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To enhance the estimation of dredged soil shear strength in marine settings, this
research conducted 1,600 direct shear tests under varying thermal conditions
and multiple drying–wetting cycles. Drawing from the test data, a structured
database was assembled, and a new learning framework was developed by
combining the Logical Development Algorithm (LDA), Adaptive Boosting (BA),
and Artificial Neural Networks (ANN). The motivation behind this hybridization
lies in the need to effectively capture nonlinear interactions and latent logical
patterns among influencing factors, which are often overlooked by traditional
single-algorithm models. This approach marks a pioneering use of such a
hybridized model for strength evaluation in dredged soils. For performance
verification, four alternative predictive models were established, including
LDA–ANN, support vector machines (SVM), Particle Swarm Optimization
(PSO), and a GA-tuned BA–ANN. Comparative analysis demonstrated that the
LDA–BA–ANN configuration delivered the highest prediction precision and
computational speed over traditional models. Moreover, sensitivity studies
revealed that normal stress, temperature, and initial density were the dominant
influencing parameters, whereas moisture cycling and shear rate had relatively
minor effects. An empirical equation was further extracted from the optimized
model, offering a user-friendly solution for practical engineering applications
without requiring machine learning proficiency.
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1 Introduction

With the rapid development of coastal infrastructure, a large amount of
dredged soil is produced during port construction and channel maintenance
(Vyas et al., 2022; Wan et al., 2024; Zhou et al., 2025). This material is
increasingly reused in marine engineering applications such as artificial island
construction, port reclamation, and submarine foundation filling (Bai et al., 2025;
Chao et al., 2024c; Chao et al., 2024d). The mechanical behavior of dredged soil,

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2025.1645393
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2025.1645393&domain=pdf&date_stamp=2025-07-23
mailto:shd19911@163.com
mailto:shd19911@163.com
mailto:cui.peng@umu.se
mailto:cui.peng@umu.se
https://doi.org/10.3389/feart.2025.1645393
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2025.1645393/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1645393/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1645393/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1645393/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1645393/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yao et al. 10.3389/feart.2025.1645393

especially its shear strength, plays a vital role in ensuring the stability
and safety of marine structures (Cui et al., 2024; Zhang et al., 2024).
In coastal and offshore environments, facilities constructed with
dredged soil are exposed to environmental loads such as temperature
fluctuations and drying–wetting cycles caused by tides, rainfall, and
solar radiation (Dong, 2020; Gong et al., 2024).These environmental
factors can significantly influence the strength and deformation
characteristics of dredged soil (Dong et al., 2017; Jung et al., 2024).
Additionally, due to the presence of organic matter and thermally
sensitive components, dredged soil may undergo thermal softening
at elevated temperatures—sometimes exceeding 80°C—resulting in
a considerable loss of shear strength (Chao et al., 2024c; Chao et al.,
2025). However, the influence of temperature on the mechanical
response of dredged soil has rarely been explored, mainly due to
limitations in existing testing systems.

Meanwhile, drying–wetting cycles induced by alternating
infiltration and evaporation in marine environments can lead to
internal structural damage, including the dissolution of soluble
materials, expansion of clayey components, and crack formation
(Fan et al., 2023; Liu et al., 2023; Luo et al., 2025). These
repeated changes can degrade the mechanical integrity of the soil
mass (Lin et al., 2024; Luo et al., 2023; Tincopa and Bouazza,
2021). Therefore, both temperature and moisture variation are key
environmental factors that must be considered when evaluating the
performance of dredged soil in marine applications (Anjana et al.,
2023; Bai et al., 2025). While laboratory tests have confirmed
the effectiveness of certain treatments and mixtures, studies
incorporating both temperature and drying–wetting effects remain
limited (Francey and Rowe, 2023; Onyekwena et al., 2024). The
development of advanced testing systems capable of simulating these
environmental conditions offers a valuable opportunity to accurately
assess the shear strength of dredged soil and support the rational
design of marine engineering facilities.

