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Geological processes are recorded in grain shape and geochemistry. However,
grains are often described with minimal quantification. These descriptions are
generally textual and can vary in their precision and accuracy. Historically,
detailed studies of crystal size distribution have provided valuable insights into
petrogenesis. A thorough analysis of numerous computable grain descriptors
will offer even more significant information. Despite extensive literature on
shape descriptors in fields like sedimentology, chemistry, and civil engineering,
there is no consensus on their use, and their meanings often remain unclear.
This article proposes a quantitative grain description method ranging from
micrometers to centimeters using various image analysis techniques. Our
approach consists of combining multiple quantitative descriptors to describe
grain shape. This work is based on a comprehensive literature review across
multiple scientific fields to extract numerous quantitative shape measurements.
This paper focuses on roundness and roughness descriptors. A total of
25 descriptors, including Waddell roundness and fractal dimension, were
extracted, compiled, and computed using Python. The descriptor computation
code is provided as a library with this article. We use principal component
analysis (PCA) to combine all descriptors in the same category without
losing clarity and validated our approach on both generated and real grain
images. For both roundness and roughness descriptors, the generated images
and real grain images results are in accordance and could be summarized
as follows. 1) The roundness descriptors PCA effectively distinguish grain
shapes, performing comparably to form descriptors. However, it struggles to
differentiate high degrees of roundness, and roughness significantly influences
these results. 2) The roughness descriptors PCA excels at discriminating
roughness intensity, despite the influence of form and roundness. These
results align with our previous study on form descriptors and lead us to
a new understanding of shape description: shape description includes both
large-scale phenomena ("form”) and small-scale phenomena (‘roughness”).
And roundness is a specific case of shape description where various shapes
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transition into a circle. This study highlights the potential of using PCA alongside
image-based shape analysis to enhance the quantitative description of grains,
offering valuable implications for volcanology, planetary sciences, petrology and

other fields.
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image processing, petrography

1 Introduction

In Earth sciences, the textual description of mineral shapes often
lacks quantification. The challenges of accurately analyzing mineral
shapes have been recognized for decades, prompting numerous
authors to improve precision by using visual charts (Folk, 1951;
Goldstone, 1993; Murphy and Kemp, 1984). These charts continue to
feature in scientific publications (Garzanti et al., 2015; Sandeep et al.,
2018). With the growing availability of grain images from advanced
imaging systems and the application of segmentation techniques,
isolating individual grains is now feasible (Banerjee et al., 2019;
Chen et al., 2024; Latif et al, 2022; Zheng and Hryciw, 2016).
Consequently, a quantitative analysis of grain shapes can be achieved
using appropriate shape descriptors (Back et al., 2025).

Quantitative shape analysis is essential for automating
the evaluation of large datasets and for markedly enhancing
precision and reproducibility. This method enables the statistical
examination of grain shapes in a manner similar to geochemical
data analysis. Grain shape relates to mineral crystal structure
and applies across various geological disciplines, including
zircon shape classification for magma petrogenesis (Pupin, 1980;
Scharf et al., 2022), sedimentology—where grain shape correlates
with transport distance and medium (Diepenbroek et al., 1992;
Garzanti et al, 2015; Huddart et al., 1998)—geotechnics—where
grain shape affects soil properties (Altuhafi et al., 2016; Lu et al.,
2019)—and mineral extraction—where grain shape influences
comminution (Buscarnera and Einav, 2021).

The analysis of object or particle shape is widely studied across
various scientific fields. This study focuses on quantifying mineral
grain shape at a micrometer to centimeter scale using image analysis
techniques on 2D representations. Shape descriptions are most
often conducted in 2D, e.g., petrological thin sections, metallurgical
polished sections, and photography. Describing particles at a
microscopic to macroscopic scale is crucial in multiple disciplines,
including geology, materials science, metallurgy, agriculture, and
chemistry, and has led to the development of a substantial body of
literature. A wide array of quantitative shape descriptors has been
developed and classified according to Barrett (1980) definition.

In a previous article (Back et al., 2025), the focus was on size,
orientation, and form descriptors. Here, we evaluate roundness and
roughness descriptors using a framework that quantifies the shape of
mineral grains. The core objective of these articles is to move beyond
the traditional challenge of evaluating descriptors in isolation. To do
so, we systematically list, categorize, and study the numerous and
often redundant descriptors, which, as highlighted in the literature
(Hentschel and Page, 2003; Pirard, 2004), are known to produce
same value for different shapes, complicating their independent
use. To clarify their application, we propose a classification system
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based on the mathematical tool for each descriptor, or the specific
geometric feature that it analyzes. Our methodology emphasizes
integrating a reduced set of these functions using multivariate
statistical tools, rather than seeking a single “ideal” descriptor. This
approach effectively sidesteps the unresolved debate over “What
are the best descriptors?” by demonstrating the interdependence of
form, roundness, and roughness, showing the value of our combined
approach over the pursuit of an individual “ideal” descriptor. The
framework proposed in this article to test roundness and roughness
descriptors is applied to both generated and actual grain images.

2 Why quantitative petrography
matters for petrology?

Nowadays, petrology relies heavily on geochemistry, which,
being quantitative, allows for more rigorous demonstration and
testing of models. Petrography relies more on textual description,
which is poor in quantitative data. Therefore, adding quantitative
data to petrography offers the possibility of making it as powerful
a tool as geochemistry. To ensure clarity, it is essential to
define the terms used in this study, as the literature lacks a
consensus on terminology. While most authors agree with Barrett
(1980) definition that shape comprises form, roundness, and
roughness, naming these components present challenges. Here,
“shape” refers to the general contour of the object, with size
and orientation adding two more components, totaling five. This
study will concentrate on roundness and roughness. The five shape
components are crucial for describing minerals in petrography.
Precise definitions and their broader implications for petrology
are also important. The terminology, definitions, and petrological
implications are as follows:

1. Size, determined by the measurable dimensions of the
shape, varies in value and interpretation based on the
measurement method. Studies on crystal size provide
insights into magmatic and metamorphic textures, revealing
cooling rates, deformation rates, and element availability
(Higgins, 2002; Marsh, 1988).

. Orientation is defined by the direction of one of the shape’s
axes relative to a reference point, though its value is influenced
by the measurement method. Grain orientation is known
for indicating flow direction in both water and lava, and it
offers insights into deformation and its intensity (Nédélec and
Bouchez, 2015; Shelton and Mack, 1970; Ventura et al., 1996).

. Form refers to the polygon or ellipse that is closest to the
grain shape. It can be linked to the crystallization sequence,
as seen in cumulate textures where well-formed minerals
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crystallize early in the process (Vernon and Collins, 2011).
Additionally, variations in form within the same mineral,
such as zircon, offer insights into magma petrogenesis
(Pupin, 1980; Zheng et al., 2022).

Roundness, also referred to as angularity, describes the angles
of the grain, ranging from acute edges to smooth curves.
Extensively studied by sedimentologists (Diepenbroek et al.,
1992; Krumbein, 1941; Tafesse et al., 2013; Wentworth, 1919),
it is a crucial parameter influencing the movement of clastic
particles in water and offering insights into their travel
distance or origin.

Roughness, also known as surface texture, details the
outline features of the grain. It reflects various processes
depending on the surrounding rock and context, such as rapid
mineral growth leading to skeletal and dendritic crystals,
or dissolution resulting in re-entrant formation (Hibbard,
1994). For instance, the roughness observed in the shape of
corundum-bearing Ca-Al-rich inclusions in chondrites may
indicate different origins: condensation (rough and irregular)
or melt crystallization (rounded inclusions with radiated
corundum; Needham et al., 2017).

These examples demonstrate that an in-depth study of shape
parameters can offer valuable insights for petrology, as seen in
zircon form classification (Pupin, 1980). Quantitative measurements
better capture subtle rock changes, as shown by crystal size
distribution (CSD) results (Higgins, 2002; Marsh, 1988). Combining
shape parameters with quantitative tools can reveal new textural
indicators, enhancing our understanding of geological phenomena.

In this article, a “descriptor” refers to a method or formula used
to describe a shape component. The descriptors used in this study
are detailed in the “Roundness and roughness descriptors” section,
with their formulas provided as a python library available on GitHub
(see Data availability statement). All definitions are applied to the 2D
representation of grains using image analysis techniques, which are
widely available and more cost-effective than 3D methods. Typically,
petrographic analyses are conducted in 2D before advancing to
3D imaging.

3 Roundness and roughness
descriptors

This section summarizes the main results of an extensive
literature review. The methodology is detailed in Back et al. (2025).
The classification of a descriptor as either roundness or roughness
is based on the original intention of the descriptor’s author or its
common use. The subcategories, however, were created for this study
and are based on the mathematical tool used or the specific aspect
of the shape described by the descriptor group.

3.1 Corner-focused roundness descriptors

The initial mathematical description of grain roundness
involved the ratios of size measurements of the grain and one or
more corners (Wadell, 1933; 1932; Wentworth, 1922; 1919). These
equations approximate corner size using the diameter of a fitted
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circle (Figure 1A). Grain roundness is estimated by dividing the
curvature diameter at the corner by the grain size. The number of
corners measured and the choice of distance characterizing the grain
vary among authors (Table 1). The curvature diameter—to—grain size
ratios allow for comparing particle roundness across different sizes,
e.g., a pebble and a boulder (Wadell, 1932).

These methods were initially designed for laboratory or field
measurements relying on a caliper, ruler, or steel tape (Krumbein,
1941; Wentworth, 1922). This explains why some methods are
simplifications of existing procedures and rely on only one or
two corners rather than all possible corners, given the time and
complexity of data acquisition in field settings. It also highlights the
challenges of implementing these methods in image analysis tools.
It is difficult to understand the precise meaning of a corner. Wadell
(1932) defines it as “every such part of the outline of an area
(projection area) which has a radius of curvature equal to or less
than the radius of curvature of the maximum inscribed circle of the
same area.” Thus, all corners on the outline of a grain, including the
smallest ones, could be considered. However, for a complex outline
(rough grain), this would relate more to roughness than roundness.
Therefore, a scaling problem remains.

3.2 Roundness descriptors using a
simplified grain contour

The following methods share a common approach: simplifying
the original contour. The radius angularity index uses angular
step analysis, the segment angularity index divides the shape into
segments, the gradient angularity index uses every third point of the
contour, and the smoothing angularity index applies approximation
functions.

