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Geological processes are recorded in grain shape and geochemistry. However, 
grains are often described with minimal quantification. These descriptions are 
generally textual and can vary in their precision and accuracy. Historically, 
detailed studies of crystal size distribution have provided valuable insights into 
petrogenesis. A thorough analysis of numerous computable grain descriptors 
will offer even more significant information. Despite extensive literature on 
shape descriptors in fields like sedimentology, chemistry, and civil engineering, 
there is no consensus on their use, and their meanings often remain unclear. 
This article proposes a quantitative grain description method ranging from 
micrometers to centimeters using various image analysis techniques. Our 
approach consists of combining multiple quantitative descriptors to describe 
grain shape. This work is based on a comprehensive literature review across 
multiple scientific fields to extract numerous quantitative shape measurements. 
This paper focuses on roundness and roughness descriptors. A total of 
25 descriptors, including Waddell roundness and fractal dimension, were 
extracted, compiled, and computed using Python. The descriptor computation 
code is provided as a library with this article. We use principal component 
analysis (PCA) to combine all descriptors in the same category without 
losing clarity and validated our approach on both generated and real grain 
images. For both roundness and roughness descriptors, the generated images 
and real grain images results are in accordance and could be summarized 
as follows. 1) The roundness descriptors PCA effectively distinguish grain 
shapes, performing comparably to form descriptors. However, it struggles to 
differentiate high degrees of roundness, and roughness significantly influences 
these results. 2) The roughness descriptors PCA excels at discriminating 
roughness intensity, despite the influence of form and roundness. These 
results align with our previous study on form descriptors and lead us to 
a new understanding of shape description: shape description includes both 
large-scale phenomena (“form”) and small-scale phenomena (“roughness”). 
And roundness is a specific case of shape description where various shapes
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transition into a circle. This study highlights the potential of using PCA alongside 
image-based shape analysis to enhance the quantitative description of grains, 
offering valuable implications for volcanology, planetary sciences, petrology and 
other fields.

KEYWORDS

quantitative descriptors, shape discrimination, computer vision, statistical analysis, 
image processing, petrography 

1 Introduction

In Earth sciences, the textual description of mineral shapes often 
lacks quantification. The challenges of accurately analyzing mineral 
shapes have been recognized for decades, prompting numerous 
authors to improve precision by using visual charts (Folk, 1951; 
Goldstone, 1993; Murphy and Kemp, 1984). These charts continue to 
feature in scientific publications (Garzanti et al., 2015; Sandeep et al., 
2018). With the growing availability of grain images from advanced 
imaging systems and the application of segmentation techniques, 
isolating individual grains is now feasible (Banerjee et al., 2019; 
Chen et al., 2024; Latif et al., 2022; Zheng and Hryciw, 2016). 
Consequently, a quantitative analysis of grain shapes can be achieved 
using appropriate shape descriptors (Back et al., 2025).

Quantitative shape analysis is essential for automating 
the evaluation of large datasets and for markedly enhancing 
precision and reproducibility. This method enables the statistical 
examination of grain shapes in a manner similar to geochemical 
data analysis. Grain shape relates to mineral crystal structure 
and applies across various geological disciplines, including 
zircon shape classification for magma petrogenesis (Pupin, 1980; 
Scharf et al., 2022), sedimentology—where grain shape correlates 
with transport distance and medium (Diepenbroek et al., 1992; 
Garzanti et al., 2015; Huddart et al., 1998)—geotechnics—where 
grain shape affects soil properties (Altuhafi et al., 2016; Lu et al., 
2019)—and mineral extraction—where grain shape influences 
comminution (Buscarnera and Einav, 2021).

The analysis of object or particle shape is widely studied across 
various scientific fields. This study focuses on quantifying mineral 
grain shape at a micrometer to centimeter scale using image analysis 
techniques on 2D representations. Shape descriptions are most 
often conducted in 2D, e.g., petrological thin sections, metallurgical 
polished sections, and photography. Describing particles at a 
microscopic to macroscopic scale is crucial in multiple disciplines, 
including geology, materials science, metallurgy, agriculture, and 
chemistry, and has led to the development of a substantial body of 
literature. A wide array of quantitative shape descriptors has been 
developed and classified according to Barrett (1980) definition.

In a previous article (Back et al., 2025), the focus was on size, 
orientation, and form descriptors. Here, we evaluate roundness and 
roughness descriptors using a framework that quantifies the shape of 
mineral grains. The core objective of these articles is to move beyond 
the traditional challenge of evaluating descriptors in isolation. To do 
so, we systematically list, categorize, and study the numerous and 
often redundant descriptors, which, as highlighted in the literature 
(Hentschel and Page, 2003; Pirard, 2004), are known to produce 
same value for different shapes, complicating their independent 
use. To clarify their application, we propose a classification system 

based on the mathematical tool for each descriptor, or the specific 
geometric feature that it analyzes. Our methodology emphasizes 
integrating a reduced set of these functions using multivariate 
statistical tools, rather than seeking a single “ideal” descriptor. This 
approach effectively sidesteps the unresolved debate over “What 
are the best descriptors?” by demonstrating the interdependence of 
form, roundness, and roughness, showing the value of our combined 
approach over the pursuit of an individual “ideal” descriptor. The 
framework proposed in this article to test roundness and roughness 
descriptors is applied to both generated and actual grain images. 

2 Why quantitative petrography 
matters for petrology?

Nowadays, petrology relies heavily on geochemistry, which, 
being quantitative, allows for more rigorous demonstration and 
testing of models. Petrography relies more on textual description, 
which is poor in quantitative data. Therefore, adding quantitative 
data to petrography offers the possibility of making it as powerful 
a tool as geochemistry. To ensure clarity, it is essential to 
define the terms used in this study, as the literature lacks a 
consensus on terminology. While most authors agree with Barrett 
(1980) definition that shape comprises form, roundness, and 
roughness, naming these components present challenges. Here, 
“shape” refers to the general contour of the object, with size 
and orientation adding two more components, totaling five. This 
study will concentrate on roundness and roughness. The five shape 
components are crucial for describing minerals in petrography. 
Precise definitions and their broader implications for petrology 
are also important. The terminology, definitions, and petrological 
implications are as follows: 

1. Size, determined by the measurable dimensions of the 
shape, varies in value and interpretation based on the 
measurement method. Studies on crystal size provide 
insights into magmatic and metamorphic textures, revealing 
cooling rates, deformation rates, and element availability 
(Higgins, 2002; Marsh, 1988).

2. Orientation is defined by the direction of one of the shape’s 
axes relative to a reference point, though its value is influenced 
by the measurement method. Grain orientation is known 
for indicating flow direction in both water and lava, and it 
offers insights into deformation and its intensity (Nédélec and 
Bouchez, 2015; Shelton and Mack, 1970; Ventura et al., 1996).

3. Form refers to the polygon or ellipse that is closest to the 
grain shape. It can be linked to the crystallization sequence, 
as seen in cumulate textures where well-formed minerals 
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crystallize early in the process (Vernon and Collins, 2011). 
Additionally, variations in form within the same mineral, 
such as zircon, offer insights into magma petrogenesis 
(Pupin, 1980; Zheng et al., 2022).

4. Roundness, also referred to as angularity, describes the angles 
of the grain, ranging from acute edges to smooth curves. 
Extensively studied by sedimentologists (Diepenbroek et al., 
1992; Krumbein, 1941; Tafesse et al., 2013; Wentworth, 1919), 
it is a crucial parameter influencing the movement of clastic 
particles in water and offering insights into their travel 
distance or origin.