Building predictivemodels from experimental data is a common
method to extend test findings while overcoming constraints
like high costs, labor intensity, and the need for specialized
equipment (Cavalcante and Mascarenhas, 2021; Chao et al., 2023a).
However, the shear strength of dredged soil is affected by various
factors, including environmental conditions like temperature and
drying–wetting cycles, as well as engineering parameters such as
initial density and stress state (Cui et al., 2024; Schjønning et al.,
2020; Yavari et al., 2016). The nonlinear interactions among these
variables make it difficult to construct accurate empirical formulas
using traditional statistical methods (Chao and Fowmes, 2021;
Dong, 2020). In recent years, machine learning has garnered
widespread attention in environmental engineering due to its
powerful capabilities in modeling complex nonlinear relationships
(Jiang et al., 2023; Liang et al., 2023). Nevertheless, its application to
dredged soil strength prediction remains limited, and most existing
models are overly simplified (Shiuly et al., 2022). Therefore, more
advancedmethods—particularly ensemble techniques like Adaptive
Boosting combined with Backpropagation Artificial Neural
Networks (BAANN)—present strong potential for improving
prediction accuracy. However, due to the redundancy and noise
inherent in high-dimensional experimental datasets, even advanced
models like BAANN may suffer from reduced generalization
performance and unstable learning outcomes (Chao et al., 2023a).
To address this challenge, the Logical Development Algorithm

(LDA), a recent feature extraction method capable of maximizing
class separability and dimensionality reduction, is introduced into
the modeling framework (Chao et al., 2024a; Chao et al., 2024b). By
preprocessing input features through LDA, the model can focus on
the most relevant variables, thereby enhancing learning efficiency
and robustness (Chao et al., 2023b). The hybrid LDA-BA-ANN
model thus combines the strengths of statistical dimensionality
reduction and adaptive nonlinear learning, providing a more
reliable and interpretable tool for predicting the strength behavior
of dredged soils under complex conditions.

The performance of machine learning models heavily depends
on hyperparameter selection (Shi et al., 2023; Thomoglou et al.,
2020). Before modeling, effective hyperparameter optimization is
essential to ensure reliable results (Lazaridis and Thomoglou, 2024;
Thomoglou and Karabinis, 2021; Wang et al., 2024). Commonly
used algorithms like Particle Swarm Optimization (PSO) and
Genetic Algorithm (GA) have been widely implemented, but are
often hindered by issues such as low computational efficiency and
entrapment in local optima (Wang et al., 2022). To address these
drawbacks, Chengyi et al. (2000) introduced a novel heuristic
optimizationmethod known as the Logical Development Algorithm
(LDA), which accelerates optimization by parallelizing similarity
and dissimilarity computations while preserving original data
structures. Studies have confirmed that LDA surpasses traditional
optimization methods in boosting the accuracy and performance
of machine learning models (Chao et al., 2024a; Xu et al., 2024).
However, its use in estimating the shear strength of dredged soil has
not been explored before.

In this study, 1,600 direct shear tests were conducted with
varying parameters including initial density (7–10 kN/m3), number
of drying–wetting cycles (0–10), temperature (10°C–90°C), normal
pressure (50–200 kPa), and shear rate (1–5 mm/min), thereby
establishing a comprehensive experimental database. Based on this,
an LDA-optimized BAANN model was developed to accurately
predict the shear strength of dredged soil. To validate its robustness,
additional models were built, including LDA-tuned ANN and SVM
models, aswell asGA- andPSO-tunedBAANNmodels. A sensitivity
analysis was performed using the proposedmodel, and an analytical
formula was derived to facilitate practical application by engineers
without machine learning expertise. The LDA-optimized BAANN
model provides a reliable and efficient tool for estimating the
shear strength of dredged soil, enhancing the design and safety
of marine engineering facilities and post-treatment applications on
sealed sites.

2 Laboratory tests

2.1 Experimental apparatus

The custom-built large-scale temperature-controlled shear
apparatus used in this study is composed of an internal shear system
enclosed within an external temperature regulation chamber, as
depicted in Figure 1. The apparatus is capable of maintaining a
constant temperature environment ranging from−50°C to 200°C for
durations up to 7 days. Utilizing this system, a series of temperature-
controlled shear tests were conducted on dredged soil to evaluate its
mechanical behavior under varying thermal conditions.

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2025.1645393
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yao et al. 10.3389/feart.2025.1645393

FIGURE 1
The self-developed large temperature-controlled shear apparatus.

FIGURE 2
LDA-BAANN model.

2.2 Test materials

The dredged soil sample used in this study was freshly obtained
and initially sieved to remove large impurities such as wood
fragments, plastics, and paper, ensuring its suitability for subsequent
geotechnical testing.

