation (Keefer, 1984; Xu et al., 2014; Zhao et al., 2023; Li et al.,
2024; Yu et al., 2024; Zhang et al., 2024; Huang et al., 2025). Liu
et al. developed empirical relationships between Arias Intensity
(AI) and peak ground acceleration (PGA) for western China,
uncovering region-specific differences influenced by local site
conditions and providing a new framework for energy-based seismic
hazard metrics. Lu et al. compared a logistic regression-based
data-driven model Xu et al. (2019) and a physics-based Newmark
model to evaluate coseismic landslides after the 2022 Ms 6.8 Luding
earthquake. Results show that the logistic model achieved higher
accuracy and efficiency in emergency contexts.Wang et al. evaluated
the predictive impact of lithology and precipitation in machine-
learning models of earthquake-induced landslides. Surprisingly,
they found these commonly used factors negatively affect model
performance due to spatial clustering and data resolution issues. Hu
and Ren proposed a probabilistic displacement hazard model for
distributed surface ruptures along strike-slip faults in the Tibetan
Plateau. Their work enables engineers to assess fault displacement
risk for linear infrastructure exposed to large-magnitude events.
Together, these studies deepen our understanding of chained seismic
hazards and underscore the critical need for regionally adaptive,
data-informed modeling strategies.

Smart monitoring and early warning of
mining-induced geohazards

Mining operations represent hotspots for compound geological
risks due to induced stress fields, water infiltration, and roof
instability (Wang et al., 2018;Ma et al., 2022). Zhang et al. developed
a comprehensive early warning method for coal mine roof and
floor cracking and water inrush, using microseismic monitoring of
source parameters such as apparent stress and energy. Their tri-
dimensional model of fracture depth, intensity, and risk represents
a significant advancement in real-time hazard forecasting. Sun
et al. applied abrasive jet-based hydraulic fracturing technology for
gently inclined hard roof treatment. Field results confirmed effective
crack generation and reduced stress concentration, highlighting a
safer alternative to traditional blasting. Hou et al. analyzed surface
subsidence and crack development across super-long working faces.
Their findings offer new insights into asymmetric settlement curves
and secondary subsidence effects, vital for infrastructure protection
over mining zones. These contributions collectively reinforce the
value ofmulti-sensor integration andmechanistic insight formining
hazard mitigation.

Hydro-Geomechanical coupling and
ground deformation dynamics

Groundwater level fluctuations and geologic structures
play crucial roles in land subsidence and rebound phenomena
(Chaussard et al., 2014; Jeanne et al., 2019). Liu and Bai investigated

land deformation in Beijing’s Chaobai River plain using InSAR
and borehole extensometers. They discovered a previously
undocumented uplift zone driven by managed aquifer recharge
(MAR), controlled by fault permeability and lithologic variation—a
paradigm shift in subsidence control theory. This work illustrates
the evolving complexity of hydro-mechanical feedback loops in
anthropogenic hazard settings.

Landslide inventories, mapping, and
spatial distribution analysis

Reliable landslide inventories are foundational for hazard zoning
and regional risk assessment (Guzzetti et al., 2012; Xu, 2015; Shao
and Xu, 2022; Feng et al., 2024; Shao et al., 2024). Xue et al.
compiled 3,979 landslide relics in Zhenxiong County, Yunnan using
human-machine interactive visual interpretation. They identified
four high-density landslide zones, emphasizing terrain incision and
hydrological development. Wang and Xu built a database of 5,517
landslides in Minhe County, Qinghai, revealing the dominance of
slope angle (15°–25°), elevation (2000–2,100 m), and proximity to
rivers (0–2 km) in governing spatial susceptibility. Such granular
spatial datasets are key to advancing machine-learning-based
susceptibility mapping and chain hazard simulations.

Monitoring, reinforcement, and failure
simulation in complex geological
settings

Hazard dynamics in karst, loess, and liquefiable sites require
specialized monitoring and engineering solutions (Zhao et al.,
2012; Koseki et al., 2015; Lian et al., 2020). Wu Liang et al. used
MEMS sensors in a series of slope model experiments to monitor
internal displacements with high accuracy (<6% error), suggesting a
promisingalternative totraditionalPIVmethods indeepslopestability
monitoring. Wu Yi et al. conducted six model tests on geotextile
reinforcement of karst subgrades. They found that tensile membrane
effects significantly reduced displacement—up to 66% under static
loads—offering theoretical and design support for infrastructure
in karst-prone zones. Peng et al. performed fully coupled dynamic
effective stress analysis on liquefiable interlayers under bidirectional
ground motion. Their results confirm that near-field vertical seismic
components significantly increase ground settlement, reshaping our
understanding of site response mechanisms. Zhao et al. simulated a
loess landslide event in Shaanxi Province using discrete and finite
element models to quantify impact damage on housing. The findings
offer a blueprint for quantitative vulnerability assessment in loess
terrain, a critical step in pre-disaster planning.

Conclusion and outlook: toward
data-driven, intelligent multi-hazard
resilience

While the contributions in this volume provide valuable
insights into specific aspects of compound and chained
natural hazards—particularly in the contexts of earthquake-
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induced geohazards, mining-related instabilities, and site-specific
deformation phenomena—they only partially address the full
breadth of challenges outlined in the original call for papers.
Research gaps remain in areas such as meteorological hazard
interactions, hydrological-ecological feedbacks, and transboundary
disaster chains. Nevertheless, the application of machine learning,
microseismic monitoring, geospatial mapping, and physical
modeling across these case studies reflects a promising step forward
in hazard assessment and scenario-based analysis.

We recognize that a comprehensive understanding of multi-
hazard dynamics requires sustained and interdisciplinary efforts.
To that end, we are continuing this Research Topic in future
volumes, and we sincerely welcome further contributions that
address broader hazard types, integrative modeling approaches,
and proactive mitigation strategies. We invite researchers from
around the world to join us in advancing science-based solutions
for reducing the risks and cascading impacts of natural hazards.
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