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Deep transfer learning with
Bayesian optimization for
evolutionary-stage prediction of
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The landslide displacement in the Three Gorges Reservoir Area (TGRA) follows a
step-like pattern, making the evolutionary stage difficult to predict. An optimized
transfer learning model integrating a convolutional neural network (CNN) and
bidirectional long short-term memory (BiLSTM) is proposed for predicting the
evolutionary stage of displacement. The Bayesian algorithm is used to optimize
hyperparameters of the models. The CNN-BiLSTM-Bayesian model first trains
a deep learning model based on the source domain (the Baishuihe landslide).
Then, transfer learning techniques and parameter fine-tuning are applied to
transfer knowledge from the Baishuihe landslide to the target domain (the
Bazimen landslide). The results show that the CNN-BiLSTM-Bayesian model
is better than other models, such as BiLSTM and gated recurrent unit (GRU).
Compared with BiLSTM, the F1-score and area under the curve (AUC) of the
proposed model improved by 4.94% and 4.88% for the Baishuihe landslide,
respectively. The CNN layer can extract features of data, and the BiLSTM layer
can capture temporal information within displacement data. The proposed
model not only acquires knowledge from similar landslide cases but also has
excellent accuracy despite limited new data. Therefore, the optimized transfer
learning model can accurately predict the evolutionary stage and provide a
reference for landslide assessment.

KEYWORDS

landslide evolutionary stage, CNN-BiLSTM-Bayesian, transfer learning, landslide
earning early warning, step-like landslides

1 Introduction

Landslides are frequent hazardous geological events that can cause significant damage
to human lives, infrastructure, and the sustainability of the local environment (Fan et al.,
2018; Wu et al., 2020; Wang et al., 2022). The safety of landslides is related to the
evolutionary stage of landslide displacement (Ge et al., 2022). Influenced by geological
structures, rainfall, and reservoir water level, the Three Gorges Reservoir Area (TGRA) is
one of China’s high-risk regions for step-like landslides (Wang et al., 2022). Affected by
rainfall and reservoir water level, the displacement curve of a step-like landslide contains
points with a significant increase in displacement (mutation points) (Wang et al., 2014;
Lian et al., 2018; Zhou et al., 2018).

Accurately predicting mutation points in landslide evolution is crucial for landslide
prevention and maintaining sustainability in the TGRA (Sun et al., 2022). Landslide
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FIGURE 1
The structure of the article.

displacement prediction approaches can be classified into three
categories: mechanical theory, statistical methods, and machine
learning models (Muhammad et al., 2022; Ma et al., 2022;
Gong et al., 2022). Recent research has confirmed that machine
learning (ML) and deep learning (DL) are reliable methods for
studying landslides (Liu et al., 2015; Li et al., 2021; Gong et al.,
2022; Wang et al., 2022). Moreover, subsurface thermal feedback
under high-voltage conditions has been shown to impact material
stability, reinforcing the need to consider coupled effects in
prediction models (Ahmad et al., 2025).

Many researchers developed various machine learning models
to predict landslide displacement (Zhang et al., 2021; Qiao et al.,
2023; Zai et al., 2024). Yang et al. (2022) established a probabilistic
displacement model based on a sparse Gaussian process to predict
landslide displacement, and the results demonstrate the superiority
of the proposed model. Li et al. (2021) established a hybrid machine
learning model based on gray wolf optimization to predict step-
like displacement. However, landslide evolution is complex and
exhibits strong nonlinearity. In addition, influencing factors can
affect subsequent displacement and stability (Wang et al., 2022).
Therefore, establishing a dynamic model is appropriate for landslide
deformation prediction. Geometric configuration, such as tunnels
or slope shape, has been shown to significantly impact deformation
under stress fields (Alsabhan et al., 2021). More importantly, most
studies apply machine learning models to a single landslide case,
resulting in a lack of transferability. Therefore, it is essential to

construct a transferable model that can capture the influencing
factors of analogous landslides.

Typically, the evolutionary stage is classified into two types:
mutation points and stationary points (Sun et al., 2022). However,
the method proposed by Sun et al. does not consider rainfall
and reservoir water level, which are key factors affecting step-
like landslides (Wang et al., 2022). Therefore, these models fail
to capture local features and their coupling relationships. The
model’s performance, convergence velocity, and generalization
capacity are substantially affected by model hyperparameters
(Xia et al., 2017; Kavzoglu and Teke, 2022).