2.3 Experimental procedure

In this study, a total of 1,600 shear tests were carried out
using a custom-designed shear apparatus. The system comprises
upper and lower shear compartments, eachwith internal dimensions
of 300 mm × 300 mm × 200 mm, forming a 300 mm × 300 mm
shearing interface. The experimental procedure began with filling
the lower shear box in four compacted layers (each 25 mm thick)
of dredged soil, followed by installation and filling of the upper box
using the same method. Each layer was tamped 16 times to ensure
consistency, and the initial density of the soil was controlled by
adjusting the total mass to achieve target densities of 7, 8, 9, and
10 kN/m3.

Upon completion of soil preparation, the shear box assemblywas
sealed within the external temperature-controlled chamber, where
internal temperatures were adjusted to 10 °C, 30 °C, 50 °C, 70 °C,
or 90 °C, depending on the test condition. The upper shear box
was fixed, while the lower box was horizontally displaced to apply
shearing along the interface, with displacement controlled at rates of
1, 2, 3, and 4 mm/min up to 55 mm. Simultaneously, vertical normal
stress of 50, 100, 150, or 200 kPawas applied via the top loading plate.

To simulate environmental cycles, a drying–wetting system was
incorporated.This involved submerging the sample in a surrounding
water bath for 30 min, followed by a 30-min drying phase under
target temperature conditions. The number of cycles was set to 0,
1, 2, 3, or 4. After completing the cycles, monotonic undrained
shear testing was initiated. Throughout the process, shear force and
displacement were recorded at 9-s intervals, with a total of 1,000
data points collected per test. Details of the testing program are
summarized in Table 1.

To ensure reproducibility of the experimental results, additional
details regarding the shear testing procedure are provided as follows.
Prior to shearing, a consolidation phase was applied under the
designated normal stress for a duration of 30 min to allow soil
particles to stabilize under load. All shear tests were conducted
under undrained conditions, with no drainage permitted during the
shearing process. It should be noted that pore water pressure was
not directly measured or controlled, as the study focused primarily
on evaluating the total stress response of the dredged soil under
varying temperature and loading conditions. These test settings are
consistent with practices adopted in similar temperature-controlled
shear studies and provide a practical representation of field behavior
in reclamation applications.

3 Machine learning algorithms

This study adopts three representative machine learning
methods—Artificial Neural Network (ANN), support vector
machines (SVM), and an enhanced hybrid model (BA-ANN)—to
predict the mechanical behavior of dredged soil. To improve
prediction accuracy and model performance, three optimization
techniques are respectively integrated: Particle SwarmOptimization
(PSO) is used to fine-tune the SVM model, Genetic Algorithm
(GA) is applied to improve the BA-ANN framework, and Logical
Development Algorithm (LDA) is utilized as a feature extraction
and dimensionality reduction step for the ANN. A brief overview
of these algorithms and their implementation strategies is presented
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TABLE 1 The experimental scheme.

Initial density of
dredged soil (kN/m3)

Normal pressure
(kPa)

Shear displacement
rate (mm/min)

Number of dry–wet
cycles

Temperature (°C)

7 50, 100, 150, 200 1, 2, 3, 4 0, 1, 2, 3, 4 10, 30, 50, 70, 90

8 50, 100, 150, 200 1, 2, 3, 4 0, 1, 2, 3, 4 10, 30, 50, 70, 90

9 50, 100, 150, 200 1, 2, 3, 4 0, 1, 2, 3, 4 10, 30, 50, 70, 90

10 50, 100, 150, 200 1, 2, 3, 4 0, 1, 2, 3, 4 10, 30, 50, 70, 90

below to clarify their roles and interrelations in the modeling
framework. The LDA-BAANNmodel is shown in Figure 2.

3.1 ANN

Typically, the ANN model consists of hidden, input,
and output layers (Chang and Lin, 2011; Moayedi and
Jahed Armaghani, 2018; Yusof et al., 2014). In this study, the model’s
layout is designed such that the variety of joints in the output and input
layers directly matches the quantity of output and input variables.
Specifically, there are five input variables and one output variable.
The buried layer joint number (4) was found using the exhaustive
method. The activation function of the developed ANN model was
Levenberg-Marquardt Backpropagation Algorithm (LMBA).

3.2 SVM

SVM is adept at leveraging a modest dataset to execute
regression analyses (Schölkopf and Smola, 2002; Smola and
Schölkopf, 2004). Furthermore, SVM is capable of employing
kernel functions to map specimens from a lower-dimensional
space into a higher-dimensional one. This mapping process
facilitates the conversion of nonlinear issues into linear
ones, thereby enhancing the tractability of complex problems
(Najjar et al., 2023; Zhang et al., 2023).