5. Roughness, also known as surface texture, details the 
outline features of the grain. It reflects various processes 
depending on the surrounding rock and context, such as rapid 
mineral growth leading to skeletal and dendritic crystals, 
or dissolution resulting in re-entrant formation (Hibbard, 
1994). For instance, the roughness observed in the shape of 
corundum-bearing Ca–Al-rich inclusions in chondrites may 
indicate different origins: condensation (rough and irregular) 
or melt crystallization (rounded inclusions with radiated 
corundum; Needham et al., 2017).

These examples demonstrate that an in-depth study of shape 
parameters can offer valuable insights for petrology, as seen in 
zircon form classification (Pupin, 1980). Quantitative measurements 
better capture subtle rock changes, as shown by crystal size 
distribution (CSD) results (Higgins, 2002; Marsh, 1988). Combining 
shape parameters with quantitative tools can reveal new textural 
indicators, enhancing our understanding of geological phenomena.

In this article, a “descriptor” refers to a method or formula used 
to describe a shape component. The descriptors used in this study 
are detailed in the “Roundness and roughness descriptors” section, 
with their formulas provided as a python library available on GitHub 
(see Data availability statement). All definitions are applied to the 2D 
representation of grains using image analysis techniques, which are 
widely available and more cost-effective than 3D methods. Typically, 
petrographic analyses are conducted in 2D before advancing to 
3D imaging. 

3 Roundness and roughness 
descriptors

This section summarizes the main results of an extensive 
literature review. The methodology is detailed in Back et al. (2025). 
The classification of a descriptor as either roundness or roughness 
is based on the original intention of the descriptor’s author or its 
common use. The subcategories, however, were created for this study 
and are based on the mathematical tool used or the specific aspect 
of the shape described by the descriptor group. 

3.1 Corner-focused roundness descriptors

The initial mathematical description of grain roundness 
involved the ratios of size measurements of the grain and one or 
more corners (Wadell, 1933; 1932; Wentworth, 1922; 1919). These 
equations approximate corner size using the diameter of a fitted 

circle (Figure 1A). Grain roundness is estimated by dividing the 
curvature diameter at the corner by the grain size. The number of 
corners measured and the choice of distance characterizing the grain 
vary among authors (Table 1). The curvature diameter–to–grain size 
ratios allow for comparing particle roundness across different sizes, 
e.g., a pebble and a boulder (Wadell, 1932).

These methods were initially designed for laboratory or field 
measurements relying on a caliper, ruler, or steel tape (Krumbein, 
1941; Wentworth, 1922). This explains why some methods are 
simplifications of existing procedures and rely on only one or 
two corners rather than all possible corners, given the time and 
complexity of data acquisition in field settings. It also highlights the 
challenges of implementing these methods in image analysis tools. 
It is difficult to understand the precise meaning of a corner. Wadell 
(1932) defines it as “every such part of the outline of an area 
(projection area) which has a radius of curvature equal to or less 
than the radius of curvature of the maximum inscribed circle of the 
same area.” Thus, all corners on the outline of a grain, including the 
smallest ones, could be considered. However, for a complex outline 
(rough grain), this would relate more to roughness than roundness. 
Therefore, a scaling problem remains. 

3.2 Roundness descriptors using a 
simplified grain contour

The following methods share a common approach: simplifying 
the original contour. The radius angularity index uses angular 
step analysis, the segment angularity index divides the shape into 
segments, the gradient angularity index uses every third point of the 
contour, and the smoothing angularity index applies approximation 
functions.

The radius angularity index is determined by the difference 
between the particle radius and the radius of the equivalent 
moment ellipse in several directions (Figure 1B). This difference 
is then normalized by the ellipse radius in each direction 
to avoid the influence of form on the angularity index (Al-
Rousan et al., 2007; Masad et al., 2001). The equivalent moment 
ellipse represents a perfectly rounded particle, and the difference 
with the original grain contour highlights its angularity.

The segment angularity index method divides the particle 
contour into an n-sided polygon of equal segments. The angle at 
each node is then determined, and the difference is calculated 
between the angle at the previous node and the current angle 
(Figure 1C). The frequency distribution of these angle differences 
is then calculated using 10° class intervals. Finally, roundness is the 
sum of the class probabilities multiplied by the lowest value in each 
class interval (Rao et al., 2002). The optimal number of segments 
is 24 for distinguishing crushed and uncrushed gravels (Tutumluer 
and Pan, 2008).

The gradient angularity index indicates that acute particle angles 
cause rapid changes in the orientation of the gradient vector for 
neighboring grain contour points, whereas rounded particles show 
the opposite behavior. The absolute gradient is calculated using 
Sobel mask convolution in the x- and y-directions. For roundness 
analysis, the gradient orientation is computed at edge points, and 
the differences between neighboring gradient angles are determined 
(Figure 1D). The total roundness values for all points in the particle 
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FIGURE 1
Illustration of the roundness and roughness descriptors: (A) corner-focused roundness descriptors; (B) radius angularity index; (C) segment angularity 
index; (D) gradient angularity index; (E) smoothing angularity index; (F) erosion–dilation ratio; (G) morphological fractal; (H) roughness descriptors 
using curvature properties; and (I) examples of wavelet decomposition.
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TABLE 1  Equations of the common corner-focused roundness 
descriptors.

Nomenclature 
appellation

Equation Reference

Wentworth roundness 19 Ds

Ls
Wentworth (1919)

Wentworth roundness 22 Ds

(L+I)/2
Wentworth (1922)

Wadell roundness
∑ Di

dins

N
Wadell (1932)

Cailleux roundness Ds

L
Cailleux (1942)

Kuenen roundness Ds

l
Kuenen (1956)

Lees roundness ∑(180− αi)
x

rins
Lees (1964)

Dobkins and Folk roundness Ds

dins
Dobkins and Folk (1970)

Swan roundness
Ds1+Ds2

2

dins
Swan (1974)

Ds is the curvature diameter of the sharpest corner; Ls is the longest axis passing through the 
sharpest corner; L and I are the long and intermediate axes, respectively; l is the axis at 90°
of L; Di is the curvature diameter of the ith corner; N is the number of corners of a particle, 
αi is the angle value of the ith corner; x is the distance between the inscribed circle center 
and the summit point of the corner; and dins is the maximum inscribed circle diameter.

corners are summed to obtain the gradient angularity index (Al-
Rousan et al., 2007; Chandan et al., 2004; Tafesse et al., 2013). It is 
advised to use every third edge point and discard angularity values 
below a 5° threshold to ensure that perfectly rounded objects have 
values close to 0 (Chandan et al., 2004).

The smoothing angularity index is obtained by generating two 
smoothing curves around the contour of the particle image. The first 
curve connects adjacent lateral midpoints of the polygon, whereas 
the second is formed by selecting every fifth point of intersection 
between the first curve and polygon (Figure 1E). The distance 
between the two curves is calculated using perpendicular segments 
at regular intervals. Roundness is defined as the standard deviation 
of the distances (Tafesse et al., 2013). 