This study aims to construct a deep transfer learning model
based onBayesian optimization for predicting the evolutionary stage
of landslides. The organization of the article is depicted in Figure 1.
The Baishuihe and Bazimen landslides are taken as case studies.
Transfer learning is utilized to acquire knowledge from similar
landslides. Finally, an optimized CNN-BiLSTM-Bayesian model is
established to predict the evolutionary stage.

2 Methodology

2.1 Transfer learning

Transfer learning is a machine learning method that utilizes
the knowledge from a model trained on a source task (Ds) and
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FIGURE 2
Diagram of transfer learning and traditional machine learning. (A) Transfer learning. (B) Traditional machine learning.

FIGURE 3
Transfer learning model of the Baishuihe and Bazimen landslides.

transfers it to a target task (Ts) to improve transferability ability
(Wang et al., 2023), as shown in Figure 2. Traditional machine
learning or deep learning methods typically train the model from
scratch; even if the tasks are similar, the parameters of the existing
model cannot be directly reused (Figure 2). For transfer learning,
the model trained on the source task is initially employed to
extract relevant knowledge for the target task. Subsequently, certain
parameters of the model are fine-tuned to align with the specific
requirements of the target task. This fine-tuning makes transfer
learning more efficient than training a high-performance model
from scratch.

The Baishuihe and Bazimen landslides are both categorized
as reservoir drawdown-induced landslides and exhibit similar
monitoring characteristics (Zhang et al., 2021). Previous studies
have demonstrated that transfer learning can substantially enhance
the predictive performance of models for such tasks (Ye and Dai,
2021). Moreover, the target task in a transfer learning framework
typically requires only limited monitoring data, thereby reducing
both the data demand and the computational cost associated with
model training (Wang et al., 2023). In this study, the Baishuihe
landslide is used as the source task, and the Bazimen landslide is
taken as the target task (Figure 3).
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FIGURE 4
The components of the LSTM unit.

FIGURE 5
The BiLSTM workflow.

2.2 CNN-BiLSTM

CNN is designed for processing images and time-series
data. It can improve computational efficiency by sharing local
receptive fields and parameters (Zai et al., 2024). Because landslide
displacement is related to reservoir water level and rainfall, CNN can
capture features of waveform sequences by utilizing local receptive
fields and weight sharing.

The LSTM network has three gates that control the flow of
information, helpingmanage long-term information and preventing
gradient vanishing problems (Zai et al., 2024). These gates are the
forget gate ( ft), the input gate (it), and the output gate (ot).The input
door controls the retention of the current information (Equation 1).
The forget gate removes some information from the previous state
(Equation 2). The output gate controls what information is sent to
the next hidden state (Equation 3).

ft = σ(W f .[h(t−1),xt] + b f) (1)

it = σ(Wi.[h(t−1),xt] + bi) (2)

ot = σ(Wo.[h(t−1),xt] + bo) (3)

Ct = gtit +C(t−1) ft (4)

ht = ot tanhCt (5)

Where σ is the activation function; W f , Wi, and Wo represent
weight values; b f , bi, and bo are the bias terms,; xt is the input; gt
represents the candidate cell;Ct is the cell (Equation 4), ht represents
hidden state (Equation 5). Figure 4 presents the internal structure
and functional components of a typical LSTM unit.
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FIGURE 6
Gaussian processes for samples.

TABLE 1 The process of Bayesian optimization.

Process for Bayesian process

Gaussian process for Obj(x)
Initializedata
whilen ≤ N
  FitModel(S f ,S) → p(y|x,S)
  argmaxAc(x,p(y|x,S)) → xi
   f(xi) → yi
  S∪ (xi,yi) → S
  returnS

BiLSTM is composed of two independent LSTM networks,
which are respectively responsible for processing the input sequence
from two directions (forward and backward). Therefore, a BiLSTM
model can obtain information before and after the current time
step simultaneously (Huang et al., 2020). Incorporating attention
mechanisms into wave-based networks further enhances such
temporal modeling capabilities (Moreh et al., 2024).

