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Editorial on the Research Topic
Fine-grained sedimentary rocks: sedimentary processes, diagenesis,
geochemistry and their relationship with critical geological events
s

Fine-grained sedimentary rocks are increasingly studied for their complex depositional
processes, high organic content, reservoir potential, metal enrichment, and geochemical
records of paleoenvironments (Ettensohn et al., 1987; Wignall, 1994; Stow et al., 2001;
Aplin et al., 2011; Shahzad et al., 2024). Once seen as homogeneous suspension-
settled deposits, flume experiments and sedimentological studies have revealed that
they can form under high-energy conditions, influenced by floods, storms, and
bottom currents (Schieber et al., 2007; Bohacs et al., 2014; Macquaker et al., 2014;
Li et al., 2022; Mehmood et al., 2023). Additionally, finegrained sedimentary rocks
may receive sediments of various origins and can be characterized by a complex
composition comprising clay minerals, quartz, carbonates, feldspars, sulfides, biogenic
debris, and organic matter (Taylor and Macquaker, 2002; Macquaker and Adams,
2003; Milliken, 2014; Camp et al., 2015). Diagenesis in these rocks is governed by
mass-balance, fluid transport, and organic-inorganic interactions (Morad et al., 2000;
Cobbold et al., 2013; Liang et al., 2018). Geochemical proxies link their formation to major
tectonic and environmental events, including rifting, glaciation, volcanism, anoxia, mass
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extinctions, and hydrothermal activity (Algeo et al., 2012; Trabucho-
Alexandre et al., 2012; Li et al., 2015; Qiu et al., 2022; Shen et al.,
2025; Derkowski et al., 2013).These insights are vital to sedimentary
and diagenetic theory—especially unconventional petroleum
sedimentology (Qiu et al., 2020; Zou et al., 2022)—and to
understanding Earth’s sphere-system evolution.

This Research Topic comprises ten papers presenting advances
in the study of fine-grained sedimentary rocks from three
perspectives: depositional processes, diagenetic mechanisms,
and geochemical characteristics. Rocks focused in this volume
encompass both marine and continental mudstones and shales,
spanning strata from the Cambrian to the Eocene, and therefore
are broadly representative. Through these case studies, we aim to
further enrich the theoretical framework surrounding fine-grained
sedimentary rocks.

Sedimentary processes

Wen et al. investigated the Beipiao Formation in western
Liaoning, Northeast China, and identified lithofacies formed under
the influence of volcanic activities and sediment-gravity flows.
Three depositional environments—shallow lake, semi-deep/deep
lacustrine, and fan delta—were defined, with basin evolution
transitioning from fan delta to deep lake and back, interbedded with
volcanic deposits. Volcanism enhanced nutrient supply and organic
matter preservation, while gravity flows transported plant fragments
to deep lakes, leading to the enrichment of Type III kerogen.

Feng and Zhang analyzed the ShangGanchaigou Formation
in the western Qaidam Basin, Northwest China, and identified
seven architectural elements (distributary channels, bars, algal
mounds, etc.) and three facies belts (proximal delta front, middle
isolated lobes, distal algalmarl complexes). Short-term base-level
cycles were documented as the dominant factor producing frequent
facies variations. Reservoir connectivity was documented to
decrease lakeward, revealing challenges in predicting heterogeneous
reservoirs.

Diagenesis

Zhang et al. examined coevolution of minerals in lacustrine
mudstones from Bohai Bay Basin, East China. Fibrous
calcite/ankerite precipitated in primary laminar fractures during
peak organic-acid release, with elements supplied by early carbonate
dissolution and smectite–illite transformation. Clay alteration led to
the formation of microcrystalline quartz, feldspar dissolution, and
the increase in pH allowed authigenic albite to form. Authigenic
carbonates and colloidal pyrite regulated pore-fluid chemistry, while
variations in organic matter governed pore pressure, acid levels, and
diagenetic pathways.

Yuan et al. studied tight sandstones of the Jurassic Lianggaoshan
Formation in the eastern Sichuan Basin, Southwest China, and
identified various facies associated with subaqueous distributary
channels and mouth bars. Strong compaction/cementation led to
reduction of porosity, while chlorite coatings and weak dissolution
preserved pores. Five diagenetic facies were classified, with

Type III (chlorite-coating) and IV (weak dissolution) in coarse-
grained channels showing high AC, low GR/DEN/RT as optimal
reservoirs.

Lin et al. studied analcime formation in Middle Permian
reservoirs in the Jinan Sag, Junggar Basin, Northwest China.
Analcime was originated from early alkaline hydrolysis of volcanic
debris under specific conditions, forming low-silica, Al-rich,
Na-poor varieties. Cementation reduced primary porosity, but
acidic fluids from oil/gas charging dissolved analcime, generating
secondary pores via albitization. Reservoir quality was enhanced by
formation of intragranular pores through dissolution of analcime,
feldspar or lithic fragments.

Guo et al. investigated glutenite compaction using a self-
designed diagenetic simulation system, addressing the lack
of quantitative studies on complex rock fabrics. Experiments
revealed segmented logarithmic relationships between porosity
and depth during mechanical compaction, with larger grains
aiding in pore preservation. A 30% sand content in gravel
formed stable secondary structures optimizing pressure-
bearing capacity, while high heterobase content reduced
primary pores.

Ge et al. examined Niutitang shale gas across four
palaeouplifts in the Sichuan Basin, Southwest China, showing
that structural preservation, thermal maturation, and sedimentary
subfacies control enrichment and that thrust-nappe lower
plates and deepwater trough facies were recognized as prime
exploration targets.

Geochemistry

Lu et al. investigated Qiongzhusi Formation shale from three
wells in southern Sichuan Basin, Southwest China, by analyses
of lithofacies, mineralogy, TOC, trace elements, and isotopes.
They defined two depositional end-members in a fault-controlled,
moderately restricted setting: (1) organic-rich black shale formed
under anoxic-suboxic conditions during periods of low chemical
weathering, cold-arid climate, and high productivity; and (2)
organic-lean grey shale deposited under suboxic-oxic conditions
during periods of similarly low weathering intensity and aridity but
reduced productivity.

Gao et al. analyzed fine-grained floodplain deposits in the
Greater Green River Basin, southwesternWyoming, United States of
America. They used paleosol morphology, bulk organic δ13C, leaf-
wax δ13C and δD, and CIA-K–derived MAP to reconstruct LPEE
continental hydroclimate. They identified the PETM by a ∼4‰–5‰
negative carbon isotope excursion and a 30‰–50‰ leaf wax n-
alkanes δDn-alk increase. Paleosols indicate generally humid–warm
conditions with transient drying during the PETM, with pCO2 of
600–900 ppm reconstructed through the integration of δ13Corgwith
carbonate δ13C.

Wang et al. reconciled Qingshankou Formation mud/silt
stratigraphy in the southern Songliao Basin, Northwest China,
by linking gamma/density logs to astronomical cycles, and
developed a high-resolution, isochronous framework. They showed
that tectonics and orbital climate paced rhythmic sand–mud
progradation and proposed a “synchronous heterotopy” lake-delta
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model with overfilling strata lagging eccentricity peaks, whereas
balanced - filling strata coinciding with them.
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