3.3 BA-ANN

The BA-ANN model is an ensemble learning approach
that integrates multiple Artificial Neural Networks (ANNs)
with identical architectures based on the principle of Bootstrap
Aggregating, commonly known as Bagging (Kohestani et al., 2015;
Pokharel et al., 2023). In this study, each base learner within
the ensemble adopts the same network structure as outlined in
the previously described ANN configuration (Zhao et al., 2023).
By training these models on different resampled subsets of the
original dataset and aggregating their predictions, the BA-ANN
framework enhances model robustness and reduces overfitting.This
method offers several advantages, including ease of implementation,
reduced computational burden, high predictive accuracy, and strong
generalization performance.

Comprehensive details regarding the configurations of the
developed models are provided in Table 2.

3.4 GA and PSO

Both of GA and PSO are heuristic population optimization
algorithm. GA was constructed based on the principles of natural
evolution (Kennedy and Eberhart, 1997). GAperforms optimization
by employing the fundamental activities of selection, crossover,
and mutation. PSO originates from bird predation behavior. In
PSO, the population’s particles denote potential solutions, with their
velocities continually refined to ascertain the optimal solution for
the given problem (Hogg et al., 2013).

4 Hyperparameters optimization

This study employs Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), and Logical Development Algorithm (LDA)
to optimize the hyperparameters of the proposed machine learning
models.The rootmeans square error (RMSE), defined in Equation 1,
serves as the fitness function guiding the optimization. Given that
GA and PSO optimization techniques are well-established and
extensively documented in the literature, this paper omits detailed
descriptions of their operational mechanisms. The following is
the general optimization procedure of LDA: (1) Generating
individuals representing different hyperparameter values randomly.
(2) Evaluating the fitness function (RMSE) of the individuals
by adopting the machine learning models by adopting the k-
CV approach (k = 10) and the training datasets. (3) Classifying
the individuals as superior (Low RMSE value) and temporary
(High RMSE value) based on the RMSE value. (4) By assigning
persons with higher authority and individuals with temporary
roles as centers, additional individuals are generated near each
center to create superior and transitory subgroups accordingly. (5)
Conducting similar taxi operations on the subgroups up to their
maturity (The subgroup’s RMSE value is stable for continuous six
iteration). (6) Assigning the RMSE value of the individuals at the
center as the RMSE value of the relevant subgroup. (7) Conducting
the dissimilation operation including replacing, abandoning, and
supplying subgroups, and releasing individuals of the deserted
subgroups. (8) Implementing similar taxi operation on the provided
subgroups. (9) Continue iterating steps (4) to (8) until the RMSE
of the provided subgroups is lower compared to that of the
superior subgroups. (10) The individual positioned centrally within
the superior subgroup, characterized by the lowest RMSE value,
is deemed to be the globally optimal solution. (11) Using the
hyperparameter value of the global best individual as the initial value
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TABLE 2 The configurations for the adopted algorithms.

Algorithm Input layer joint number Hidden layer joint
number

Output layer joint
number

Base leaner number

ANN 5 4 1 X

BAANN 5 4 1 40

TABLE 3 The control variables for the optimization algorithm.

Algorithm LDA PSO GA

Pop. size 600 200 200

Subgroups 4 - -

Max. iter 10 100 100

Cog/Soc. const - 2.05 -

Inertia weight - 0.98 -

Var range - 1 1

Vel range - −1 −1

Maximum velocity - 2 -

Minimum velocity - 0.01 -

Selection - - Roulette wheel

Crossover - - Uniform

Mutation - - Uniform

Mut rate - - 0.11

Sel pressure - - 2

for the proposed machine learning method.

RMSE = √
n

∑
i=1

(yi − fi)
2

n
(1)

where n denotes number of samples, yi denotes observed value, fi
denotes predicting value.

The control parameters for LDA, GA, and PSO are presented
in Table 3. Additionally, Table 4 displays the optimization
hyperparameter and the corresponding ranges for the
optimization process. Table 5 presents five inputs and one output.

4.1 Database construction and
preprocessing

To facilitate the application of machine learning techniques, a
structured dataset comprising 1,600 distinct records was compiled
based on experimental observations. Among these, 1,280 samples
(80%) were randomly allocated for algorithm training, and the

TABLE 4 The optimization hyperparameters.