3.3 Fourier descriptors

The final method for characterizing particle roundness uses 
Fourier analysis on grain contour curves. Two techniques derive 
the grain contour curve: the Rθ method and the xy method. The 
Rθ method plots the ratio of the mean diameter to the diameter as 
a function of θ (Bui et al., 1989; Wang et al., 2005) but is limited 
to convex shapes. The xy method generates separate x- and y-
coordinate curves as functions of θ, effectively handling the concave 
particles. Fourier analysis is then performed on the combined curves 
(Bowman et al., 2001; Caple et al., 2017).

Fourier analysis starts with a discrete Fourier transform 
applied to the grain contour curve, converting spatial information 
into frequency-domain data. Next, the power spectral density is 
computed to produce the frequency distribution of the boundary 
shape. Low-frequency components indicate form characteristics, 
whereas higher harmonics, up to an indeterminate threshold, reflect 
roundness. The highest harmonics describe the grain roughness 
using the same method.

However, the thresholds for differentiating form, roundness, 
and roughness are unclear, as most authors use varying definitions 
(Bowman et al., 2001; Bui et al., 1989; Ehrlich and Weinberg, 1970; 
Garzanti et al., 2015; Wang et al., 2005; Zhou et al., 2015). Fourier 
amplitudes can be normalized by the 0th harmonic amplitude 
to eliminate size effects and compare spectra of different shapes 
(Diepenbroek et al., 1992; Ehrlich and Weinberg, 1970). Some 
authors also normalize Fourier amplitudes by the first harmonic 
amplitude for similar reasons (Calderon De Anda et al., 2005). These 
factors contribute to the various definitions and equations of the 
Fourier descriptors. This study uses the thresholds and equations 
from Wang et al. (2005) for the combined Fourier descriptors 
(Equations 1–3).

f fr =
1
2

m=4

∑
m=1
[(

am

a0
)

2
+(

bm

a0
)

2
], (1)

frd =
1
2

m=25

∑
m=5
[(

am

a0
)

2
+(

bm

a0
)

2
], (2)

frg =
1
2

m=180

∑
m=26
[(

am

a0
)

2
+(

bm

a0
)

2
], (3)

where f fr, frd, and frg are respectively the Rθ Fourier form 1–4, 
the Rθ Fourier roundness 5–25, and the Rθ Fourier roughness 
26–180. a0 is the amplitude of the 0th harmonic, am is the amplitude 
corresponding to the genuine parts of the function, and bm is the 
amplitude corresponding to the imaginary parts of the function. 

3.4 Roughness descriptors based on 
morphological operations

The following descriptors use morphological operations—
dilation and erosion—to quantify grain roughness. The simplest 
morphological descriptor compares the original grain area with its 
area after several iterations of erosion followed by dilation (Al-
Rousan et al., 2007; Maroof et al., 2020; Moaveni et al., 2014; 
Moaveni et al., 2013; Tutumluer and Pan, 2008). These operations 
smooth the grain outline, resulting in a greater difference for 
very angular grains before and after the morphological processes 
(Figure 1F). The recommended parameters are 20 cycles of erosion 
followed by dilation Pan and Tutumluer (2007) using a 3 × 3 
matrix [Masad et al., 2000 for aggregate grains (Equation 4)]. This 
descriptor characterizes the angularity in low-resolution images and 
roughness in higher-resolution images (Masad and Button, 2000).

A−Aed

A
× 100, (4)

where A is the grain area, and Aed is the grain area after the 
erosion–dilation operations.

The morphological fractal method calculates the fractal behavior 
of the area resulting from the difference between a grain after n
dilation and n erosion events (Figure 1G). This process involves 
creating a log–log plot of the effective width of the area difference 
(Δw) versus the number of erosion and dilation cycles. The 
descriptor value is the slope of the fitted linear regression, as 
performed for the fractal-dimension calculation methods presented 
below. High slope values indicate very irregular grains (Al-
Rousan et al., 2007; Masad et al., 2000). 
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3.5 Roughness descriptors using curvature 
properties

This roughness descriptor approach analyzes roughness by 
utilizing the convex or concave properties of a grain’s contour curve. 
Convexity is one of the most commonly used roughness descriptors 
in the literature.

Convexity is the ratio of a grain parameter to its convex hull 
equivalent (rubber band analogy). Numerous formulas exist in the 
literature, with some authors using the root or squared results (Kuo 
and Freeman, 2000; Liang and Yang, 2023) or area instead of the 
grain perimeter (Cox and Budhu, 2008; Huo et al., 2016). However, 
the principle remains the same: the properties of the grain are 
compared with those of its convex hull (Figure 1H).

The vertex concavity indicates the proportion of vertices angles 
less than 0° (Figure 1H). Completely convex shapes do not have 
negative angles. A high vertex concavity value signifies a greater 
degree of indentation (Heilbronner and Keulen, 2006). 

3.6 Advanced mathematical roughness 
descriptors

The fractal dimension measures grain changes as a function of 
scale, showing that grains appear more irregular and detailed as 
the scale of observation decreases. This method provides a scale-
invariant measure of roughness. Several methods exist to obtain 
the fractal dimension, such as the perimeter–area method, which is 
commonly used in geology (Cheng, 1995; Florio et al., 2019; Hyslip 
and Vallejo, 1997; Maroof et al., 2020; Moore and Donaldson, 1995) 
and the box-counting method, which is prevalent in image analysis 
(Asvestas et al., 1999; Lashgari et al., 2015). We focus on these two 
methods, given their widespread acceptance in the literature and 
their relevance to the topic. Both methods are similar and determine 
the fractal dimension by using the slope of a linear regression on a 
log–log plot, which compares either perimeter to area or the number 
of pixels in a shape to pixel size at different scales.

Wavelet analysis is also used to determine grain roughness 
from 2D images. This method involves convolving a specific 
function, called a wavelet, at various resolutions. Wavelet 
functions are well represented in both the spatial and frequency 
domains (Mallat, 1989), whereas Fourier-transformed functions 
are well represented only in the frequency domain. Several 
types of wavelet functions exist, each yielding different 
transformation results (Guo et al., 2022).

A one-level wavelet transformation of an image produces four 
detailed images: low-low (LL), high-low (HL), low-high (LH), 
and high-high (HH; Figure 1I). The LL image represents low-
frequency components and captures coarse details of the texture 
of the image. The HL image captures high-frequency components 
in the horizontal direction, the LH image captures them in the 
vertical direction, and the HH image captures them in the diagonal 
(45°) direction. This transformation can be repeated multiple times, 
using the LL image from each iteration for further decomposition 
(Chandan et al., 2004; Mallat, 1989).

From the transformed images, we can compute various features 
to characterize the signal, such as energy, entropy, mean, standard 
deviation, and contrast. These features can be extracted from each 

image, either independently or in combination. If the directional 
components are irrelevant to the studied texture, all high-frequency 
images (HL, LH, and HH) can be treated as one (Al-Rousan et al., 
2007; Chandan et al., 2004). To describe grain texture, the energy of 
the combined high-frequency images from the 6th decomposition 
level has proven to be optimal, with Daubechies 9/7 as the selected 
wavelet decomposition function (Chandan et al., 2004). 

4 Classification

The following classification groups roundness and roughness 
descriptors by type (Table 2). We define types according to 
mathematical approaches (e.g., morphological, Fourier analysis) or 
focus (e.g., corner-focus, contour simplification). Corner-focused 
descriptors have been renamed according to their authors and 
publication dates when necessary. Additionally, the Ω method 
introduced by Heilbronner and Keulen (2006) is now called “vertex 
concavity” to better convey its analytical purpose.