BiLSTM can effectively capture the forward and backward
dependencies of the displacement sequence by running two
independent LSTM networks on the sequence data in parallel
(Figure 5). h⃗ f and h⃗b represent the forward and backward
propagation states at the current time, respectively. They update
the effective information of the forward and backward hidden
states h⃗ f−1 and h⃗b−1 from the previous time step. The two hidden
layers are weighted and connected to acquire the output ht
of BiLSTM. The calculation flow of the BiLSTM is shown in
Equations 6–8.

h⃗ f = LSTM(xt, h⃗ f−1) (6)

FIGURE 7
K-means clustering diagram.

h⃗b = LSTM(xt, h⃗b−1) (7)

ht = σ(Wh.[h⃗ f , h⃗b] + bh) (8)

WhereWh is the weight matrix and bh is the bias parameter.
Therefore, a CNN-BiLSTM model can capture both the time-

series features of the displacement curve and associated influencing
factors, making it suitable for predicting the evolutionary stage
of step-like landslides. Lattice-based simulations have also
been used to model cemented geomaterials under evolving
stress paths (Rizvi et al., 2020).

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2025.1634728
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Ma et al. 10.3389/feart.2025.1634728

FIGURE 8
Location of landslide research area.

2.3 Bayesian optimization

Themodel’s hyperparameters significantly influence its accuracy
(Li et al., 2021). However, grid search (GS) and random search (RS)
require time resources and are inefficient (Xia et al., 2017). The
Bayesian method is a global optimization technique designed to
efficiently optimize machine learning models (Abbas et al., 2023).
At each iteration, a surrogate model of the objective function
is constructed based on all current evaluation results, and an
acquisition function is employed to determine the next optimal
sampling point. Therefore, the Bayesian optimization consists of
two core components: a surrogate model that approximates the
objective function and an acquisition function that determines the
sampling strategy. The surrogate model serves as an approximation
of the objective function, addressing the parameter optimization
problem by constructing a stochastic mapping from the input
parameter space to the corresponding objective function values.

The acquisition function mathematically balances exploration and
exploitation by assessing the potential optimization value of
unexplored points (Abbas et al., 2023; Bischl et al., 2023). Gaussian
processes (GPs) are used to model the probability of the objective
function and search for the optimal solution efficiently, as seen
in Figure 6. The expected improvement (EI) is utilized as the
acquisition function due to its effectiveness in balancing exploration
and exploitation (Xia et al., 2017).

Table 1 presents the complete framework of the Bayesian
optimization algorithm. Obj(x) presents the objective function, S
is the data points, Ac is the acquisition function, N represents the
number of cycles, and Sf presents the surrogate function.

The optimal hyperparameters of the CNN-BiLSTM architecture
can be determined through Bayesian optimization, which is
conceptually similar to damping calibration in dynamic fluid
modeling (Haroon et al., 2017).The complete Bayesian optimization
framework is thoroughly described by Abbas et al. (2023). Both soft
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FIGURE 9
Layout of monitoring points for the Baishuihe landslide.

and hard computation strategies have been validated in predicting
thermal performance of geomaterials, providing a useful framework
for coupled models (Rizvi et al., 2020).

2.4 K-means cluster

K-means clustering is a distance-based machine learning model
that partitions data into k distinct clusters. The basic principle
is to maximize the similarity of data points of the same type
while increasing the differences between data points of different
categories (Gan and Ng, 2017), as shown in Figure 7. In this
article, identifying mutation points and stationary points proves
challenging. As a result, this study employs K-means clustering to
effectively classify mutation points and stationary points. Previous
work on lattice element methods for thermal conductivity mapping
supports the classification potential of fine-resolution geodata
(Rizvi et al., 2018).

2.5 Evaluation methods

2.5.1 Confusion matrix
Correct classifications are the true negative (TN) and true

positive (TP), while misclassifications are either false positive (FP)
or false negative (FN).

2.5.2 F1-score
The F1-score is composed of precision (P) and recall (R), the

relevant formulas are shown in Equations 9–11.

Fscore =
2× P×R
P+R

(9)

P = TP
TP+ FP

(10)

R = TP
TP+ FN

(11)

2.5.3 ROC and AUC
The receiver operating characteristic (ROC) curve is used to

evaluate the accuracy of the prediction model by the true positive
rate (TPR) and the false positive rate (FPR). The relevant formulas
are listed in Equations 12, 13, respectively. The area under the curve
(AUC) is the area beneath the ROC curve.

TPR = TP
TP+ FN

(12)

FPR = FP
TN+ FP

(13)

Neural network models have also been applied
to estimate thermal conductivity from indirect soil
parameters (Rizvi et al., 2022).
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FIGURE 10
Monitoring point plan of the Bazimen landslide.

TABLE 2 Landslide statistical information.