The radius angularity index is determined by the difference
between the particle radius and the radius of the equivalent
moment ellipse in several directions (Figure 1B). This difference
is then normalized by the ellipse radius in each direction
to avoid the influence of form on the angularity index (Al-
Rousan et al., 2007; Masad et al., 2001). The equivalent moment
ellipse represents a perfectly rounded particle, and the difference
with the original grain contour highlights its angularity.

The segment angularity index method divides the particle
contour into an n-sided polygon of equal segments. The angle at
each node is then determined, and the difference is calculated
between the angle at the previous node and the current angle
(Figure 1C). The frequency distribution of these angle differences
is then calculated using 10° class intervals. Finally, roundness is the
sum of the class probabilities multiplied by the lowest value in each
class interval (Rao et al., 2002). The optimal number of segments
is 24 for distinguishing crushed and uncrushed gravels (Tutumluer
and Pan, 2008).

The gradient angularity index indicates that acute particle angles
cause rapid changes in the orientation of the gradient vector for
neighboring grain contour points, whereas rounded particles show
the opposite behavior. The absolute gradient is calculated using
Sobel mask convolution in the x- and y-directions. For roundness
analysis, the gradient orientation is computed at edge points, and
the differences between neighboring gradient angles are determined
(Figure 1D). The total roundness values for all points in the particle
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FIGURE 1

lllustration of the roundness and roughness descriptors: (A) corner-focused roundness descriptors; (B) radius angularity index; (C) segment angularity
index; (D) gradient angularity index; (E) smoothing angularity index; (F) erosion—dilation ratio; (G) morphological fractal; (H) roughness descriptors
using curvature properties; and (I) examples of wavelet decomposition.
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TABLE 1 Equations of the common corner-focused roundness
descriptors.
Reference

Nomenclature Equation

appellation

Wentworth roundness 19 lll Wentworth (1919)
‘Wentworth roundness 22 D ‘Wentworth (1922)
(L+D/2
D
Wadell roundness ;} Wadell (1932)
Cailleux roundness % Cailleux (1942)

Kuenen roundness

~|o

Kuenen (1956)

Lees roundness Lees (1964)

Dobkins and Folk roundness —= Dobkins and Folk (1970)

Swan roundness —2— Swan (1974)

D, is the curvature diameter of the sharpest corner; L, is the longest axis passing through the
sharpest corner; L and I are the long and intermediate axes, respectively; [ is the axis at 90°
of L; D; is the curvature diameter of the ith corner; N is the number of corners of a particle,
«; is the angle value of the ith corner; x is the distance between the inscribed circle center

and the summit point of the corner; and d,,,; is the maximum inscribed circle diameter.

corners are summed to obtain the gradient angularity index (Al-
Rousan et al., 2007; Chandan et al., 2004; Tafesse et al., 2013). It is
advised to use every third edge point and discard angularity values
below a 5° threshold to ensure that perfectly rounded objects have
values close to 0 (Chandan et al., 2004).

The smoothing angularity index is obtained by generating two
smoothing curves around the contour of the particle image. The first
curve connects adjacent lateral midpoints of the polygon, whereas
the second is formed by selecting every fifth point of intersection
between the first curve and polygon (Figure 1E). The distance
between the two curves is calculated using perpendicular segments
at regular intervals. Roundness is defined as the standard deviation
of the distances (Tafesse et al., 2013).

3.3 Fourier descriptors

The final method for characterizing particle roundness uses
Fourier analysis on grain contour curves. Two techniques derive
the grain contour curve: the RO method and the xy method. The
RO method plots the ratio of the mean diameter to the diameter as
a function of 8 (Bui et al., 1989; Wang et al., 2005) but is limited
to convex shapes. The xy method generates separate x- and y-
coordinate curves as functions of 0, effectively handling the concave
particles. Fourier analysis is then performed on the combined curves
(Bowman et al., 2001; Caple et al., 2017).

Fourier analysis starts with a discrete Fourier transform
applied to the grain contour curve, converting spatial information
into frequency-domain data. Next, the power spectral density is
computed to produce the frequency distribution of the boundary
shape. Low-frequency components indicate form characteristics,
whereas higher harmonics, up to an indeterminate threshold, reflect
roundness. The highest harmonics describe the grain roughness
using the same method.
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However, the thresholds for differentiating form, roundness,
and roughness are unclear, as most authors use varying definitions
(Bowman et al., 2001; Bui et al., 1989; Ehrlich and Weinberg, 1970;
Garzanti et al., 2015; Wang et al., 2005; Zhou et al., 2015). Fourier
amplitudes can be normalized by the Oth harmonic amplitude
to eliminate size effects and compare spectra of different shapes
(Diepenbroek et al., 1992; Ehrlich and Weinberg, 1970). Some
authors also normalize Fourier amplitudes by the first harmonic
amplitude for similar reasons (Calderon De Andaetal., 2005). These
factors contribute to the various definitions and equations of the
Fourier descriptors. This study uses the thresholds and equations
from Wang et al. (2005) for the combined Fourier descriptors
(Equations 1-3).

1 [ R N G
wrzlE)E] e
(G

where fg, f,; and f,, are respectively the RO Fourier form 1-4,
the RO Fourier roundness 5-25, and the RO Fourier roughness
26-180. a, is the amplitude of the Oth harmonic, a,, is the amplitude
corresponding to the genuine parts of the function, and b,, is the
amplitude corresponding to the imaginary parts of the function.

3.4 Roughness descriptors based on
morphological operations

The following descriptors use morphological operations—
dilation and erosion—to quantify grain roughness. The simplest
morphological descriptor compares the original grain area with its
area after several iterations of erosion followed by dilation (Al-
Rousan et al., 2007; Maroof et al., 2020; Moaveni et al., 2014;
Moaveni et al., 2013; Tutumluer and Pan, 2008). These operations
smooth the grain outline, resulting in a greater difference for
very angular grains before and after the morphological processes
(Figure 1F). The recommended parameters are 20 cycles of erosion
followed by dilation Pan and Tutumluer (2007) using a 3 x 3
matrix [Masad et al., 2000 for aggregate grains (Equation 4)]. This
descriptor characterizes the angularity in low-resolution images and
roughness in higher-resolution images (Masad and Button, 2000).

Aed

x 100, (4)
where A is the grain area, and A,; is the grain area after the
erosion-dilation operations.

The morphological fractal method calculates the fractal behavior
of the area resulting from the difference between a grain after n
dilation and n erosion events (Figure 1G). This process involves
creating a log-log plot of the effective width of the area difference
(A,,) versus the number of erosion and dilation cycles. The
descriptor value is the slope of the fitted linear regression, as
performed for the fractal-dimension calculation methods presented
below. High slope values indicate very irregular grains (Al-
Rousan et al., 2007; Masad et al., 2000).
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3.5 Roughness descriptors using curvature
properties

This roughness descriptor approach analyzes roughness by
utilizing the convex or concave properties of a grain’s contour curve.
Convexity is one of the most commonly used roughness descriptors
in the literature.

Convexity is the ratio of a grain parameter to its convex hull
equivalent (rubber band analogy). Numerous formulas exist in the
literature, with some authors using the root or squared results (Kuo
and Freeman, 2000; Liang and Yang, 2023) or area instead of the
grain perimeter (Cox and Budhu, 2008; Huo et al., 2016). However,
the principle remains the same: the properties of the grain are
compared with those of its convex hull (Figure 1H).

The vertex concavity indicates the proportion of vertices angles
less than 0° (Figure 1H). Completely convex shapes do not have
negative angles. A high vertex concavity value signifies a greater
degree of indentation (Heilbronner and Keulen, 2006).

3.6 Advanced mathematical roughness
descriptors

The fractal dimension measures grain changes as a function of
scale, showing that grains appear more irregular and detailed as
the scale of observation decreases. This method provides a scale-
invariant measure of roughness. Several methods exist to obtain
the fractal dimension, such as the perimeter—area method, which is
commonly used in geology (Cheng, 1995; Florio et al., 2019; Hyslip
and Vallejo, 1997; Maroof et al., 2020; Moore and Donaldson, 1995)
and the box-counting method, which is prevalent in image analysis
(Asvestas et al., 1999; Lashgari et al., 2015). We focus on these two
methods, given their widespread acceptance in the literature and
their relevance to the topic. Both methods are similar and determine
the fractal dimension by using the slope of a linear regression on a
log-log plot, which compares either perimeter to area or the number
of pixels in a shape to pixel size at different scales.

Wavelet analysis is also used to determine grain roughness
from 2D images. This method involves convolving a specific
Wavelet
functions are well represented in both the spatial and frequency

function, called a wavelet, at various resolutions.
domains (Mallat, 1989), whereas Fourier-transformed functions
are well represented only in the frequency domain. Several
types
transformation results (Guo et al., 2022).

of wavelet functions exist, each yielding different

A one-level wavelet transformation of an image produces four
detailed images: low-low (LL), high-low (HL), low-high (LH),
and high-high (HH; Figure 1I). The LL image represents low-
frequency components and captures coarse details of the texture
of the image. The HL image captures high-frequency components
in the horizontal direction, the LH image captures them in the
vertical direction, and the HH image captures them in the diagonal
(45°) direction. This transformation can be repeated multiple times,
using the LL image from each iteration for further decomposition
(Chandan et al., 2004; Mallat, 1989).

From the transformed images, we can compute various features
to characterize the signal, such as energy, entropy, mean, standard
deviation, and contrast. These features can be extracted from each
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image, either independently or in combination. If the directional
components are irrelevant to the studied texture, all high-frequency
images (HL, LH, and HH) can be treated as one (Al-Rousan et al.,
2007; Chandan et al., 2004). To describe grain texture, the energy of
the combined high-frequency images from the 6th decomposition
level has proven to be optimal, with Daubechies 9/7 as the selected
wavelet decomposition function (Chandan et al., 2004).

4 Classification

The following classification groups roundness and roughness
descriptors by type (Table2). We define types according to
mathematical approaches (e.g., morphological, Fourier analysis) or
focus (e.g., corner-focus, contour simplification). Corner-focused
descriptors have been renamed according to their authors and
publication dates when necessary. Additionally, the Q method
introduced by Heilbronner and Keulen (2006) is now called “vertex
concavity” to better convey its analytical purpose.

For descriptors using Fourier analysis, information about the
extraction method of the grain contour (RO or elliptic) should be
provided, and the name should include the range of harmonics used
for clarity (e.g., RO Fourier roundness 5-25 combined). When using
wavelet texture analysis, one should consistently include the wavelet
decomposition function, decomposition level, images, and image
descriptors, as changes in these parameters can significantly alter the
meaning and value of the wavelet descriptor.