For descriptors using Fourier analysis, information about the 
extraction method of the grain contour (Rθ or elliptic) should be 
provided, and the name should include the range of harmonics used 
for clarity (e.g., Rθ Fourier roundness 5–25 combined). When using 
wavelet texture analysis, one should consistently include the wavelet 
decomposition function, decomposition level, images, and image 
descriptors, as changes in these parameters can significantly alter the 
meaning and value of the wavelet descriptor. 

5 Methodology

Given the extensive literature on quantitative shape descriptors 
and the diverse mathematical approaches used by each descriptor 
or group to quantify grain shape, it is important to note that each 
descriptor highlights specific aspects of the targeted information. 
Although no single descriptor is ideal, the goal is to identify the 
most suitable ones for a given study. Selecting relevant descriptors 
and analyzing their parameters reveals the physical properties 
that influence grain shape. The first step involves compiling a 
comprehensive inventory of quantitative descriptors. 

5.1 Article selection

We used statistical tools to navigate the abundant literature 
and select articles. Our database was drawn from a Scopus query 
that yielded 2,127 papers. VOSviewer software visualized the 
bibliometric network (van Eck and Waltman, 2010). A citation-per-
document mapping approach facilitated graph construction, and 
we labeled articles with primary authors’ names and publication 
years. Interconnections illustrating cross-referencing were depicted 
as links within the graph. This process allowed us to eliminate 
articles that were not connected to the bibliographic network and 
group them using the software clustering options. From the 24 
groups obtained from 274 linked articles, we selected two to four 
articles on the basis of citations and publication years to provide an 
overview of early contributions to recent ones. The detailed article 
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TABLE 2  Nomenclature for two-dimensional roundness and roughness 
descriptors.

Grain aspect Descriptor type Descriptor name

Roundness

Corner-focused

Wentworth roundness 19

Wentworth roundness 22

Wadell roundness

Cailleux roundness

Kuenen roundness

Lees roundness

Dobkins and Folk roundness

Swan roundness

Contour simplified

Radius angularity index

Segment angularity index

Gradient angularity index

Smoothing angularity index

Fourier analysis Rθ Fourier roundness

Roughness

Fourier analysis Rθ Fourier roughness

Morphological
Erosion–dilation ratio

Morphological fractal

Curvature
Convexity

Vertex concavity

Fractal analysis
Area–perimeter dimension

Box-counting dimension

Wavelet analysis Wavelet texture

selection methodology used in this article is the same as in Back et al. 
(2025), where it is explained in greater depth. 

5.2 Image generation and PCA training and 
testing data

Crystals exhibit a limited range of lattice structures, constraining 
their three-dimensional forms, which can be approximated as 
ideal polygons in two dimensions. To explore shape variability, 
we generated binary images of 13 geometrically ideal shapes with 
controlled parameters to maintain a grain-like appearance. The ideal 
shapes included: circle, triangle, square, rectangle, ellipse, pentagon, 
hexagon, heptagon, octagon, nonagon, decagon, hendecagon, and 
dodecagon. Shape sizes ranged from 300 to 600 pixels on the basis 
of prior segmentation data (Back et al., 2023), and orientations were 
randomized to avoid bias. Roundness was adjusted using Minkowski 

summation with a disk kernel, whereas roughness was modeled with 
Perlin noise to mimic natural grain complexity (Al Ibrahim et al., 
2019; Back et al., 2025; Michot-Roberto et al., 2021; Perlin, 1985). 
Roundness ranges from 0 to 6 in increments of 0.6, and roughness 
ranges from 0 to 1.2 in increments of 0.12, with the number of 
octaves fixed at 12. This setup ensures a standardized scale of 10 for 
both roundness and roughness. These parameters are subjectively 
constrained to maintain the visual resemblance to a grain (Figure 2).

Tests 1, 2, 3, 4 and 5 are the same datasets as those in Back et al. 
(2025), and tests 4.1, 4.2, 2.1, and 2.2 (Figure 2) have been added to 
create a more gradual evolution in both roundness and roughness for 
the PCA training datasets. Test 1 has been added into tests 4 through 
5 and tests 2 through 3, forming the training datasets for roundness 
and roughness respectively. This creates scales of 0, 2, 5, 7, and 10 out 
of 10 for both parameters. Tests 6 through 7 were added to examine 
the interaction between roundness and roughness (Figure 2). The 
effect of form is present in the training and testing datasets, as the 13 
forms are present within each test. For visualization purposes only 
rectangle images are shown in Figure 2. Each test consisted of 3,900 
images or 300 images per ideal shape (triangle to dodecagon). Thus, 
we obtained 19,500 training images for roundness and roughness 
and 15,600 test images, for a total of 50,700 images (3,900 images of 
test 1 are present in both training dataset). 

5.3 Descriptor computation

Traditional corner-focused roundness descriptor methods were 
designed for manual measurements. This feature creates a scaling 
problem in image analysis because of the imprecise definition of 
corners (see Section 2.1). To address this issue, we developed a new 
procedure and created a corresponding function named extract_
corner_metrics which applies the Ramer–Douglas–Peucker (RDP) 
algorithm to retain only the most significant corners (Douglas 
and Peucker, 1973). By reducing the impact of roughness and 
preserving essential shape points, this function specializes in 
extracting geometric features from the contours of objects in binary 
images, offering robust and precise measurements. The function 
focuses on morphology and orientation and computes all necessary 
measurements for the corner-focused roundness descriptors, as 
detailed in Table 1.

Two differences from the traditional corner-focused roundness 
descriptor methods should be noted: 1) as the intermediate axis used 
in Wentworth roundness 22 is unavailable in a 2D image, we used 
Feret’s mean diameter; and 2) corner diameters are computed as the 
inscribed circle diameter from the triangle formed by the corner 
instead of the radius of curvature. The diameter of the inscribed 
circle is inversely proportional to the radius of curvature of the 
corner, making it applicable to highly angular particles (ideal shapes) 
lacking curvature, where fitting a circle for curvature measurement 
is impossible.

For roundness and roughness descriptors using image analysis 
techniques, we developed Python modules, as their code was 
unavailable in Python or even not at all. These modules are designed 
to reproduce the descriptors as accurately as possible, utilizing the 
recommended parameters from the original studies as highlighted 
in the descriptor bibliography. To ensure reproducibility, these 
modules are available on our GitHub page (see Data availability 
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FIGURE 2
Examples of rectangle images generated and their associated parameters, showing the roundness training dataset (blue), the roughness training 
dataset (red), and the testing dataset (green), the newly generated datasets are underlined, the roughness value indicates the Perlin noise intensity and 
roundness the buffer value.

statement). All parameters used for computing descriptors are 
default parameters within the Python library. For wavelet texture, we 
applied the same computation method (energy of combined high-
frequency images from the 6th decomposition level); however, the 
Daubechies 9/7 function was unavailable in the PyWavelets library. 
Instead, we used the Bior 4.4 function, with the only difference being 
the coefficients normalization.

Using these modules, we could then compute the 13 roundness 
descriptors: radius angularity index, segment angularity index, 
gradient angularity index, Rθ Fourier roundness 5–25 combined, 
Wentworth roundness 19, Wentworth roundness 22, Cailleux 
roundness, Kuenen roundness, Dobkins and Folk roundness, Swan 
roundness, Lees roundness, Wadell roundness; and 12 roughness 
descriptors: erosion–dilation ratio, vertex concavity, wavelet texture, 
box-counting fractal, morphological fractal, area–perimeter fractal, 
Rθ Fourier roughness 26–180 combined, area convexity, area 
convexity percentage, perimeter convexity, perimeter convexity 
percentage, and RSD Feret. RSD Feret is the relative standard 
deviation of Feret measurements made with an angular step of 2°.