Parameters Rainfall Reservoir water level Monthly displacement

Baishuihe Bazimen Baishuihe Bazimen Baishuihe Bazimen

Count 182 35 182 35 182 35

Mean 81.27 88.99 155.35 161.68 17.18 10.74

Std 64.70 65.24 13.08 10.49 35.01 13.33

Min 1.30 2.50 135 145.22 −22.00 −7.00

25% 29.65 30.65 145.30 152.09 −0.43 1.00

50% 64.90 77.40 155.15 163.58 4.45 7.00

75% 120.75 130.90 167.38 171.75 17.06 15.50

Max 311.00 229.40 174.90 174.90 198.98 58.00

3 Case study

3.1 Baishuihe landslide

The Baishuihe landslide is located in Hubei Province
(coordinates: N 110°32′09″, E 31°01′34″). The location of the
landslide is depicted in Figure 8. The primary slope of the landslide
is approximately 20°–30°.The landslide volume is 1.26 × 107 m3with
an average thickness of approximately 30 m.TheBaishuihe landslide

is approximately 500 m long and 430 m wide. The monitoring point
plan of the Baishuihe landslide is shown in Figure 9.

3.2 Bazimen landslide

The Bazimen landslide is situated in Hubei Province within
the TGRA. The landslide elevation is between 65 m and 280 m.
The slope of the landslide is approximately 20°–30°, and the
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FIGURE 11
Rainfall, reservoir water level, and monthly displacement of (A) (Baishuihe landslide) and (B) (Bazimen landslide).

volume is approximately 2.35 × 106 m3. The total area of the
Bazimen landslide is approximately 1.18 × 105 m2, and the thickness
is approximately 10–50 m. The landslide location is shown in
Figure 8. The monitoring point plan of the Bazimen landslide
is shown in Figure 10.

3.3 Analysis of the monitoring data

The landslide body is equipped with multiple high-precision
global navigation satellite system (GNSS) monitoring stations,
capable of capturing real-time displacement variations. Each device

records data at intervals ranging from severalminutes to a few hours.
The raw monitoring data undergo a series of preprocessing steps,
including outlier elimination, interpolation of missing values, and
standardization of time formats.

Based on data completeness, the ZG118 monitoring data of
the Baishuihe landslide and the ZG110 monitoring data of the
Bazimen landslide are chosen. For the source domain (Baishuihe
landslide), the monthly displacement (mon_dis), monthly rainfall,
and reservoir water level from August 2003 to October 2018
were taken as the training data. For the target domain (Bazimen
landslide), the monitoring data from February 2016 to December
2018 were selected as the test data. The statistical information of
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FIGURE 12
Classification for mutation points and regular points.

TABLE 3 The range of hyperparameters.

Model Hyperparameters Range

CNN

Filters 16–128

kernel_size 2–5

Stride 1–2

BiLSTM

hidden_size 32–256

num_layers 1–2

batch_size 16–128

Learning rate 1e-4-1e-2

Epoch 10–500

landslides is listed in Table 2. A total of 75% of the displacement
points of the Baishuihe landslide are less than 17.06 mm, and the
average monthly displacement of the Baishuihe landslide is greater
than that of the Bazimen landslide. At the same time, because the
displacement monitoring time of the landslides is different, the
changes in reservoir water levels are also different.

Figure 11 shows the relationship between rainfall, reservoir
water level, and monthly displacement. The rainfall of the
Baishuihe landslide (Figure 11A) is mainly concentrated between
0 mm and 100 mm, and when the rainfall is approximately
0–50 mm, the monthly displacement within this rainfall range
is between 5 mm and 20 mm. Additionally, the monthly
displacement gradually increases with the increase in rainfall.
The monthly displacement corresponding to the high reservoir
water level is generally lower than that corresponding to the
low reservoir water level. The reservoir water level primarily
ranges between 145–175 m and 165–175 m. When the reservoir
water level is 145 m, the corresponding monthly displacement is
significantly greater than the monthly displacements corresponding
to other reservoir water levels. The rainfall of the Bazimen
landslide (Figure 11B) is mainly concentrated between 0 mm
and 90 mm, and the monthly displacement gradually increases
with the increase of rainfall. When the reservoir water level
is between 145 m and 150 m, the monthly displacement
is large.

The analysis indicates that a strong correlation exists between
the evolutionary stage of landslides and the decrease in the
water level and rainfall, which aligns with findings in thermal
backfill environments showing cyclic thermal influence on ground
deformation (Ahmad et al., 2019). During the rapid drawdown
of the reservoir water level, the decline in the groundwater level
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TABLE 4 The main parameters of the proposed model.