Algorithm Hyperparameter Optimization range

ANN
OJW -5–5

OJT −10–10

SVM
c 2−6-26

g 4−6-46

BA-ANN

BLN 1–20

OJW-BL -5–5

OJT-BL −10–10

remaining 320 samples (20%) were reserved for testing to evaluate
model accuracy. Each entry in the dataset includes five influencing
parameters: normal stress (P), dredged soil’s initial dry density
(I), ambient temperature (T), number of drying-wetting cycles
(D), and shear displacement rate (R). The predicted output is the
shear strength (S) of the dredged soil. As depicted in Figure 3, the
distribution of these input features is presented graphically, with the
x-axis denoting the value ranges of each parameter and the y-axis
showing how frequently each value appears in the dataset.

Prior to model training, the dataset was randomly split
into training and testing subsets. To prevent data leakage and
ensure unbiased model evaluation, normalization was performed
exclusively on the training data. Specifically, for each input feature,
the mean and standard deviation were computed from the training
subset, and these statistics were used to standardize the training data
to zero mean and unit variance. Subsequently, the testing data were
normalized using the same training-derived parameters, without
recalculating statistics from the test set. This approach guarantees
that no information from the test set influences the model training
or normalization process, therebymaintaining the integrity ofmodel
validation.

MATLAB was used to create the algorithms for the purpose
of the research. As the normalization equation given in Equation 2
illustrates, standardizing multiple dimensions of the inputs and
outputs is essential before beginning machine learning modeling
in order to improve the projected accuracy and effectiveness of the
machine learning methods.

xNormalised =
2(x− xmin)
xmax − xmin

− 1 (2)

where, xNormalised and x denotes normalized and initial data,
accordingly, xmin and xmax denotes the most low and high data
accordingly.
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TABLE 5 The statistics.

Statistical table of factors Data point Kinds Min Max Average Standard

Input

dredged soil initial density (kN/m3)

Numeric

7 10 8.5 1.45

Normal stress (kPa) 50 200 125 24.6

Temperature (°C) 10 90 50 15.6

Drying-wetting cycle 0 4 2 0.96

Shear displacement rate (mm/min) 1 4 2.5 1.05

Output Shear strength (kPa) Numeric 30.6 109.2 70.2 24.59

4.2 Performance evaluating approaches

To assess the predictive performance of the developed machine
learning models, three evaluation metrics were used:

(i) Root Mean Square Error (RMSE), defined in Equation 1,
measures the standard deviation of the differences between
predicted and actual values. A lower RMSE indicates higher
model accuracy.

(ii) Coefficient of Determination (R2), defined in Equation 3,
evaluates the strength and direction of the linear relationship
between predicted and observed values. R2 ranges from
−1 to 1, where −1 and 1 represent perfect negative and
positive correlations, respectively (Das and Basudhar, 2006;
Zheng H. et al., 2024). The formula for Mean Absolute
Percentage Error (MAPE) is given in Equation 4.

R( fi,yi) =
cov( fi,yi)

√var[ fi]var[yi]
(3)

MAPE = 100%
n

n

∑
i=1

|yi − fi|
yi

(4)

5 Predicting performance

5.1 Results for hyperparameter
optimization

Figure 4 illustrates the detailed procedure of tuning the
hyperparameters for the BA-ANN, ANN, and SVM models
by leveraging the Logical Development Algorithm (LDA). This
optimization process involves selecting the most relevant input
features through dimensionality reduction, which not only enhances
the efficiency of the models but also improves their predictive
accuracy. During this step, LDA reduces redundancy among features
and highlights those variables that contribute most significantly
to the output. Subsequently, the refined feature sets are fed into
the respective machine learning models, where hyperparameters
such as learning rates, network architecture, and kernel parameters
are systematically adjusted. The goal is to identify the optimal
configuration that minimizes the prediction error, measured

here primarily by RMSE, ensuring robust and reliable model
performance.

As shown in Figure 4, the hyperparameter tuning process
using LDA for BA-ANN, ANN, and SVM models starts with an
initial similar taxis operation that mimics early foraging behavior.
At this stage, the RMSE values of both the initial superior and
temporary subgroups significantly decrease and stabilize after six
consecutive iterations, indicating subgroup maturation. Following
this, a dissimilation operation takes place, during which superior
subgroups exhibiting relatively higher RMSE values are replaced
by provisional subgroups with lower RMSE values. Additionally,
members of the remaining provisional subgroups are freed to form
new temporary subgroups.