5 Methodology

Given the extensive literature on quantitative shape descriptors
and the diverse mathematical approaches used by each descriptor
or group to quantify grain shape, it is important to note that each
descriptor highlights specific aspects of the targeted information.
Although no single descriptor is ideal, the goal is to identify the
most suitable ones for a given study. Selecting relevant descriptors
and analyzing their parameters reveals the physical properties
that influence grain shape. The first step involves compiling a
comprehensive inventory of quantitative descriptors.

5.1 Article selection

We used statistical tools to navigate the abundant literature
and select articles. Our database was drawn from a Scopus query
that yielded 2,127 papers. VOSviewer software visualized the
bibliometric network (van Eck and Waltman, 2010). A citation-per-
document mapping approach facilitated graph construction, and
we labeled articles with primary authors’ names and publication
years. Interconnections illustrating cross-referencing were depicted
as links within the graph. This process allowed us to eliminate
articles that were not connected to the bibliographic network and
group them using the software clustering options. From the 24
groups obtained from 274 linked articles, we selected two to four
articles on the basis of citations and publication years to provide an
overview of early contributions to recent ones. The detailed article
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TABLE 2 Nomenclature for two-dimensional roundness and roughness
descriptors.

Grain aspect

Descriptor type  Descriptor name

Wentworth roundness 19

Wentworth roundness 22

Wadell roundness

Cailleux roundness

Corner-focused

Kuenen roundness

Lees roundness

Roundness Dobkins and Folk roundness
Swan roundness
Radius angularity index
Segment angularity index
Contour simplified
Gradient angularity index
Smoothing angularity index
Fourier analysis RO Fourier roundness
Fourier analysis RO Fourier roughness
Erosion-dilation ratio
Morphological
Morphological fractal
Convexity
Roughness Curvature

Vertex concavity

Area—perimeter dimension

Fractal analysis
Box-counting dimension

Wavelet analysis Wavelet texture

selection methodology used in this article is the same as in Back et al.
(2025), where it is explained in greater depth.

5.2 Image generation and PCA training and
testing data

Crystals exhibit a limited range of lattice structures, constraining
their three-dimensional forms, which can be approximated as
ideal polygons in two dimensions. To explore shape variability,
we generated binary images of 13 geometrically ideal shapes with
controlled parameters to maintain a grain-like appearance. The ideal
shapes included: circle, triangle, square, rectangle, ellipse, pentagon,
hexagon, heptagon, octagon, nonagon, decagon, hendecagon, and
dodecagon. Shape sizes ranged from 300 to 600 pixels on the basis
of prior segmentation data (Back et al., 2023), and orientations were
randomized to avoid bias. Roundness was adjusted using Minkowski
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summation with a disk kernel, whereas roughness was modeled with
Perlin noise to mimic natural grain complexity (Al Ibrahim et al.,
2019; Back et al., 2025; Michot-Roberto et al., 2021; Perlin, 1985).
Roundness ranges from 0 to 6 in increments of 0.6, and roughness
ranges from 0 to 1.2 in increments of 0.12, with the number of
octaves fixed at 12. This setup ensures a standardized scale of 10 for
both roundness and roughness. These parameters are subjectively
constrained to maintain the visual resemblance to a grain (Figure 2).

Tests 1, 2, 3, 4 and 5 are the same datasets as those in Back et al.
(2025), and tests 4.1, 4.2, 2.1, and 2.2 (Figure 2) have been added to
create a more gradual evolution in both roundness and roughness for
the PCA training datasets. Test 1 has been added into tests 4 through
5 and tests 2 through 3, forming the training datasets for roundness
and roughness respectively. This creates scales of 0, 2, 5, 7, and 10 out
of 10 for both parameters. Tests 6 through 7 were added to examine
the interaction between roundness and roughness (Figure 2). The
effect of form is present in the training and testing datasets, as the 13
forms are present within each test. For visualization purposes only
rectangle images are shown in Figure 2. Each test consisted of 3,900
images or 300 images per ideal shape (triangle to dodecagon). Thus,
we obtained 19,500 training images for roundness and roughness
and 15,600 test images, for a total of 50,700 images (3,900 images of
test 1 are present in both training dataset).

5.3 Descriptor computation

Traditional corner-focused roundness descriptor methods were
designed for manual measurements. This feature creates a scaling
problem in image analysis because of the imprecise definition of
corners (see Section 2.1). To address this issue, we developed a new
procedure and created a corresponding function named extract_
corner_metrics which applies the Ramer-Douglas-Peucker (RDP)
algorithm to retain only the most significant corners (Douglas
and Peucker, 1973). By reducing the impact of roughness and
preserving essential shape points, this function specializes in
extracting geometric features from the contours of objects in binary
images, offering robust and precise measurements. The function
focuses on morphology and orientation and computes all necessary
measurements for the corner-focused roundness descriptors, as
detailed in Table 1.

Two differences from the traditional corner-focused roundness
descriptor methods should be noted: 1) as the intermediate axis used
in Wentworth roundness 22 is unavailable in a 2D image, we used
Feret’s mean diameter; and 2) corner diameters are computed as the
inscribed circle diameter from the triangle formed by the corner
instead of the radius of curvature. The diameter of the inscribed
circle is inversely proportional to the radius of curvature of the
corner, making it applicable to highly angular particles (ideal shapes)
lacking curvature, where fitting a circle for curvature measurement
is impossible.

For roundness and roughness descriptors using image analysis
techniques, we developed Python modules, as their code was
unavailable in Python or even not at all. These modules are designed
to reproduce the descriptors as accurately as possible, utilizing the
recommended parameters from the original studies as highlighted
in the descriptor bibliography. To ensure reproducibility, these
modules are available on our GitHub page (see Data availability
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statement). All parameters used for computing descriptors are
default parameters within the Python library. For wavelet texture, we
applied the same computation method (energy of combined high-
frequency images from the 6th decomposition level); however, the
Daubechies 9/7 function was unavailable in the PyWavelets library.
Instead, we used the Bior 4.4 function, with the only difference being
the coefficients normalization.

Using these modules, we could then compute the 13 roundness
descriptors: radius angularity index, segment angularity index,
gradient angularity index, RO Fourier roundness 5-25 combined,
Wentworth roundness 19, Wentworth roundness 22, Cailleux
roundness, Kuenen roundness, Dobkins and Folk roundness, Swan
roundness, Lees roundness, Wadell roundness; and 12 roughness
descriptors: erosion—dilation ratio, vertex concavity, wavelet texture,
box-counting fractal, morphological fractal, area—perimeter fractal,
RO Fourier roughness 26-180 combined, area convexity, area
convexity percentage, perimeter convexity, perimeter convexity
percentage, and RSD Feret. RSD Feret is the relative standard
deviation of Feret measurements made with an angular step of 2°.

During the descriptor computation on generated images, some
errors occurred with a total number of 28 errors for 50,700 images
(<0.06%) involving only two descriptors. Errors for the Fourier
methods and the radius angularity index arose from multiple
contour points at the same angle instead of one, particularly in
highly convex images such as grain 330 (Figure 9B). The RO Fourier
roughness 26-180 shows one error in test 3 and the smoothing
angularity index shows 27 errors with: 17 in test 1, 8 in test 4 and
2 in test 5. It results in empty cells within the datasets. During the
descriptor computation on galena images, errors occurred with a
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total number of 144 errors for 580 images involving four descriptors.
However, the smoothing angularity index encountered 139 out of
the 144 errors (~96%), the RO Fourier roundness 5-25 combined
encountered 2 errors, the RO Fourier roughness 26-180 combined
encountered 2 errors and the radius angularity index encountered 1
error. For the smoothing angularity index, all errors stemmed from
the absence of intersection points, resulting from downsampling
contour points, and the challenge of fitting a curve to complex
grain contours.

5.4 Descriptor tests

Several authors have noted that individual descriptors, despite
targeting the same shape aspects, such as roughness or form,
have limitations and do not fully capture the phenomenon (Al-
Rousan et al., 2007; Hentschel and Page, 2003; Tafesse et al., 2013). To
address this issue, Hentschel and Page (2003) proposed combining
descriptors. In this study, we use PCA to identify the most effective
combination of descriptors. A key advantage of PCA over other
unsupervised learning methods is the interpretability of its results,
which allows for the identification of descriptors that explain the
principal axes, thereby facilitating the creation of a community-
usable index. This approach has yielded good results for form
descriptors (Back et al., 2025) and in sediment grain analysis using
Fourier amplitude (Suzuki et al., 2015).

The same methodology applies to roundness and roughness
descriptors. With only 13 roundness and 12 roughness descriptors,
a preliminary PCA for feature reduction is unnecessary, which
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differs from form descriptors (Back et al., 2025). We extracted
descriptors from the training and testing dataset images. The
training and testing data were scaled using Equation 5. Missing
values because of computation errors were filled using the best-
correlated descriptor column and a linear equation. For example,
missing smoothing angularity index values are extrapolated using
the RO Fourier roundness 5-25 combined. PCA was then performed
on the scaled training data, and the scaled testing data, which
were not involved in the PCA axis analysis, were projected at the
end of the training into the PCA domain. Given the presence
of 13 different ideal shapes in all datasets and the testing data
featuring both roundness and roughness, we assessed the impact
of form and roughness on roundness descriptors. Conversely,
we also evaluated how form and roundness influence roughness
descriptors.

7= , (5)

where x is the number to be scaled, m is the sample mean, and o is
the standard deviation of the sample.

To validate the method’s real-world applicability, we used
the same galena grain image dataset as used in Back et al
(2025). Galena grain images were captured from glacial sediments
following Back et al. (2023) protocol, with a consistent setup,
except for using transmitted light and an exposure time of
364.2 ps. Transmitted light images of opaque minerals provide
clear grain outlines, simplifying segmentation. The segmentation
process involved converting images to grayscale, applying a pixel
intensity threshold, using opening and closing operations to remove
anomalous pixels, and extracting grain contours with OpenCV’s
findContours method. The contours were filled with white, and the
background was black, saving the result as a binary image. Some
contours were manually removed because of acquisition artifacts
from the Olympus Stream®software and issues with touching
grains. However, we intentionally retained a few images with these
artifacts to assess their effect on the approach, while avoiding an
overly large cluster of anomalous images.

We used 580 galena grain images for training and 4 for
testing. Because of the many missing values for the smoothing
angularity index (139 out of 580), this descriptor was excluded
from the roundness PCA, resulting in 12 descriptors for both
roundness and roughness. We then applied the same methodology
used for the generated images: 1) filling and scaling the dataset;
2) applying PCA on the learning dataset; and 3) projecting the
scaled testing data into the PCA domain for both roundness and
roughness.