During the descriptor computation on generated images, some 
errors occurred with a total number of 28 errors for 50,700 images 
(<0.06%) involving only two descriptors. Errors for the Fourier 
methods and the radius angularity index arose from multiple 
contour points at the same angle instead of one, particularly in 
highly convex images such as grain 330 (Figure 9B). The Rθ Fourier 
roughness 26–180 shows one error in test 3 and the smoothing 
angularity index shows 27 errors with: 17 in test 1, 8 in test 4 and 
2 in test 5. It results in empty cells within the datasets. During the 
descriptor computation on galena images, errors occurred with a 

total number of 144 errors for 580 images involving four descriptors. 
However, the smoothing angularity index encountered 139 out of 
the 144 errors (∼96%), the Rθ Fourier roundness 5–25 combined 
encountered 2 errors, the Rθ Fourier roughness 26–180 combined 
encountered 2 errors and the radius angularity index encountered 1 
error. For the smoothing angularity index, all errors stemmed from 
the absence of intersection points, resulting from downsampling 
contour points, and the challenge of fitting a curve to complex 
grain contours. 

5.4 Descriptor tests

Several authors have noted that individual descriptors, despite 
targeting the same shape aspects, such as roughness or form, 
have limitations and do not fully capture the phenomenon (Al-
Rousan et al., 2007; Hentschel and Page, 2003; Tafesse et al., 2013). To 
address this issue, Hentschel and Page (2003) proposed combining 
descriptors. In this study, we use PCA to identify the most effective 
combination of descriptors. A key advantage of PCA over other 
unsupervised learning methods is the interpretability of its results, 
which allows for the identification of descriptors that explain the 
principal axes, thereby facilitating the creation of a community-
usable index. This approach has yielded good results for form 
descriptors (Back et al., 2025) and in sediment grain analysis using 
Fourier amplitude (Suzuki et al., 2015).

The same methodology applies to roundness and roughness 
descriptors. With only 13 roundness and 12 roughness descriptors, 
a preliminary PCA for feature reduction is unnecessary, which 
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differs from form descriptors (Back et al., 2025). We extracted 
descriptors from the training and testing dataset images. The 
training and testing data were scaled using Equation 5. Missing 
values because of computation errors were filled using the best-
correlated descriptor column and a linear equation. For example, 
missing smoothing angularity index values are extrapolated using 
the Rθ Fourier roundness 5–25 combined. PCA was then performed 
on the scaled training data, and the scaled testing data, which 
were not involved in the PCA axis analysis, were projected at the 
end of the training into the PCA domain. Given the presence 
of 13 different ideal shapes in all datasets and the testing data 
featuring both roundness and roughness, we assessed the impact 
of form and roughness on roundness descriptors. Conversely, 
we also evaluated how form and roundness influence roughness
descriptors.

z = x−m
σ
, (5)

where x is the number to be scaled, m is the sample mean, and σ is 
the standard deviation of the sample.

To validate the method’s real-world applicability, we used 
the same galena grain image dataset as used in Back et al. 
(2025). Galena grain images were captured from glacial sediments 
following Back et al. (2023) protocol, with a consistent setup, 
except for using transmitted light and an exposure time of 
364.2 µs. Transmitted light images of opaque minerals provide 
clear grain outlines, simplifying segmentation. The segmentation 
process involved converting images to grayscale, applying a pixel 
intensity threshold, using opening and closing operations to remove 
anomalous pixels, and extracting grain contours with OpenCV’s 
findContours method. The contours were filled with white, and the 
background was black, saving the result as a binary image. Some 
contours were manually removed because of acquisition artifacts 
from the Olympus Stream® software and issues with touching 
grains. However, we intentionally retained a few images with these 
artifacts to assess their effect on the approach, while avoiding an 
overly large cluster of anomalous images.

We used 580 galena grain images for training and 4 for 
testing. Because of the many missing values for the smoothing 
angularity index (139 out of 580), this descriptor was excluded 
from the roundness PCA, resulting in 12 descriptors for both 
roundness and roughness. We then applied the same methodology 
used for the generated images: 1) filling and scaling the dataset; 
2) applying PCA on the learning dataset; and 3) projecting the 
scaled testing data into the PCA domain for both roundness and
roughness.

To summarize the methodology of this study, we extracted the 
descriptors from both generated and real grain images and then 
separated these into training and testing datasets. We applied two 
distinct PCAs: one to the generated images training dataset and 
another to the real grain images training dataset. To assess the 
method’s reproducibility, we transformed both testing datasets into 
their respective PCA domains. This methodology was applied to 
both roundness and roughness descriptors, resulting in a total of four 
distinct PCAs. 

6 Results

6.1 Roundness PCA

The roundness PCA, using the combined 13 roundness 
descriptors on the generated images, explained 80.6% of the variance 
using the first (PC1, 64.7%) and second (PC2, 15.9%) principal 
components. The role of each roundness descriptor in PC1 is evenly 
distributed, with coefficients varying from 0.241 to 0.340, except for 
the segment angularity index (0.179), the gradient angularity index 
(0.069), and Lees roundness (0.113). However, these descriptors play 
a significant role in PC2 with coefficients 0.514, −0.229, and −0.385, 
respectively (Table 3).

The roundness PCA, using 12 roundness descriptors combined 
on galena images, explained 75.8% of the variance using PC1 
(52.7%), PC2 (12.8%), and PC3 (10.3%). The corner-focused 
roundness descriptors play the most influential role in the PC1 
distribution, except for Lees roundness with a coefficient of −0.024. 
In PC2, the key descriptors are the radius angularity index (0.647), 
the segment angularity index (0.265), and the Rθ Fourier roundness 
5–25 combined (0.691). Finally, for PC3, the most influential 
coefficients are the radius angularity index (−0.330), the segment 
angularity index (0.474), the gradient angularity index (0.426), the 
Waddell roundness (0.302), and Lees roundness (0.596) (Table 3). 
For both roundness PCAs, each descriptor plays an influential role 
in at least one principal component.

Figure 3 shows the roundness PCA results from the generated 
images. In Figure 3A, all ideal shapes are represented. PC1 effectively 
discriminates shapes with no roundness, with high-order polygons 
and circles appearing between 0 and −2, and the number of sides 
decreases to triangles at PC1 values around 15. PC2 organizes ideal 
shapes with no roundness into three overlapping groups: triangles 
(high values, 5–12.5), ellipses (including circles) and high-order 
polygons (around 0), and rectangles (including squares) ranging 
from −5 to 2.5. Overlapping within each group results from the 
spread for the same ideal shapes; for the same shape, lower values 
indicate minimal elongation, and higher values indicate greater 
elongation, as highlighted by the gray arrows in Figure 3A. Ideal 
shapes with increasing roundness intensity converge toward the 
circle group position, making it impossible to discern intensities 
beyond 1.2. Figures 3B,C, which illustrates one type of ideal shape 
for visualization purposes, supports this observation. PC1 and PC2 
together cannot distinguish intensities greater than 1.2 (or 2/10) 
despite a clear difference in roundness among the generated images 
forming the third cluster (Figures 3B,C).