Model Epoch Learning rate batch_size kernel_size hidden_size num_layers

CNN-BiLSTM-Bayesian 10 0.001 32 3 128 2

CNN-BiLSTM 12 0.001 32 - 128 2

BiLSTM 35 0.002 32 - 128 2

GRU 26 0.001 32 - 128 2

FIGURE 13
Confusion matrix of models for the Baishuihe landslide: (A) CNN-BiLSTM-Bayesian; (B) CNN-BiLSTM; (C) BiLSTM; (D) GRU.

within the landslide body lags behind the decline of the reservoir
water level, resulting in a seepage force directed outward from the
slope. This significantly decreased the stability of the landslide. The
coupling effect between hydrodynamic pressure and sliding force
becomes more pronounced, similar to cyclic heating responses
in subsurface materials (Ahmad et al., 2021). When rainfall

coincides with the reservoir water level decline, step-like landslide
deformation increases significantly. Therefore, the Baishuihe and
Bazimen landslides belong to the type of reservoir water drop
landslides.

The classification results of mutation and regular points are
presented in Figure 12. Figure 12 shows that points with a monthly
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FIGURE 14
Confusion matrix of models for the Bazimen landslide: (A) CNN-BiLSTM-Bayesian; (B) CNN-BiLSTM; (C) BiLSTM; (D) GRU.

displacement of more than 50 mm are classified as mutation
points, while points with a monthly displacement of less than
50 mm are classified as regular points. Unlike previous studies,
this study established a clear criterion for classifying evolutionary
state points.

4 Results

4.1 Confusion matrix results

This article uses a variety of models to carry out comparative
tests, including CNN-BiLSTM, GRU (Zhang et al., 2022), and
BiLSTM. The parameter of the models is determined by integrating
theoretical foundations, task-specific requirements, empirical

heuristics, and computational resources (Wang et al., 2022; Zai et al.,
2024). Table 3 lists the commonly used parameter ranges during
the optimization process (Xia et al., 2017; Bischl et al., 2023).
The main parameters of the proposed model are summarized in
Table 4.

In the confusion matrix, label 0 represents regular points,
and label 1 represents mutation points. Figures 13, 14 show
the confusion matrices of different methods for the Baishuihe
and Bazimen landslides, respectively. The matrix values in the
CNN-BiLSTM-Bayesian model are better than those of the
others. The performance of the confusion matrix is ranked
as follows: CNN-BiLSTM-Bayesian, CNN-BiLSTM, BiLSTM,
and GRU. After transfer learning and parameter tuning, the
confusion matrix of the proposed model increased by 1.20%
and 16.28%, respectively.
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FIGURE 15
Evaluation indicators for (A) the Baishuihe landslide and (B) the Bazimen landslide.

TABLE 5 F1-scores of the Baishuihe and Bazimen landslides.

Models Source task Domain task

Baishuihe
landslide

Bazimen
landslide

CNN-BiLSTM-
Bayesian

0.85 0.89

CNN-BiLSTM 0.83 0.87

BiLSTM 0.81 0.76

GRU 0.82 0.83

4.2 F1-score

The evaluation indexes for different landslides
are shown in Figure 15. The CNN-BiLSTM-Bayesian model
achieves the best performance on every evaluation metric,
followed by CNN-BiLSTM, BiLSTM, and GRU. The precision,
recall, and F1-score of the CNN-BiLSTM-Bayesian model for

the Bashuihe landslide are 0.89, 0.84, and 0.85, respectively.
For the Bazimen landslide, the indexes of the proposed model
are 0.97, 0.84, and 0.89, respectively. After transfer learning
and parameter tuning, the F1-score of the proposed model
increased by 4.71%.

F1-scores of models for the Baishuihe and Bazimen
landslides are summarized in Table 5. The CNN-BiLSTM-
Bayesian model achieved the best F1-scores (0.85 and 0.89),
followed by CNN-BiLSTM (0.83 and 0.87), and GRU (0.82
and 0.83). Compared with BiLSTM, the F1-score of the CNN-
BiLSTM-Bayesian model improved by 4.94% for the Baishuihe
landslide, which means the Bayesian optimization and CNN
layer can improve the F1-score. Therefore, the CNN-BiLSTM-
Bayesian model is suitable for predicting the evolutionary stage
of landslides.