To summarize the methodology of this study, we extracted the
descriptors from both generated and real grain images and then
separated these into training and testing datasets. We applied two
distinct PCAs: one to the generated images training dataset and
another to the real grain images training dataset. To assess the
method’s reproducibility, we transformed both testing datasets into
their respective PCA domains. This methodology was applied to
both roundness and roughness descriptors, resulting in a total of four
distinct PCAs.
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6 Results
6.1 Roundness PCA

The roundness PCA, using the combined 13 roundness
descriptors on the generated images, explained 80.6% of the variance
using the first (PCI, 64.7%) and second (PC2, 15.9%) principal
components. The role of each roundness descriptor in PC1 is evenly
distributed, with coefficients varying from 0.241 to 0.340, except for
the segment angularity index (0.179), the gradient angularity index
(0.069), and Lees roundness (0.113). However, these descriptors play
a significant role in PC2 with coefficients 0.514, —0.229, and —0.385,
respectively (Table 3).

The roundness PCA, using 12 roundness descriptors combined
on galena images, explained 75.8% of the variance using PCl
(52.7%), PC2 (12.8%), and PC3 (10.3%). The corner-focused
roundness descriptors play the most influential role in the PC1
distribution, except for Lees roundness with a coefficient of —0.024.
In PC2, the key descriptors are the radius angularity index (0.647),
the segment angularity index (0.265), and the RO Fourier roundness
5-25 combined (0.691). Finally, for PC3, the most influential
coefficients are the radius angularity index (—0.330), the segment
angularity index (0.474), the gradient angularity index (0.426), the
Waddell roundness (0.302), and Lees roundness (0.596) (Table 3).
For both roundness PCAs, each descriptor plays an influential role
in at least one principal component.

Figure 3 shows the roundness PCA results from the generated
images. In Figure 3A, all ideal shapes are represented. PC1 effectively
discriminates shapes with no roundness, with high-order polygons
and circles appearing between 0 and -2, and the number of sides
decreases to triangles at PC1 values around 15. PC2 organizes ideal
shapes with no roundness into three overlapping groups: triangles
(high values, 5-12.5), ellipses (including circles) and high-order
polygons (around 0), and rectangles (including squares) ranging
from -5 to 2.5. Overlapping within each group results from the
spread for the same ideal shapes; for the same shape, lower values
indicate minimal elongation, and higher values indicate greater
elongation, as highlighted by the gray arrows in Figure 3A. Ideal
shapes with increasing roundness intensity converge toward the
circle group position, making it impossible to discern intensities
beyond 1.2. Figures 3B,C, which illustrates one type of ideal shape
for visualization purposes, supports this observation. PC1 and PC2
together cannot distinguish intensities greater than 1.2 (or 2/10)
despite a clear difference in roundness among the generated images
forming the third cluster (Figures 3B,C).

Figures 4A-C demonstrate the effect of roughness on roundness
descriptors by incorporating testing data into the roundness
PCA plots. The testing data exhibit an equivalent increase in
both simulated roughness and roundness intensity, with values
matching those in the training data. For the roundness training
data, roundness intensity increases as PC1 values decrease from
15 to —2. Conversely, in the testing data, both roundness and
roughness intensity increase as PC1 values pass from -1 to 5,
maintaining consistent roundness intensity values. In Figures 4B,C,
images numbered iv (triangle and hexagon) represent the testing
data at maximum roundness and roughness. Their group’s footprint
overlaps the zone containing ideal shapes from hexagons to
octagons, all with no roundness (Figures 3A, 4) despite having a
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TABLE 3 Principal component analysis loadings for the roundness PCA on the generated and galena images.

Descriptors

Radius angularity index

Generated images ‘

PC1

Galena images

PC1 ‘ PC1 ‘ PC2

0.241 0.352 -0.016

Segment angularity index

0.179

0.514

0.020

Gradient angularity index

0.069 —0.146 0.053 0.426

Smoothing angularity index

0.238 0.373

RO Fourier roundness 5-25 combined

0.264

Wentworth roundness 19

‘Wentworth roundness 22

‘Wadell roundness

Cailleux roundness

Kuenen roundness

Lees roundness

Dobkins and Folk roundness

Swan roundness

0.329 0.391 -0.004

0.334 —0.134 0.394 0.009 —-0.022
0.324 0.270 -0.026 0.302
0.329 0.393 -0.007 —-0.011
0.340 0.375 0.136 -0.129
0.113 —-0.024 0.107 !
0.329 0.394 —-0.006 -0.013
0.330 0.381 -0.007 0.141

The loadings have been rounded to the nearest thousandth. A color map highlights the positive (red) or negative (blue) effects of each descriptor on the principal components, with a more

intense color reflecting higher values.

distinctive angularity based on visual inspection (Figure 4B image
number iv; Figure 4C: image numbers i and iv).

Figure 5 shows the evolution of the roundness parameter values
for a generated roundness between 3 and 6 using the training
dataset. Roundness descriptor values tend to become less spread
as roundness intensity increases; however, they overlap. The radius
angularity index and the RO Fourier roundness 5-25 combined
can differentiate roundness intensities but only for similar shapes.
Additionally, rectangles at a high roundness intensity tend to be
considered outliers among corner-focused descriptors, the gradient
angularity index and the segment angularity index.

Figure 6A presents two distinct trends for galena grains,
indicating that the images are well discriminated according to the
roundness descriptors. The first trend along PC1 shows high values
for stubby, very angular rectangular grains, almost perfect galena
crystals (n° 4 and 316), transitioning to smooth rounded grains (n°
548 and 198) with low values. The second trend along PC2 displays
elongated, angular rectangular grains (n° 102, 632, and 449) with
high values, transitioning to smooth rounded grains with low values
(n° 548 and 198), mirroring the PC1 trend. These results correspond
with the testing data images: grain 391 is near grain 632 in the
elongated trend, grain 494 is between the two trends (rectangular
subangular), and grain 263 is on the stubby trend but lacks sufficient
roundness to be near grain 198. Finally, grain 101 is close to rounded
grains 198 and 548. Figure 6B shows PC3, which sorts grains from
smooth surface grains (n°22) to coarse grains (n° 391 being slightly
rougher) to rough (n°® 468) and very rough grains (n° 201).

Frontiers in Earth Science

6.2 Roughness PCA

The roughness PCA, using the combined 12 roughness
descriptors on the generated images, explained 72.3% of the
variance—PC1 (52.7%) and PC2 (19.6%). PC1 is primarily driven
by roughness descriptors using curvature properties (area convexity,
area convexity percentage, perimeter convexity, perimeter convexity
percentage, and vertex concavity) and the erosion-dilation ratio,
with loading values ranging from 0.338 to 0.387. PC2 is influenced
by the remaining descriptors, with the morphological fractal having
a high positive loading of 0.360. In contrast, the box-counting
fractal and area-perimeter fractal have high negative loadings of
-0.414 and —0.480, respectively. The wavelet texture also exhibits
a high negative loading value of —-0.428. The relative standard
deviation of the Feret measurements (RSD Feret) has a high positive
loading of 0.364. The combined RO Fourier roughness 26-180
plays a similar role in both PCs, with loadings of 0.258 and 0.198,
respectively (Table 4).

The roughness PCA, using the combined 12 roughness
descriptors on galena images, explained 70.6% of the variance—PC1
(38.2%), PC2 (19.5%) and PC3 (12.9%). All roughness descriptors
significantly influence the PC1 distribution, except for the RSD Feret
and the morphological fractal, which have coefficients of 0.127
and 0.025, respectively. PC2 shows high positive loadings for
the perimeter convexity (0.440), perimeter convexity percentage
(0.446), box-counting fractal (0.463), and wavelet texture (0.460).
Additionally, the erosion-dilation ratio has a relatively high

frontiersin.org


https://doi.org/10.3389/feart.2025.1634237
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Back et al.

12.5@

10.0
7.5
2
é 5.0
S
S 25
O
a 00
-25
60 Heptagons Pentagons 4] *1'25
-7.5
0 5 10 15
PClRoundness
4
Rd:
3 6.0
2 n °
7 e o° °
[}
s 1 ¥ ’.‘:. ° w0
S ° %
.:% o
~N 0 % ] * °
QO .
Q. 1]
-1
-2 Rd:
0.0
-3
-2 0 2 4
PClRoundness
FIGURE 3

10.3389/feart.2025.1634237

5.0

25

0.0

PC2Roundness

o X
o

5 10
PClRoundness

15

Roundness: training data (n = 19500)
0.0 circle
1.2 decagon
Il 3.0 dodecagon
42 ellipse
Il 6.0 hendecagon
heptagon
hexagon
nonagon
octagon
pentagon
rectangle
square
triangle

DOODOOOOO0OO0OO0OO0O0

Roundness PCA plots showing the training data; (A) all ideal shapes are represented; (B) triangles and (C) hexagons; the blue scale represents the
roundness intensity applied to the generated images, and the numbering (i, ii, and iii) refers to the shape clusters visible on B and C alongside their

associated images.

negative loading of —0.326. PC3 is primarily driven by the
morphological fractal with a very high negative loading of —0.598,
along with a moderate negative loading value for RSD Feret
(-0.385) and a moderate positive value for the area—perimeter
fractal (0.344; Table 4).

Figures 7A-C demonstrate the strong ability of PCA to
discriminate between different roughness intensities using PC1
and PC2, despite the presence of ideal shapes in the dataset.
However, PC1 is influenced by form at low roughness intensities
and cannot accurately distinguish between roughness levels of
0.00 and 0.12. PC2 is more sensitive to form, as indicated by the
gray arrow in Figure 7A, across all roughness intensities.

Figures 8A-C demonstrate the robustness of the roughness
PCA method. Despite the presence of ideal shapes in both the
training and testing datasets and the addition of roundness in
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the testing dataset, the method effectively discriminates between
different roughness intensities. However, for equivalent roughness
intensities, an offset is observed between the training and testing
data, with the training data appearing with slightly higher values
(positioned more to the right) on the PC1 axis. Additionally, the
testing data exhibits a smaller form dispersion than that of the
training data (Figures 7A, 8A).