Figures 4A–C demonstrate the effect of roughness on roundness 
descriptors by incorporating testing data into the roundness 
PCA plots. The testing data exhibit an equivalent increase in 
both simulated roughness and roundness intensity, with values 
matching those in the training data. For the roundness training 
data, roundness intensity increases as PC1 values decrease from 
15 to −2. Conversely, in the testing data, both roundness and 
roughness intensity increase as PC1 values pass from −1 to 5, 
maintaining consistent roundness intensity values. In Figures 4B,C, 
images numbered iv (triangle and hexagon) represent the testing 
data at maximum roundness and roughness. Their group’s footprint 
overlaps the zone containing ideal shapes from hexagons to 
octagons, all with no roundness (Figures 3A, 4) despite having a 
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TABLE 3  Principal component analysis loadings for the roundness PCA on the generated and galena images.

Descriptors Generated images Galena images

PC1 PC1 PC1 PC2 PC3

Radius angularity index 0.241 0.352 −0.016 0.647 −0.330

Segment angularity index 0.179 0.514 0.020 0.265 0.474

Gradient angularity index 0.069 −0.229 −0.146 0.053 0.426

Smoothing angularity index 0.238 0.373

Rθ Fourier roundness 5–25 combined 0.264 0.337 −0.032 0.691 0.041

Wentworth roundness 19 0.329 −0.161 0.391 −0.004 −0.015

Wentworth roundness 22 0.334 −0.134 0.394 0.009 −0.022

Wadell roundness 0.324 −0.174 0.270 −0.026 0.302

Cailleux roundness 0.329 −0.164 0.393 −0.007 −0.011

Kuenen roundness 0.340 0.060 0.375 0.136 −0.129

Lees roundness 0.113 −0.385 −0.024 0.107 0.596

Dobkins and Folk roundness 0.329 −0.160 0.394 −0.006 −0.013

Swan roundness 0.330 −0.166 0.381 −0.007 0.141

The loadings have been rounded to the nearest thousandth. A color map highlights the positive (red) or negative (blue) effects of each descriptor on the principal components, with a more 
intense color reflecting higher values.

distinctive angularity based on visual inspection (Figure 4B image 
number iv; Figure 4C: image numbers i and iv).

Figure 5 shows the evolution of the roundness parameter values 
for a generated roundness between 3 and 6 using the training 
dataset. Roundness descriptor values tend to become less spread 
as roundness intensity increases; however, they overlap. The radius 
angularity index and the Rθ Fourier roundness 5–25 combined 
can differentiate roundness intensities but only for similar shapes. 
Additionally, rectangles at a high roundness intensity tend to be 
considered outliers among corner-focused descriptors, the gradient 
angularity index and the segment angularity index.

Figure 6A presents two distinct trends for galena grains, 
indicating that the images are well discriminated according to the 
roundness descriptors. The first trend along PC1 shows high values 
for stubby, very angular rectangular grains, almost perfect galena 
crystals (n° 4 and 316), transitioning to smooth rounded grains (n°
548 and 198) with low values. The second trend along PC2 displays 
elongated, angular rectangular grains (n° 102, 632, and 449) with 
high values, transitioning to smooth rounded grains with low values 
(n° 548 and 198), mirroring the PC1 trend. These results correspond 
with the testing data images: grain 391 is near grain 632 in the 
elongated trend, grain 494 is between the two trends (rectangular 
subangular), and grain 263 is on the stubby trend but lacks sufficient 
roundness to be near grain 198. Finally, grain 101 is close to rounded 
grains 198 and 548. Figure 6B shows PC3, which sorts grains from 
smooth surface grains (n° 22) to coarse grains (n° 391 being slightly 
rougher) to rough (n° 468) and very rough grains (n° 201).

6.2 Roughness PCA

The roughness PCA, using the combined 12 roughness 
descriptors on the generated images, explained 72.3% of the 
variance—PC1 (52.7%) and PC2 (19.6%). PC1 is primarily driven 
by roughness descriptors using curvature properties (area convexity, 
area convexity percentage, perimeter convexity, perimeter convexity 
percentage, and vertex concavity) and the erosion–dilation ratio, 
with loading values ranging from 0.338 to 0.387. PC2 is influenced 
by the remaining descriptors, with the morphological fractal having 
a high positive loading of 0.360. In contrast, the box-counting 
fractal and area–perimeter fractal have high negative loadings of 
−0.414 and −0.480, respectively. The wavelet texture also exhibits 
a high negative loading value of −0.428. The relative standard 
deviation of the Feret measurements (RSD Feret) has a high positive 
loading of 0.364. The combined Rθ Fourier roughness 26–180 
plays a similar role in both PCs, with loadings of 0.258 and 0.198, 
respectively (Table 4).

The roughness PCA, using the combined 12 roughness 
descriptors on galena images, explained 70.6% of the variance—PC1 
(38.2%), PC2 (19.5%) and PC3 (12.9%). All roughness descriptors 
significantly influence the PC1 distribution, except for the RSD Feret 
and the morphological fractal, which have coefficients of 0.127 
and 0.025, respectively. PC2 shows high positive loadings for 
the perimeter convexity (0.440), perimeter convexity percentage 
(0.446), box-counting fractal (0.463), and wavelet texture (0.460). 
Additionally, the erosion–dilation ratio has a relatively high 
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FIGURE 3
Roundness PCA plots showing the training data; (A) all ideal shapes are represented; (B) triangles and (C) hexagons; the blue scale represents the 
roundness intensity applied to the generated images, and the numbering (i, ii, and iii) refers to the shape clusters visible on B and C alongside their 
associated images.

negative loading of −0.326. PC3 is primarily driven by the 
morphological fractal with a very high negative loading of −0.598, 
along with a moderate negative loading value for RSD Feret 
(−0.385) and a moderate positive value for the area–perimeter 
fractal (0.344; Table 4).

Figures 7A–C demonstrate the strong ability of PCA to 
discriminate between different roughness intensities using PC1 
and PC2, despite the presence of ideal shapes in the dataset. 
However, PC1 is influenced by form at low roughness intensities 
and cannot accurately distinguish between roughness levels of 
0.00 and 0.12. PC2 is more sensitive to form, as indicated by the 
gray arrow in Figure 7A, across all roughness intensities.

Figures 8A–C demonstrate the robustness of the roughness 
PCA method. Despite the presence of ideal shapes in both the 
training and testing datasets and the addition of roundness in 

the testing dataset, the method effectively discriminates between 
different roughness intensities. However, for equivalent roughness 
intensities, an offset is observed between the training and testing 
data, with the training data appearing with slightly higher values 
(positioned more to the right) on the PC1 axis. Additionally, the 
testing data exhibits a smaller form dispersion than that of the 
training data (Figures 7A, 8A).