4.3 ROC and AUC

TheROC curve and AUC values of the models for the Baishuihe
landslide are shown in Figure 16. The CNN-BiLSTM-Bayesian
model achieved the highest AUC score across all classes, indicating
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FIGURE 16
ROC and AUC of models for the Baishuihe landslide: (A) CNN-BiLSTM-Bayesian; (B) CNN-BiLSTM; (C) BiLSTM; (D) GRU.

its superior capability in predicting the evolution state. Compared
with BiLSTM, the AUC score of the CNN-BiLSTM-Bayesian model
improved by 4.88% for the Baishuihe landslide, which means the
Bayesian optimization and CNN layer can improve model accuracy.
The CNN-BiLSTM and GRU models were inferior compared to the
proposed model.

Figure 17 represents the ROC and AUC of different methods for
the Bazimen landslide. Compared with the model of the Baishuihe
landslide, the AUC score of the CNN-BiLSTM-Bayesian model
increased by 9.30%, whichmeans that transfer learning can improve
the accuracy.

5 Discussion

Understanding landslide evolution is crucial for preventing step-
like landslide disasters. Recently, artificial intelligence methods have
been applied to landslide research (Zhang et al., 2022). However,
there are few studies on predicting the evolution state of landslides
in the TGRA.Moreover, it is difficult to transfer knowledge fromone
landslide to another using traditional machine learning models.

This study proposed a CNN-BiLSTM-Bayesian model
to predict the evolutionary stage of step-like landslides.

The Bayesian method was applied to search for model
parameters. Additionally, transfer learning was employed to
ensure prediction accuracy in cases of discontinuous and
limited data.

Ge et al. (2022) proposed a density-based clustering model
(DBSCAN) to identify the evolution state. The F1-score of
the model is 0.8, while the F1-score of our model is 0.89.
The CNN-BiLSTM-Bayesian model shows an improvement
of 11.25% compared with DBSCAN. In contrast to the
research by Lian et al. (2018), this research takes rainfall and
reservoir water level as input, both of which significantly influence
the evolutionary stage.

For the Bazimen landslide, the F1-score and AUC of the
CNN-BiLSTM-Bayesian model are 0.87 and 0.94, respectively,
which are 4.71% and 9.30% higher than those of the Baishuihe
landslide. Based on evaluation metrics, the CNN-BiLSTM-
Bayesian model outperforms other models, demonstrating the
excellent performance of the proposed model. CNN focuses
on short-term local features, while BiLSTM focuses on long-
term dependencies. The combination of the structures can
more fully explore the temporal features in the data and
improve classification performance. Bayesian optimization is
highly effective in adjusting model parameters and enhancing
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FIGURE 17
ROC and AUC of models for the Bazimen landslide: (A) CNN-BiLSTM-Bayesian; (B) CNN-BiLSTM; (C) BiLSTM; (D) GRU.

accuracy. The deep transfer learning model proposed in
this article has better accuracy and generalization ability
on new data.

However, this study has some limitations. The CNN-BiLSTM-
Bayesian model and the proposed classification criteria are only
applicable to step-like landslides in the reservoir area, and the
accuracy can be further improved by combining data from various
types of landslides.

6 Conclusion

This study developed a deep transfer learning model
based on Bayesian optimization to predict the evolutionary
stage of step-like landslides. The proposed model was
trained and learned from the Baishuihe landslide, and
the predictive performance for the evolutionary stage was
verified using the Bazimen landslide. Additionally, the
Bayesian method is applied to optimize the hyperparameters
of the CNN-BiLSTM model. The conclusions are as
follows:

1) For the target task, the F1-score and AUC of the CNN-
BiLSTM-Bayesian model are 0.89 and 0.94, followed by CNN-
BiLSTM, GRU, and BiLSTM. The predictive performance

of the CNN-BiLSTM-Bayesian model is superior to that of
other models.

2) A classification rule for the evolution state of step-like
landslides has been established. According to this standard,
points with monthly displacement exceeding 50 mm are
classified as mutation points, while those with displacement
less than 50 mm are regular points.

3) Compared with BiLSTM, the F1-score and AUC of the CNN-
BiLSTM-Bayesianmodel improved by 4.94% and 4.89% for the
Baishuihe landslide, which means the Bayesian optimization
and CNN layer can improve the accuracy of models.

4) Compared to other models, the CNN-BiLSTM-Bayesian
model can accurately predict the evolutionary stage. The
proposed transfer learning method facilitates the sharing of
knowledge across similar landslides and has been proven to be
an intelligent and promising approach.
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