Figures 9A,B present the three PCs of the roughness PCA on
galena grain images using the 12 roughness descriptors. PC1 sorts
grains by roughness from perfectly smooth (n° 419) to textured (n°
101 and 263), coarse (n° 332 and 494), rough (n° 156 and 391),
and very rough (n °575) grains. PC2 classifies grains by area, as
indicated by the color of the training data points. This pattern aligns
with the roughness PCA loading values, highlighting perimeter
convexity, perimeter convexity percentage, box-counting fractal,
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generated images.

and wavelet texture, as the last two methods rely on image scaling
for computation. Figure 5B shows that PC3 sorts grains by form
and roundness, from low values with angular rectangular elongated
grains (n° 412, 50, and 101) to round and subrounded rectangular
grains (n° 263 and 494) and finally to stubby rectangular grains (n°
56 and 300).

However, some grains, such as 352 and 391, appear visually
less rough than their graph values suggest. This discrepancy arises
from artifacts on the grain outlines caused by a combination of
acquisition and segmentation issues, as highlighted in Figure 9B for
grains 352 and 330; other grains with anomalies are shown in red.
These artifacts also affect PC2 and PC3 (Figures 9A,B). The same
grains with artifacts are highlighted in Figures 8A,B. Despite these
issues, none of the principal components of the roundness PCA are
affected. PC3, which tends to sort grains by roughness, classifies

Frontiers in Earth Science

12

them as would be expected upon visual analysis (e.g., grains 391,
352, 553, 252, and then 330).

Interactive graphs displaying the PCA plots of galena grains,
along with their corresponding images, are available at https://
pca-grain-shapes.onrender.com. The loading of the webpage may
take a while.

7 Discussion

This study evaluates roundness and roughness descriptors using
a framework to quantify the shape of mineral grains. The framework
combines image-based descriptors using PCA and can be easily
adapted to various 2D images and objects. All descriptors are
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available as a Python library on GitHub (see Data availability
statement).

7.1 Methodology

For the methods discussed above, we applied the optimal
parameters identified in the original studies when available (Al-
Rousan et al., 2007; Masad et al., 2000; Pan and Tutumluer, 2007;
Rao et al., 2002; Tutumluer and Pan, 2008). However, these methods
target specific applications, such as describing aggregate shape
properties in civil engineering (Masad et al., 2000). Consequently,
the image and sample types in this study differ from those in previous
work, suggesting that the parameters considered optimal in those
studies may not be directly applicable without some adaptation. The
methodology proposed in this article is highly adaptable, as it only
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requires a 2D binary image. However, depending on the specific
study requirements, fine-tuning of the function’s parameters may be
necessary. Regarding the application to 3D images, the method could
be adapted in two ways: either by incorporating the third dimension
into the descriptor functions, or by treating the 3D image as a stack
of 2D images, computing the descriptors for each frame, and then
using the most appropriate statistical feature to represent the descriptor
value of the stacked images.

Modifying the calculation of the inscribed circle diameter of the
triangle formed by the corners, rather than the curvature diameter,
enhances the generalization of corner-focused descriptors. This
approach can compute roundness for highly angular shapes, such
as the ideal shapes in the training data. For shapes with high
roundness intensities, the curvature diameter may offer greater
sensitivity.
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Roundness PCA plots obtained with galena grain images for the three principal components; (A) PC1 against PC2 and (B) PC1 against PC3; the color of

the training data points represents the diameter elongation of the grain.

For Fourier descriptors, we selected one method with its
associated threshold (Wang et al., 2005). However, existing
studies present various methods, each with its own thresholds,
to separate harmonics related to form, roughness, and roundness
(Bowman et al., 2001; Bui et al., 1989; Zhou et al, 2015).
Some approaches compute roundness by subtracting the particle
spectrum from the equivalent moment ellipse and avoiding
arbitrary thresholds (Diepenbroek et al., 1992). These alternative
methods may provide valuable insights and could enhance the
framework by being incorporated through adaptations to the Python
functions included in this study. This method could also use the
elliptic Fourier method (xy), rather than the RO method, to avoid
errors with highly convex objects.
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the
decomposition, to our knowledge, only the Daubechies 9/7 function
has been applied (Al-Rousan et al., 2007; Chandan et al., 2004), and
we used the closest possible function (Bior 4.4 in the PyWavelets

Regarding roughness  descriptors using  wavelet

library). However, there is a wide variety of wavelet functions,
each producing a different transformation result (Guo et al., 2022).
Future studies should explore how different wavelet decomposition
functions highlight specific image features and their connections
to petrographic characteristics, such as inclusions or fractures.
Additionally, wavelet analysis was applied directly to the 2D binary
images rather than to their contours, which represent a 1D signal.
Finally, the roughness descriptor developed by Chandan et al. (2004)
describes grayscale images of aggregates rather than binary images.
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TABLE 4 Principal component analysis loadings for the roughness PCA on the generated and galena images.

Descriptors Generated images ’ Galena images

RSD Feret

Area convexity

Area convexity percentage

Perimeter convexity

Perimeter convexity percentage

Vertex concavity

RO Fourier roughness 26-180 combined

Erosion-dilation ratio

Morphological fractal

Box-counting fractal

Area-perimeter fractal

Wavelet texture

'The loadings have been rounded to the nearest thousandth. A color map highlights the positive (red) or negative (blue) effect of each descriptor on the principal components, with a more
intense color reflecting higher values.

7.2 Results Conversely, the roughness PCA excels at discriminating
roughness intensity, despite including 13 ideal shapes in both the
In the roundness PCA, the roundness descriptors effectively  training and testing datasets, along with roundness in the testing
distinguish between ideal shapes, performing comparably to  data. Theideal shapes, simulating form effects, cause data dispersion
form descriptors when no roughness is applied (Figure3A;  but minimally affect the roughness intensity discrimination
Back et al, 2025). This could be because adding sides to a  (Figure 7). Form dispersion is confirmed by testing data, which
shape, transitioning from a triangle to a dodecagon, registers as  show increased roundness and roughness intensity. With roundness
an increase in roundness. Adding infinitely many sides to an  applied, the ideal shapes become more similar, leading to a marked
ideal shape progressively makes it resemble a circle. However,  decrease in the data dispersion (Figure 8). The roughness PCA
the roundness PCA struggles to differentiate varying roundness  results for galena images further support these findings. PC1 sorts
intensities, regardless of shape. Beyond a roundness intensity of  the galena grains by roughness with high sensitivity, PC2 sorts
1.2 (2/10), PCA fails to distinguish between degrees of roundness, by area, and PC3 sorts by form and roundness, albeit with less
although visual differences are apparent. The difficulty of PCA  sensitivity than the roundness PCA. Although roughness PCA
in differentiating roundness intensities stems from overlapping  is minimally affected by form and roundness, it is significantly
descriptor values at high roundness intensities (Figure 5). Still, a  influenced by acquisition and segmentation artifacts, in contrast
more effective roundness discrimination is likely to occur when  to the roundness PCA, as illustrated in Figures 6, 9 by the points
there are fewer roundness values, such as between 4 and 6, as  highlighted in red. This sensitivity can be attributed to the reliance
separation is relative to the training data. When the roughness  of the roughness descriptors on the entire contour or image without
simulation is applied to rounded ideal shapes with increasing  simplification, unlike the roundness descriptors.
intensity, the capability of the roundness PCA to discriminate In the proposed method, PCA was chosen for its interpretability
between roundness and form significantly decreases, and the trend ~ and effectiveness in capturing linear relationships between variables.
reverses. Despite the increased number of sides, rough shapes = However, for more complex datasets where linear methods struggle
deviate further from the circle position (Figure 4). Roundness PCA  to capture the relationships between descriptor values, which
results for galena images align with these observations, as PC1 ~ could be the case for high roundness intensities, autoencoders
and PC2 effectively describe the form and roundness of the galena ~ (AEs) could be a suitable alternative. Yet, this comes at the cost
grain population, showing two trends from elongated, angular  of interpretability, as AEs, like all neural network-based methods,
rectangular grains and stubby angular rectangular grains to smooth  lack transparency and are more difficult to interpret (Cacciarelli
rounded grains (Figure 6A). PC3 records the populations roughness ~ and Kulahci, 2023). The use of PCA with image analysis—based
(Figure 6B). shape descriptors demonstrates that form, roundness, and

Frontiers in Earth Science 15 frontiersin.org


https://doi.org/10.3389/feart.2025.1634237
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Back et al.

PCZRoughness

-25 0.0 2.5 5.0 7.5 10.0 125
PClRoughness
" 4 Rg:
] 0.00
£ 2
3
~
o 0
Q.
-2
-4
2.5 5.0 7.5 10.0 125
PClRoughness
FIGURE 7

PC2Roughness

10.3389/feart.2025.1634237

12,5

2.5 5.0
PClRoughness

7.5 10.0

Roughness: training data (n = 19500)
0.0 circle

0.12 decagon
0.3 dodecagon
0.42 ellipse

0.6 hendecagon
heptagon
hexagon
nonagon
octagon
pentagon
rectangle
square
triangle

DOODOOOOOO0OO0OO0OO0

Roughness PCA plots showing the training data; (A) all ideal shapes are represented; (B) triangles and (C) circles. The red scale represents the

roughness intensity applied to the generated images

roughness are interdependent, which is consistent with our
previous study (Back et al., 2025).

7.3 A new perception of shape description

PCA using form descriptors captures the increasing roundness
intensity (Back et al, 2025), whereas PCA using roundness
descriptors can discriminate ideal shapes (Figure 3). On the other
hand, PCA using roughness descriptors is slightly influenced
by roundness intensity (Figure 8); however, roughness intensity
affects the ability of the roundness PCA to differentiate between
roundness and ideal shapes (Figure4). However, the effect
of roughness is minimal compared to the effect of form on
roundness.

This evidence demonstrates that roundness is a form changeset
with a minimal effect of roughness. Roundness is indeed a
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specific case of shape description, where various shapes transition
into a single form, the circle. Following this logic, shape
description encompasses large-scale (“form”) and small-scale
phenomena (“roughness”). This perspective explains the challenge
in establishing a threshold between roundness and roughness, both
in the context of Wadell’s definition of a corner and in computing
descriptors, e.g., obtained from Fourier analysis.

In conclusion, shape analysis focuses not on defining shapes
by form, roundness, and roughness but on discriminating between
them to identify trends within grain populations. Whether referred
to as roundness or other processes, these interpretations are based
on morphological characteristics. Descriptors should be classified
and studied according to their mathematical properties and the
aspects of the grain contour they define. The final version of this
framework aims to compute all available descriptors for each grain
image in the dataset and then select and combine them using
multivariate statistical tools.
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7.4 Potential applications of the method

The quantitative framework for grain shape analysis presented
in this study offers practical solutions for various real-world
applications. This method can be applied directly to geological
settings in which the object shape is crucial.