Figures 9A,B present the three PCs of the roughness PCA on 
galena grain images using the 12 roughness descriptors. PC1 sorts 
grains by roughness from perfectly smooth (n° 419) to textured (n°
101 and 263), coarse (n° 332 and 494), rough (n° 156 and 391), 
and very rough (n °575) grains. PC2 classifies grains by area, as 
indicated by the color of the training data points. This pattern aligns 
with the roughness PCA loading values, highlighting perimeter 
convexity, perimeter convexity percentage, box-counting fractal, 

Frontiers in Earth Science 11 frontiersin.org

https://doi.org/10.3389/feart.2025.1634237
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Back et al. 10.3389/feart.2025.1634237

FIGURE 4
Roundness PCA plots showing the training data (color zones) and the testing data (scatter data); (A) all ideal shapes are represented (B) triangles and (C)
hexagons; the blue scale represents the roundness intensity, and the green scale represents the roundness and roughness intensities applied to the 
generated images.

and wavelet texture, as the last two methods rely on image scaling 
for computation. Figure 5B shows that PC3 sorts grains by form 
and roundness, from low values with angular rectangular elongated 
grains (n° 412, 50, and 101) to round and subrounded rectangular 
grains (n° 263 and 494) and finally to stubby rectangular grains (n°
56 and 300).

However, some grains, such as 352 and 391, appear visually 
less rough than their graph values suggest. This discrepancy arises 
from artifacts on the grain outlines caused by a combination of 
acquisition and segmentation issues, as highlighted in Figure 9B for 
grains 352 and 330; other grains with anomalies are shown in red. 
These artifacts also affect PC2 and PC3 (Figures 9A,B). The same 
grains with artifacts are highlighted in Figures 8A,B. Despite these 
issues, none of the principal components of the roundness PCA are 
affected. PC3, which tends to sort grains by roughness, classifies 

them as would be expected upon visual analysis (e.g., grains 391, 
352, 553, 252, and then 330).

Interactive graphs displaying the PCA plots of galena grains, 
along with their corresponding images, are available at https://
pca-grain-shapes.onrender.com. The loading of the webpage may 
take a while. 

7 Discussion

This study evaluates roundness and roughness descriptors using 
a framework to quantify the shape of mineral grains. The framework 
combines image-based descriptors using PCA and can be easily 
adapted to various 2D images and objects. All descriptors are 
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FIGURE 5
Boxplot showing the evolution of the roundness parameters (y-axis) as a function of the generated roundness (x-axis) for the entire ideal shape 
population (blue), rectangles (green), and hexagons (red). The median is represented by a purple horizontal line, and for illustration purposes, the 
outliers are not shown.

available as a Python library on GitHub (see Data availability 
statement). 

7.1 Methodology

For the methods discussed above, we applied the optimal 
parameters identified in the original studies when available (Al-
Rousan et al., 2007; Masad et al., 2000; Pan and Tutumluer, 2007; 
Rao et al., 2002; Tutumluer and Pan, 2008). However, these methods 
target specific applications, such as describing aggregate shape 
properties in civil engineering (Masad et al., 2000). Consequently, 
the image and sample types in this study differ from those in previous 
work, suggesting that the parameters considered optimal in those 
studies may not be directly applicable without some adaptation. The 
methodology proposed in this article is highly adaptable, as it only 

requires a 2D binary image. However, depending on the specific 
study requirements, fine-tuning of the function’s parameters may be 
necessary. Regarding the application to 3D images, the method could 
be adapted in two ways: either by incorporating the third dimension 
into the descriptor functions, or by treating the 3D image as a stack 
of 2D images, computing the descriptors for each frame, and then 
using the most appropriate statistical feature to represent the descriptor 
value of the stacked images. 

Modifying the calculation of the inscribed circle diameter of the 
triangle formed by the corners, rather than the curvature diameter, 
enhances the generalization of corner-focused descriptors. This 
approach can compute roundness for highly angular shapes, such 
as the ideal shapes in the training data. For shapes with high 
roundness intensities, the curvature diameter may offer greater
sensitivity.
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FIGURE 6
Roundness PCA plots obtained with galena grain images for the three principal components; (A) PC1 against PC2 and (B) PC1 against PC3; the color of 
the training data points represents the diameter elongation of the grain.

For Fourier descriptors, we selected one method with its 
associated threshold (Wang et al., 2005). However, existing 
studies present various methods, each with its own thresholds, 
to separate harmonics related to form, roughness, and roundness 
(Bowman et al., 2001; Bui et al., 1989; Zhou et al., 2015). 
Some approaches compute roundness by subtracting the particle 
spectrum from the equivalent moment ellipse and avoiding 
arbitrary thresholds (Diepenbroek et al., 1992). These alternative 
methods may provide valuable insights and could enhance the 
framework by being incorporated through adaptations to the Python 
functions included in this study. This method could also use the 
elliptic Fourier method (xy), rather than the Rθ method, to avoid 
errors with highly convex objects.

Regarding the roughness descriptors using wavelet 
decomposition, to our knowledge, only the Daubechies 9/7 function 
has been applied (Al-Rousan et al., 2007; Chandan et al., 2004), and 
we used the closest possible function (Bior 4.4 in the PyWavelets 
library). However, there is a wide variety of wavelet functions, 
each producing a different transformation result (Guo et al., 2022). 
Future studies should explore how different wavelet decomposition 
functions highlight specific image features and their connections 
to petrographic characteristics, such as inclusions or fractures. 
Additionally, wavelet analysis was applied directly to the 2D binary 
images rather than to their contours, which represent a 1D signal. 
Finally, the roughness descriptor developed by Chandan et al. (2004) 
describes grayscale images of aggregates rather than binary images.
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TABLE 4  Principal component analysis loadings for the roughness PCA on the generated and galena images.

Descriptors Generated images Galena images

PC1 PC2 PC1 PC2 PC3

RSD Feret 0.118 0.364 0.127 −0.033 −0.385

Area convexity 0.387 −0.070 0.420 0.093 −0.122

Area convexity percentage 0.387 −0.070 0.420 0.093 −0.122

Perimeter convexity 0.364 −0.216 0.275 0.440 0.234

Perimeter convexity percentage 0.366 −0.215 0.277 0.446 0.211

Vertex concavity 0.338 −0.050 0.326 0.006 0.048

Rθ Fourier roughness 26–180 combined 0.258 0.198 0.344 0.070 −0.178

Erosion–dilation ratio 0.357 0.100 0.318 −0.326 0.172

Morphological fractal 0.232 0.360 0.025 −0.154 −0.598

Box-counting fractal −0.209 −0.414 −0.272 0.463 −0.209

Area–perimeter fractal 0.061 −0.480 −0.235 0.169 0.344

Wavelet texture 0.100 −0.428 −0.156 0.460 −0.374

The loadings have been rounded to the nearest thousandth. A color map highlights the positive (red) or negative (blue) effect of each descriptor on the principal components, with a more 
intense color reflecting higher values.

7.2 Results

In the roundness PCA, the roundness descriptors effectively 
distinguish between ideal shapes, performing comparably to 
form descriptors when no roughness is applied (Figure 3A; 
Back et al., 2025). This could be because adding sides to a 
shape, transitioning from a triangle to a dodecagon, registers as 
an increase in roundness. Adding infinitely many sides to an 
ideal shape progressively makes it resemble a circle. However, 
the roundness PCA struggles to differentiate varying roundness 
intensities, regardless of shape. Beyond a roundness intensity of 
1.2 (2/10), PCA fails to distinguish between degrees of roundness, 
although visual differences are apparent. The difficulty of PCA 
in differentiating roundness intensities stems from overlapping 
descriptor values at high roundness intensities (Figure 5). Still, a 
more effective roundness discrimination is likely to occur when 
there are fewer roundness values, such as between 4 and 6, as 
separation is relative to the training data. When the roughness 
simulation is applied to rounded ideal shapes with increasing 
intensity, the capability of the roundness PCA to discriminate 
between roundness and form significantly decreases, and the trend 
reverses. Despite the increased number of sides, rough shapes 
deviate further from the circle position (Figure 4). Roundness PCA 
results for galena images align with these observations, as PC1 
and PC2 effectively describe the form and roundness of the galena 
grain population, showing two trends from elongated, angular 
rectangular grains and stubby angular rectangular grains to smooth 
rounded grains (Figure 6A). PC3 records the population’s roughness
(Figure 6B).