In volcanology, the analysis of volcanic ash particles can provide
insights into eruptive styles and magma ascent processes. For
example, high-viscosity magma eruptions produce equant, angular
to subrounded lithic fragments, whereas low-viscosity eruptions
yield perfect spheres or elongated droplets with smooth, fluid
surfaces. Phreatomagmatic eruptions generate small blocky or
pyramidal glass ash particles (Heiken, 1972). Recent studies have
demonstrated the effectiveness of convolutional neural networks
(CNNs) in classifying volcanic ash from images (Shoji et al., 2018).
By integrating CNN-based classifications with quantitative shape
descriptors and the PCA methodology, the interpretation and
understanding of classifications can be improved. PCA loadings
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reveal the contribution of each descriptor to shape discrimination,
and the associated formulas clarify the physical parameters driving
these variations.

In mineral exploration, where glacial sediments are used
to find hidden deposits, mineral shape is a key indicator of
transport. For example, gold grain morphology from glacial tills
and stream sediment are an indicator of distance to source
(Girard et al., 2021; Townley et al, 2003). Considering that the
transport distance of gold grains of different shapes is key to finding
a deposit, using an adequate geological setting, an equation could be
developed to relate shape transformation to transport distance for
the different combined shapes. This mathematical relation could be
a powerful tool to refine deposit position.

The presented method also has significant potential in planetary
science, particularly for describing crater and lake morphologies
on other planets. Analyzing the morphological characteristics of
these features can shed light on their formation mechanisms, thereby
improving our understanding of planetary evolution. Crater and
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lake outlines can be described using methods similar to those
applied to grains (Dhingra et al., 2019; Slezak et al., 2020). The
contours of craters and lakes can be represented as binary images,
like grain images, enabling our method to be applied. Its application
could lead to improved differentiation of the various morphologies
and a more detailed understanding of planetary surfaces and their
formation processes.

8 Conclusion

Using PCA to study roundness and roughness descriptors
reveals that each descriptor captures relevant information for its
intended category, as well as additional shape information for both
generated and actual grain images. This study, coupled with that of
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Back et al. (2025), demonstrates the potential of describing grain
shape tendencies within populations using only form (Back et al.,
2025), roundness, and roughness descriptors. These observations
lead to a new perception of shape, suggesting that shapes can be
defined by both large-scale and small-scale phenomena, with each
descriptor capturing aspects of both.

This study proposes a new methodology for shape analysis
that focuses on shape discrimination rather than shape definition
using form, roundness, and roughness. This methodology avoids the
unresolvable question of “What are the best descriptors?” and clearly
shows that form, roundness, and roughness are interdependent.

Our methodology combines descriptors and can be applied to
any 2D image. The proposed method can be summarized as follows:
1) obtain a grain binary image using segmentation techniques, 2)
compute the descriptors according to the study objective, and 3)
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combine the descriptors using multivariate statistical tools. The goal
is to analyze shape tendencies within the grain image dataset.

Data availability statement

The original contributions presented in this study are
included in the Supplementary Material, except for the image
datasets, which are available in the following GitHub repository:
https://github.com/AL-Back/PCA_grain_shapes/tree/main/Image_
datasets. The PyShapeDescriptors library can also be found on
GitHub in the following repository: https://github.com/Cyrilkt/
Image-Processing-Descriptors. Further inquiries can be directed
to the corresponding author.

Author contributions

ALB: Conceptualization, Formal Analysis, Methodology,
Visualization, Writing — original draft, Writing - review and editing.
CKT: Software, Validation, Writing - review and editing. LPB:
Conceptualization, Funding acquisition, Methodology, Project
administration, Supervision, Validation, Writing - review and

editing. AB: Supervision, Validation, Writing - review and editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. The authors declare
that financial support was received for the research, authorship,
and publication of this article. This research is funded by a Fonds
de Recherche du Québec—Nature et Technologies (FRQ-NT) and
Ministere des Ressources naturelles et Forét du Québec (MRNF)
grant to LPB, principal investigator (Programme de recherche en
partenariat sur le développement durable du secteur minier-II,
grant number: 2020-MN-283346 (https://doi.org/10.69777/283346)
and Programme de recherche en partenariat sur le développement
durable du secteur minier-III, grant number: 339845 (https://
doi.org/10.69777/339845)) with contributions from IOS Services
Géoscientifiques Inc. ALB received fellowships from FUQAC, MAC,
and TAMG. The authors declare that this study received funding
from IOS Services Géoscientifiques, Inc. The funder was not
involved in the study design, data collection, analysis, interpretation,
writing of this article, or the decision to submit it for publication.

References

Al Ibrahim, M. A., Kerimov, A., Mukerji, T., and Mavko, G. (2019). Particula:
a simulator tool for computational rock physics of granular media. Geophysics 84,
F85-F95. doi:10.1190/ge02018-0481.1

Al-Rousan, T., Masad, E., Tutumluer, E., and Pan, T. (2007). Evaluation of image
analysis techniques for quantifying aggregate shape characteristics. Constr. Build. Mater.
21, 978-990. doi:10.1016/j.conbuildmat.2006.03.005

Altuhafi, E N., Coop, M. R, and Georgiannou, V. N. (2016). Effect of particle shape
on the mechanical behavior of natural sands. J. Geotech. Geoenvironmental Eng. 142,
04016071. doi:10.1061/(ASCE)GT.1943-5606.0001569

Asvestas, P., Matsopoulos, G. K., and Nikita, K. S. (1999). Estimation of fractal
dimension of images using a fixed mass approach. Pattern Recognit. Lett. 20, 347-354.
doi:10.1016/S0167-8655(99)00004-5

Frontiers in Earth Science

19

10.3389/feart.2025.1634237

Acknowledgments

Réjean Girard is thanked for his valuable contributions and the
energy he shared. Sylvain Tual is thanked for his help with the
interactive graphs. We thank the reviewers and the editor for their
assistance in improving this manuscript.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that Generative Al was used in the creation
of this manuscript. For english verification and amelioration.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All  claims
of the authors and do not necessarily represent those of
their those of the publisher,
the editors and the reviewers. Any product that may be

expressed in this article are solely those

affiliated ~organizations, or

evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The
found online
feart.2025.1634237/full#supplementary-material

this article can be

https://www.frontiersin.org/articles/10.3389/

Supplementary Material for

at:

Back, A. L., Bédard, L. P., Maitre, J., and Bouchard, K. (2023). From rocks to pixels:
a protocol for reproducible mineral imaging and its applications in machine learning.
Minerals 14, 51. doi:10.3390/min14010051

Back, A. L., Kana Tepakbong, C., Bédard, L. P, and Barry, A. (2025). From rocks
to pixels: a comprehensive framework for grain shape characterization through the
image analysis of size, orientation, and form descriptors. Front. Earth Sci. 13, 1508690.
doi:10.3389/feart.2025.1508690

Banerjee, S., Chakraborti, P. C., and Saha, S. K. (2019). An automated methodology
for grain segmentation and grain size measurement from optical micrographs.
Measurement 140, 142-150. doi:10.1016/j.measurement.2019.03.046

Barrett, P. J. (1980). The shape of rock particles, a critical review. Sedimentology 27,
291-303. doi:10.1111/j.1365-3091.1980.tb01179.x

frontiersin.org


https://doi.org/10.3389/feart.2025.1634237
https://github.com/AL-Back/PCA_grain_shapes/tree/main/Image_datasets
https://github.com/AL-Back/PCA_grain_shapes/tree/main/Image_datasets
https://github.com/Cyrilkt/Image-Processing-Descriptors
https://github.com/Cyrilkt/Image-Processing-Descriptors
https://doi.org/10.69777/283346
https://doi.org/10.69777/339845
https://doi.org/10.69777/339845
https://www.frontiersin.org/articles/10.3389/feart.2025.1634237/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2025.1634237/full#supplementary-material
https://doi.org/10.1190/geo2018-0481.1
https://doi.org/10.1016/j.conbuildmat.2006.03.005
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001569
https://doi.org/10.1016/S0167-8655(99)00004-5
https://doi.org/10.3390/min14010051
https://doi.org/10.3389/feart.2025.1508690
https://doi.org/10.1016/j.measurement.2019.03.046
https://doi.org/10.1111/j.1365-3091.1980.tb01179.x
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Back et al.

Bowman, E. T, Soga, K, and Drummond, W. (2001). Particle shape
characterisation using Fourier descriptor analysis. Géotechnique 51, 545-554.
doi:10.1680/geot.2001.51.6.545

Bui, E. N., Mazzullo, J. M., and Wilding, L. P. (1989). Using quartz grain size and shape
analysis to distinguish between aeolian and fluvial deposits in the Dallol Bosso of Niger
(West Africa). Earth Surf. Process. Landyf. 14, 157-166. doi:10.1002/esp.3290140206

Buscarnera, G., and Einav, 1. (2021). The mechanics of brittle granular materials with
coevolving grain size and shape. Proc. R. Soc. Math. Phys. Eng. Sci. 477 (2249), 20201005.
doi:10.1098/rspa.2020.1005

Cacciarelli, D., and Kulahci, M. (2023). Hidden dimensions of the data: PCA vs
autoencoders. Qual. Eng. 35, 741-750. doi:10.1080/08982112.2023.2231064

Cailleux, A. (1942). Les actions éoliennes périglaciaires en Europe. Paris, France:
Société géologique.

Calderon De Anda, J., Wang, X. Z., Lai, X., and Roberts, K. J. (2005). Classifying
organic crystals via in-process image analysis and the use of monitoring charts
to follow polymorphic and morphological changes. J. Process Control 15, 785-797.
doi:10.1016/j.jprocont.2005.02.002

Caple, J., Byrd, J., and Stephan, C. N. (2017). Elliptical Fourier analysis: fundamentals,
applications, and value for forensic anthropology. Int. J. Leg. Med. 131, 1675-1690.
doi:10.1007/s00414-017-1555-0

Chandan, C., Sivakumar, K., Masad, E., and Fletcher, T. (2004). Application of
imaging techniques to geometry analysis of aggregate particles. J. Comput. Civ. Eng. 18,
75-82. doi:10.1061/(ASCE)0887-3801(2004)18:1(75)

Chen, Y, Yi, Y, Dai, Y., and Shi, X. (2024). A multiangle polarised imaging-based
method for thin section segmentation. J. Microsc. 294, 14-25. doi:10.1111/jmi.13261

Cheng, Q. (1995). The perimeter-area fractal model and its application to geology.
Math. Geol. 27, 69-82. doi:10.1007/BF02083568

Cox, M. R., and Budhu, M. (2008). A practical approach to grain shape quantification.
Eng. Geol. 96, 1-16. doi:10.1016/j.enggeo.2007.05.005

Dhingra, R. D., Barnes, J. W,, Hedman, M. M., and Radebaugh, J. (2019). Using
elliptical Fourier descriptor analysis (EFDA) to quantify titan lake morphology. Astron.
J. 158, 230. doi:10.3847/1538-3881/ab4907

Diepenbroek, M., Bartholomd, A., and Ibbeken, H. (1992). How round is round? A
new approach to the topic “roundness” by Fourier grain shape analysis. Sedimentology
39, 411-422. doi:10.1111/§.1365-3091.1992.tb02125.x

Dobkins, J. E., and Folk, R. L. (1970). Shape development on Tahiti-Nui. J. Sediment.
Res. 40, 1167-1203. doi:10.1306/74D72162-2B21-11D7-8648000102C1865D

Douglas, D. H., and Peucker, T. K. (1973). Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature. Cartographica 10,
112-122. doi:10.3138/FM57-6770-U75U-7727

Ehrlich, R., and Weinberg, B. (1970). An exact method for characterization
of grain shape. J. Sediment. Res. 40, 205-212. doi:10.1306/74D71F1E-2B21-11D7-
8648000102C1865D

Florio, B. J., Fawell, P. D., and Small, M. (2019). The use of the perimeter-area
method to calculate the fractal dimension of aggregates. Powder Technol. 343, 551-559.
doi:10.1016/j.powtec.2018.11.030

Folk, R. L. (1951). A comparison chart for visual percentage estimation. J. Sediment.
Res. 21, 32-33. doi:10.1306/d4269413-2b26-11d7-8648000102¢1865d

Garzanti, E., Resentini, A., Ando, S., Vezzoli, G., Pereira, A., and Vermeesch, P. (2015).
Physical controls on sand composition and relative durability of detrital minerals during
ultra-long distance littoral and aeolian transport (Namibia and southern Angola).
Sedimentology 62,971-996. doi:10.1111/sed.12169

Girard, R., Tremblay, J., Néron, A., Longuépée, H., and Makvandi, S. (2021).
Automated gold grain counting. Part 2: what a gold grain size and shape can tell.
Minerals 11, 379. d0i:10.3390/min11040379

Goldstone, R. L. (1993). Feature distribution and biased estimation of visual displays.
J. Exp. Psychol. Hum. Percept. Perform. 19, 564-579. doi:10.1037/0096-1523.19.3.564

Guo, T, Zhang, T., Lim, E., Lépez-Benitez, M., Ma, E, and Yu, L. (2022). A review
of wavelet analysis and its applications: challenges and opportunities. IEEE Access 10,
58869-58903. doi:10.1109/ACCESS.2022.3179517

Heiken, G. (1972). Morphology and petrography of volcanic ashes. GSA Bull. 83,
1961-1988. doi:10.1130/0016-7606(1972)83[1961:MAPOVA]2.0.CO;2

Heilbronner, R., and Keulen, N. (2006). Grain size and grain shape analysis of
fault rocks. Deformation Mech. Microstruct. rheology rocks Nat. Exp. 427, 199-216.
doi:10.1016/j.tecto.2006.05.020

Hentschel, M. L., and Page, N. W. (2003). Selection of descriptors for particle shape
characterization. Part. Part. Syst. Charact. 20, 25-38. doi:10.1002/ppsc.200390002

Hibbard, M. J. (1994). Petrographic classification of crystal morphology. J. Geol. 102,
571-581. doi:10.1086/629699

Higgins, M. D. (2002). A crystal size-distribution study of the Kiglapait layered mafic
intrusion, labrador, Canada: evidence for textural coarsening. Contrib. Mineral. Petrol.
144, 314-330. d0i:10.1007/s00410-002-0399-9

Frontiers in Earth Science

20

10.3389/feart.2025.1634237

Huddart, D., Bennett, M. R., Hambrey, M. ], Glasser, N. F, and Crawford, K.
(1998). Origin of well-rounded gravels in glacial deposits from Breggerhalvoya,
northwest Spitsbergen: potential problems caused by sediment reworking in the glacial
environment. Polar Res. 17, 61-70. d0i:10.1111/j.1751-8369.1998.tb00259.x

Huo, Y, Liu, T, Liu, H, Ma, C. Y, and Wang, X. Z. (2016). In-situ crystal
morphology identification using imaging analysis with application to the L-glutamic
acid crystallization. Chem. Eng. Sci. 148, 126-139. d0i:10.1016/j.ces.2016.03.039

Hyslip, J. P, and Vallejo, L. E. (1997). Fractal analysis of the roughness and
size distribution of granular materials. Eng. Geol., Fractals Eng. Geol. 48, 231-244.
doi:10.1016/S0013-7952(97)00046-X

Krumbein, W. C. (1941). Measurement and geological significance of shape and
roundness of sedimentary particles. J. Sediment. Res. 11, 64-72. d0i:10.1306/D42690F3-
2B26-11D7-8648000102C1865D

Kuenen, P. H. (1956). Experimental abrasion of pebbles: 2. Rolling by current. J. Geol.
64, 336-368. doi:10.1086/626370

Kuo, C.-Y,, and Freeman, R. B. (2000). Imaging indices for quantification of
shape, angularity, and surface texture of aggregates. Transp. Res. Rec. 1721, 57-65.
doi:10.3141/1721-07

Lashgari, A., Ghamami, S., Shahbazkhany, S., Salgado-Moran, G., and Glossman-
Mitnik, D. (2015). Fractal dimension calculation of a manganese-chromium
bimetallic nanocomposite using image processing. J. Nanomater. 2015, 384835.
doi:10.1155/2015/384835

Latif, G., Bouchard, K., Maitre, J., Back, A., and Bédard, L. P. (2022). Deep-
learning-based automatic mineral grain segmentation and recognition. Minerals 12,
455. doi:10.3390/min12040455

Lees, G. (1964). A new method for determining the angularity of particles.
Sedimentology 3, 2-21. doi:10.1111/j.1365-3091.1964.tb00271.x

Liang, P, and Yang, X. (2023). Grain shape evolution of sand-sized sediments
during transport from mountains to dune fields. J. Geophys. Res. Earth Surf. 128,
€2022JF006930. doi:10.1029/2022JF006930

Lu, Z., Yao, A, Su, A., Ren, X,, Liu, Q.,and Dong, S. (2019). Re-recognizing the impact
of particle shape on physical and mechanical properties of sandy soils: a numerical
study. Eng. Geol. 253, 36-46. doi:10.1016/j.enggeo.2019.03.011

Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the
wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674-693.
doi:10.1109/34.192463

Maroof, M. A., Mahboubi, A., Noorzad, A., and Safi, Y. (2020). A new approach
to particle shape classification of granular materials. Transp. Geotech. 22, 100296.
doi:10.1016/j.trge0.2019.100296

Marsh, B. D. (1988). Crystal size distribution (CSD) in rocks and the
kinetics and dynamics of crystallization. Contrib. Mineral. Petrol. 99, 277-291.
doi:10.1007/BF00375362

Masad, E., and Button, J. W. (2000). Unified imaging approach for measuring
aggregate angularity and texture. Comput.-Aided Civ. Infrastruct. Eng. 15, 273-280.
doi:10.1111/0885-9507.00191

Masad, E., Button, J. W,, and Papagiannakis, T. (2000). Fine-aggregate angularity:
automated image analysis approach. Transp. Res. Rec. 1721, 66-72. d0i:10.3141/1721-08

Masad, E., Olcott, D., White, T., and Tashman, L. (2001). Correlation of fine aggregate
imaging shape indices with asphalt mixture performance. Transp. Res. Rec. J. Transp. Res.
Board 1757, 148-156. doi:10.3141/1757-17

Michot-Roberto, S., Garcia-Hernandez, A., Dopazo-Hilario, S., and Dawson, A.
(2021). The spherical primitive and perlin noise method to recreate realistic aggregate
shapes. Granul. Matter 23, 41. doi:10.1007/s10035-021-01105-6

Moaveni, M., Wang, S., Hart, J. M., Tutumluer, E., and Ahuja, N. (2013). Evaluation
of aggregate size and shape by means of segmentation techniques and aggregate image
processing algorithms. Transp. Res. Rec. 2335, 50-59. doi:10.3141/2335-06

Moaveni, M., Mahmoud, E., Ortiz, E. M., Tutumluer, E., and Beshears, S. (2014). Use
of advanced aggregate imaging systems to evaluate aggregate resistance to breakage,
abrasion, and polishing. Transp. Res. Rec. 2401, 1-10. doi:10.3141/2401-01

Moore, C. A., and Donaldson, C. E. (1995). Quantifying soil microstructure using
fractals. Géotechnique 45, 105-116. doi:10.1680/geot.1995.45.1.105

Murphy, C. P, and Kemp, R. A. (1984). The over-estimation of clay and the under-
estimation of pores in soil thin sections. J. Soil Sci. 35, 481-495. doi:10.1111/j.1365-
2389.1984.tb00305.x

Nédélec, A., and Bouchez, J. L. (2015). Granites: petrology, structure, geological setting,
and metallogeny. Oxford University Press.