Conversely, the roughness PCA excels at discriminating 
roughness intensity, despite including 13 ideal shapes in both the 
training and testing datasets, along with roundness in the testing 
data. The ideal shapes, simulating form effects, cause data dispersion 
but minimally affect the roughness intensity discrimination 
(Figure 7). Form dispersion is confirmed by testing data, which 
show increased roundness and roughness intensity. With roundness 
applied, the ideal shapes become more similar, leading to a marked 
decrease in the data dispersion (Figure 8). The roughness PCA 
results for galena images further support these findings. PC1 sorts 
the galena grains by roughness with high sensitivity, PC2 sorts 
by area, and PC3 sorts by form and roundness, albeit with less 
sensitivity than the roundness PCA. Although roughness PCA 
is minimally affected by form and roundness, it is significantly 
influenced by acquisition and segmentation artifacts, in contrast 
to the roundness PCA, as illustrated in Figures 6, 9 by the points 
highlighted in red. This sensitivity can be attributed to the reliance 
of the roughness descriptors on the entire contour or image without 
simplification, unlike the roundness descriptors.

In the proposed method, PCA was chosen for its interpretability 
and effectiveness in capturing linear relationships between variables. 
However, for more complex datasets where linear methods struggle 
to capture the relationships between descriptor values, which 
could be the case for high roundness intensities, autoencoders 
(AEs) could be a suitable alternative. Yet, this comes at the cost 
of interpretability, as AEs, like all neural network-based methods, 
lack transparency and are more difficult to interpret (Cacciarelli 
and Kulahci, 2023). The use of PCA with image analysis–based 
shape descriptors demonstrates that form, roundness, and 
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FIGURE 7
Roughness PCA plots showing the training data; (A) all ideal shapes are represented; (B) triangles and (C) circles. The red scale represents the 
roughness intensity applied to the generated images.

roughness are interdependent, which is consistent with our 
previous study (Back et al., 2025). 

7.3 A new perception of shape description

PCA using form descriptors captures the increasing roundness 
intensity (Back et al., 2025), whereas PCA using roundness 
descriptors can discriminate ideal shapes (Figure 3). On the other 
hand, PCA using roughness descriptors is slightly influenced 
by roundness intensity (Figure 8); however, roughness intensity 
affects the ability of the roundness PCA to differentiate between 
roundness and ideal shapes (Figure 4). However, the effect 
of roughness is minimal compared to the effect of form on
roundness.

This evidence demonstrates that roundness is a form changeset 
with a minimal effect of roughness. Roundness is indeed a 

specific case of shape description, where various shapes transition 
into a single form, the circle. Following this logic, shape 
description encompasses large-scale (“form”) and small-scale 
phenomena (“roughness”). This perspective explains the challenge 
in establishing a threshold between roundness and roughness, both 
in the context of Wadell’s definition of a corner and in computing 
descriptors, e.g., obtained from Fourier analysis.

In conclusion, shape analysis focuses not on defining shapes 
by form, roundness, and roughness but on discriminating between 
them to identify trends within grain populations. Whether referred 
to as roundness or other processes, these interpretations are based 
on morphological characteristics. Descriptors should be classified 
and studied according to their mathematical properties and the 
aspects of the grain contour they define. The final version of this 
framework aims to compute all available descriptors for each grain 
image in the dataset and then select and combine them using 
multivariate statistical tools.
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FIGURE 8
Roughness PCA plots showing the training data (color zones) and the testing data (scatter data), (A) all ideal shapes are represented (B) triangles and (C)
circles; the red scale represents the roughness intensity, and the green scale represents the roundness and roughness intensities applied to the 
generated images.

7.4 Potential applications of the method

The quantitative framework for grain shape analysis presented 
in this study offers practical solutions for various real-world 
applications. This method can be applied directly to geological 
settings in which the object shape is crucial.

In volcanology, the analysis of volcanic ash particles can provide 
insights into eruptive styles and magma ascent processes. For 
example, high-viscosity magma eruptions produce equant, angular 
to subrounded lithic fragments, whereas low-viscosity eruptions 
yield perfect spheres or elongated droplets with smooth, fluid 
surfaces. Phreatomagmatic eruptions generate small blocky or 
pyramidal glass ash particles (Heiken, 1972). Recent studies have 
demonstrated the effectiveness of convolutional neural networks 
(CNNs) in classifying volcanic ash from images (Shoji et al., 2018). 
By integrating CNN-based classifications with quantitative shape 
descriptors and the PCA methodology, the interpretation and 
understanding of classifications can be improved. PCA loadings 

reveal the contribution of each descriptor to shape discrimination, 
and the associated formulas clarify the physical parameters driving 
these variations.

In mineral exploration, where glacial sediments are used 
to find hidden deposits, mineral shape is a key indicator of 
transport. For example, gold grain morphology from glacial tills 
and stream sediment are an indicator of distance to source 
(Girard et al., 2021; Townley et al., 2003). Considering that the 
transport distance of gold grains of different shapes is key to finding 
a deposit, using an adequate geological setting, an equation could be 
developed to relate shape transformation to transport distance for 
the different combined shapes. This mathematical relation could be 
a powerful tool to refine deposit position.

The presented method also has significant potential in planetary 
science, particularly for describing crater and lake morphologies 
on other planets. Analyzing the morphological characteristics of 
these features can shed light on their formation mechanisms, thereby 
improving our understanding of planetary evolution. Crater and 
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FIGURE 9
Roughness PCA plots obtained with galena grain images for the three principal components; (A) PC1 against PC2 and (B) PC1 against PC3; the color of 
the training data points represents the area of the grain.

lake outlines can be described using methods similar to those 
applied to grains (Dhingra et al., 2019; Slezak et al., 2020). The 
contours of craters and lakes can be represented as binary images, 
like grain images, enabling our method to be applied. Its application 
could lead to improved differentiation of the various morphologies 
and a more detailed understanding of planetary surfaces and their 
formation processes. 

8 Conclusion

Using PCA to study roundness and roughness descriptors 
reveals that each descriptor captures relevant information for its 
intended category, as well as additional shape information for both 
generated and actual grain images. This study, coupled with that of 

Back et al. (2025), demonstrates the potential of describing grain 
shape tendencies within populations using only form (Back et al., 
2025), roundness, and roughness descriptors. These observations 
lead to a new perception of shape, suggesting that shapes can be 
defined by both large-scale and small-scale phenomena, with each 
descriptor capturing aspects of both.

This study proposes a new methodology for shape analysis 
that focuses on shape discrimination rather than shape definition 
using form, roundness, and roughness. This methodology avoids the 
unresolvable question of “What are the best descriptors?” and clearly 
shows that form, roundness, and roughness are interdependent.

Our methodology combines descriptors and can be applied to 
any 2D image. The proposed method can be summarized as follows: 
1) obtain a grain binary image using segmentation techniques, 2) 
compute the descriptors according to the study objective, and 3)
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combine the descriptors using multivariate statistical tools. The goal 
is to analyze shape tendencies within the grain image dataset.
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