Needham, A. W,, Messenger, S., Han, ., and Keller, L. P. (2017). Corundum-hibonite
inclusions and the environments of high temperature processing in the early solar
system. Geochim. Cosmochim. Acta 196, 18-35. d0i:10.1016/j.gca.2016.04.022

Pan, T., and Tutumluer, E. (2007). Quantification of coarse aggregate surface texture
using image analysis. J. Test. Eval. 35, 177-186. doi:10.1520/JTE100181

Perlin, K. (1985). An image synthesizer. ACM SIGGRAPH Comput. Graph. 19,
287-296. doi:10.1145/325165.325247

frontiersin.org


https://doi.org/10.3389/feart.2025.1634237
https://doi.org/10.1680/geot.2001.51.6.545
https://doi.org/10.1002/esp.3290140206
https://doi.org/10.1098/rspa.2020.1005
https://doi.org/10.1080/08982112.2023.2231064
https://doi.org/10.1016/j.jprocont.2005.02.002
https://doi.org/10.1007/s00414-017-1555-0
https://doi.org/10.1061/(ASCE)0887-3801(2004)18:1(75)
https://doi.org/10.1111/jmi.13261
https://doi.org/10.1007/BF02083568
https://doi.org/10.1016/j.enggeo.2007.05.005
https://doi.org/10.3847/1538-3881/ab4907
https://doi.org/10.1111/j.1365-3091.1992.tb02125.x
https://doi.org/10.1306/74D72162-2B21-11D7-8648000102C1865D
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1306/74D71F1E-2B21-11D7-8648000102C1865D
https://doi.org/10.1306/74D71F1E-2B21-11D7-8648000102C1865D
https://doi.org/10.1016/j.powtec.2018.11.030
https://doi.org/10.1306/d4269413-2b26-11d7-8648000102c1865d
https://doi.org/10.1111/sed.12169
https://doi.org/10.3390/min11040379
https://doi.org/10.1037/0096-1523.19.3.564
https://doi.org/10.1109/ACCESS.2022.3179517
https://doi.org/10.1130/0016-7606(1972)83[1961:MAPOVA]2.0.CO;2
https://doi.org/10.1016/j.tecto.2006.05.020
https://doi.org/10.1002/ppsc.200390002
https://doi.org/10.1086/629699
https://doi.org/10.1007/s00410-002-0399-9
https://doi.org/10.1111/j.1751-8369.1998.tb00259.x
https://doi.org/10.1016/j.ces.2016.03.039
https://doi.org/10.1016/S0013-7952(97)00046-X
https://doi.org/10.1306/D42690F3-2B26-11D7-8648000102C1865D
https://doi.org/10.1306/D42690F3-2B26-11D7-8648000102C1865D
https://doi.org/10.1086/626370
https://doi.org/10.3141/1721-07
https://doi.org/10.1155/2015/384835
https://doi.org/10.3390/min12040455
https://doi.org/10.1111/j.1365-3091.1964.tb00271.x
https://doi.org/10.1029/2022JF006930
https://doi.org/10.1016/j.enggeo.2019.03.011
https://doi.org/10.1109/34.192463
https://doi.org/10.1016/j.trgeo.2019.100296
https://doi.org/10.1007/BF00375362
https://doi.org/10.1111/0885-9507.00191
https://doi.org/10.3141/1721-08
https://doi.org/10.3141/1757-17
https://doi.org/10.1007/s10035-021-01105-6
https://doi.org/10.3141/2335-06
https://doi.org/10.3141/2401-01
https://doi.org/10.1680/geot.1995.45.1.105
https://doi.org/10.1111/j.1365-2389.1984.tb00305.x
https://doi.org/10.1111/j.1365-2389.1984.tb00305.x
https://doi.org/10.1016/j.gca.2016.04.022
https://doi.org/10.1520/JTE100181
https://doi.org/10.1145/325165.325247
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Back et al.

Pirard, E. (2004). “Image measurements, in Image analysis, sediments and
paleoenvironments. Editor P. Francus (Netherlands, Dordrecht: Springer), 59-86.

Pupin, J. P. (1980). Zircon and granite petrology. Contrib. Mineral. Petrol. 73,207-220.
doi:10.1007/BF00381441

Rao, C., Tutumluer, E., and Kim, I. T. (2002). Quantification of coarse aggregate
angularity based on image analysis. Transp. Res. Rec. 1787, 117-124. doi:10.3141/1787-
13

Sandeep, C. S., He, H., and Senetakis, K. (2018). An experimental micromechanical
study of sand grain contacts behavior from different geological environments. Eng. Geol.
246, 176-186. doi:10.1016/j.enggeo.2018.09.030

Scharf, T., Kirkland, C. L., Daggitt, M. L., Barham, M., and Puzyrev, V.
(2022). AnalyZr: a python application for zircon grain image segmentation
and shape analysis. Comput. Geosci. 162, 105057. doi:10.1016/j.cageo.2022.
105057

Shelton, J. W, and Mack, D. E. (1970). Grain orientation in determination
of paleocurrents and sandstone Trendsl. AAPG Bull 54, 1108-1119.
doi:10.1306/5D25CBA9-16C1-11D7-8645000102C1865D

Shoji, D., Noguchi, R., Otsuki, S., and Hino, H. (2018). Classification of volcanic
ash particles using a convolutional neural network and probability. Sci. Rep. 8, 8111.
doi:10.1038/s41598-018-26200-2

Slezak, T. J., Radebaugh, J., Christiansen, E. H., and Belk, M. C. (2020). Classification
of planetary craters using outline-based morphometrics. J. Volcanol. Geotherm. Res. 407,
107102. doi:10.1016/j.jvolgeores.2020.107102

Suzuki, K., Fujiwara, H., and Ohta, T. (2015). The evaluation of macroscopic
and microscopic textures of sand grains using elliptic Fourier and principal

component analysis: implications for the discrimination of sedimentary environments.
Sedimentology 62, 1184-1197. doi:10.1111/sed.12183

Swan, B. (1974). Measures of particle roundness; a note. J. Sediment. Res. 44, 572-577.
doi:10.1306/74D72A90-2B21-11D7-8648000102C1865D

Tafesse, S., Robison Fernlund, J. M., Sun, W,, and Bergholm, E. (2013). Evaluation of
image analysis methods used for quantification of particle angularity. Sedimentology 60,
1100-1110. doi:10.1111/j.1365-3091.2012.01367.x

Townley, B. K., Hérail, G., Maksaev, V., Palacios, C., de Parseval, P, Sepulveda,
E, et al. (2003). Gold grain morphology and composition as an exploration tool:

Frontiers in Earth Science

21

10.3389/feart.2025.1634237

application to gold exploration in covered areas. Geochem. Explor. Environ. Anal. 3,
29-38. doi:10.1144/1467-787302-042

Tutumluer, E., and Pan, T. (2008). Aggregate morphology affecting strength and
permanent deformation behavior of unbound aggregate materials. J. Mater. Civ. Eng.
20, 617-627. doi:10.1061/(ASCE)0899-1561(2008)20:9(617)

van Eck, N. J., and Waltman, L. (2010). Software survey: VOSviewer, a computer
program for bibliometric mapping. Scientometrics 84, 523-538. doi:10.1007/s11192-
009-0146-3

Ventura, G., De Rosa, R., Colletta, E., and Mazzuoli, R. (1996). Deformation patterns
in a high-viscosity lava flow inferred from the crystal preferred orientation and
imbrication structures: an example from Salina (Aeolian Islands, southern Tyrrhenian
Sea, Italy). Bull. Volcanol. 57, 555-562. doi:10.1007/BF00304439

Vernon, R. H., and Collins, W. J. (2011). Structural criteria for identifying granitic
cumulates. J. Geol. 119, 127-142. d0i:10.1086/658198

Wadell, H. (1932). Volume, shape, and roundness of rock particles. J. Geol. 40,
443-451. doi:10.1086/623964

Wadell, H. (1933). Sphericity and roundness of rock particles. J. Geol. 41, 310-331.
doi:10.1086/624040

Wang, L., Wang, X., Mohammad, L., and Abadie, C. (2005). Unified method to
quantify aggregate shape angularity and texture using Fourier analysis. . Mater. Civ.
Eng. 17, 498-504. doi:10.1061/(ASCE)0899-1561(2005)17:5(498)

Wentworth, C. K. (1919). A laboratory and field study of cobble abrasion. J. Geol. 27,
507-521. doi:10.1086/622676

Wentworth, C. K. (1922). The shapes of beach pebbles. Washington, DC, United States:
USGS, 75-83. doi:10.3133/pp131C

Zheng, J., and Hryciw, R. D. (2016). Segmentation of contacting soil particles
in images by modified watershed analysis. Comput. Geotech. 73, 142-152.
doi:10.1016/j.compgeo.2015.11.025

Zheng, D., Wu, S., Ma, C, Xiang, L., Hou, L., Chen, A,, et al. (2022). Zircon
classification from cathodoluminescence images using deep learning. Geosci. Front. 13
(6), 101436. doi:10.1016/j.gs£.2022.101436

Zhou, B., Wang, J., and Zhao, B. (2015). Micromorphology characterization
and reconstruction of sand particles using micro X-ray tomography and spherical
harmonics. Eng. Geol. 184, 126-137. doi:10.1016/j.enggeo.2014.11.009

frontiersin.org


https://doi.org/10.3389/feart.2025.1634237
https://doi.org/10.1007/BF00381441
https://doi.org/10.3141/1787-13
https://doi.org/10.3141/1787-13
https://doi.org/10.1016/j.enggeo.2018.09.030
https://doi.org/10.1016/j.cageo.2022.105057
https://doi.org/10.1016/j.cageo.2022.105057
https://doi.org/10.1306/5D25CBA9-16C1-11D7-8645000102C1865D
https://doi.org/10.1038/s41598-018-26200-2
https://doi.org/10.1016/j.jvolgeores.2020.107102
https://doi.org/10.1111/sed.12183
https://doi.org/10.1306/74D72A90-2B21-11D7-8648000102C1865D
https://doi.org/10.1111/j.1365-3091.2012.01367.x
https://doi.org/10.1144/1467-787302-042
https://doi.org/10.1061/(ASCE)0899-1561(2008)20:9(617)
https://doi.org/10.1007/s11192-009-0146-3
https://doi.org/10.1007/s11192-009-0146-3
https://doi.org/10.1007/BF00304439
https://doi.org/10.1086/658198
https://doi.org/10.1086/623964
https://doi.org/10.1086/624040
https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(498)
https://doi.org/10.1086/622676
https://doi.org/10.3133/pp131C
https://doi.org/10.1016/j.compgeo.2015.11.025
https://doi.org/10.1016/j.gsf.2022.101436
https://doi.org/10.1016/j.enggeo.2014.11.009
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	1 Introduction
	2 Why quantitative petrography matters for petrology?
	3 Roundness and roughness descriptors
	3.1 Corner-focused roundness descriptors
	3.2 Roundness descriptors using a simplified grain contour
	3.3 Fourier descriptors
	3.4 Roughness descriptors based on morphological operations
	3.5 Roughness descriptors using curvature properties
	3.6 Advanced mathematical roughness descriptors

	4 Classification
	5 Methodology
	5.1 Article selection
	5.2 Image generation and PCA training and testing data
	5.3 Descriptor computation
	5.4 Descriptor tests

	6 Results
	6.1 Roundness PCA
	6.2 Roughness PCA

	7 Discussion
	7.1 Methodology
	7.2 Results
	7.3 A new perception of shape description
	7.4 Potential applications of the method

	8 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