The second similar taxis operation then ensues, further
refining the subgroups by substituting those with higher RMSE
values with ones showing improved (lower) RMSE. Afterward,
RMSE values between superior and temporary subgroups are
compared. As Figures 4c,d illustrate, post this phase, all superior
subgroups have RMSE values lower than their temporary
counterparts, eliminating the need for additional dissimilation
steps. Ultimately, the hyperparameters of the core individuals
within the best-performing subgroup—those with the minimal
RMSE—are selected as the optimal baseline settings for themachine
learning models.

For comparison, Figure 5 presents the optimization processes
of the BA-ANN model using traditional algorithms GA and
PSO, facilitating an evaluation of LDA’s effectiveness against
classical methods.

Figure 5 illustrates that during the optimization processes of
both GA and PSO, the RMSE value of the BA-ANN model exhibits
a gradual decline as the repetition number increases. Relative to the
RMSE value prior to optimization, a notably substantial reduction is
observed in the optimized RMSE value.

Figure 5 illustrates the optimization process of the LDAmethod
applied to the BA-ANN model. Initially, the RMSE value decreases
slowly during the early iterations, reflecting a gradual improvement
in model performance. As the optimization proceeds, the decline
rate accelerates significantly, indicating that LDA efficiently explores
the solution space and fine-tunes model parameters. The RMSE
rapidly converges toward its minimum value, stabilizing near 3.97
around iteration 82. This demonstrates that LDA achieves faster
and more effective optimization compared to GA and PSO, which
reached their optimal RMSE values of 8.62 and 8.23 respectively
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FIGURE 3
Data distributions for the database: (a) dredged soil initial density; (b) Normal Pressure; (c) Temperature; (d) Drying-wetting cycle number; (e) Shear
displacement rate.
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FIGURE 4
The variation trends of RMSE throughout the similar taxis procedure are categorized as follows: (a) RMSE values of the initial superior subgroups; (b)
RMSE values of the initial temporary subgroups; (c) RMSE values of the superior subgroups after undergoing dissimilation operations; (d) RMSE values
of the temporary subgroups following dissimilation operations.

at much later iterations (iteration 83). The learning curve clearly
highlights the superior convergence speed and optimization quality
of LDA in enhancing the BA-ANNmodel.

Upon evaluating the optimization effectiveness of LDA in
comparison to traditional methods, it is evident that LDA
outperforms GA and PSO in terms of both optimization efficacy
and component ratio. During the process of optimizing the
LDA, the BAANN model attained its optimal RMSE value at
iteration 17. In contrast, the optimal RMSE value for the GA
and PSO optimization procedures was achieved at iteration 83.
In terms of optimization effects, the BAANN model, optimized
using LDA, produces an optimal RMSE value of 3.97. On the
other hand, the ideal RMSE values for GA and PSO are 8.62 and
8.23, respectively.

5.2 Predicting performance

Figure 6–9 illustrate the effectiveness of various machine
learning methods in accurately predicting outcomes based on both

training and validation data sets. These visualizations highlight
how well the models generalize from learned patterns to unseen
data, reflecting their overall reliability and robustness in the
prediction task.

Figures 6–9 reveal that among the five evaluated algorithms, the
BAANN model optimized by LDA exhibits the superior predictive
capability on the training datasets.This method achieves the highest
accuracy, reflected by an RMSE of 3.46, a MAPE of 4.63%, and a
correlation coefficient (R) of 0.99, indicating a very close fit between
predicted and observed values. The BAANNmodel fine-tuned with
PSO ranks second in performance, demonstrating relatively strong
prediction results. In contrast, the BAANN model optimized via
GA, as well as the ANN and SVM models tuned using LDA,
show noticeably lower prediction accuracies, confirming that the
combination of LDA with BAANN provides a distinct advantage in
this context.

Figures 10, 11 present a comparison of five machine learning
models evaluated on the testing datasets. The BAANN model
enhanced by LDA optimization consistently delivers the most
accurate predictions, outperforming all other methods. Its results
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FIGURE 5
Optimization processes by GA and PSO: (a) GA; (b) PSO; (c) LDA.

show an RMSE of only 3.72, a MAPE close to 5.01%, and a
correlation coefficient reaching 0.99, reflecting excellent agreement
with the true values. Among the other models, the BAANN
optimized with PSO achieves relatively better outcomes, yet it still
lags behind the LDA-based approach.

Overall, the integration of LDA with BAANN yields a clear
improvement over other optimization strategies such as GA and
PSO, as well as alternative model architectures including ANN and
SVM. This confirms that the LDA-optimized BAANN provides
superior predictive capability for estimating shear strength in
dredged soils. Notably, when the same optimization algorithm
is applied, BAANN demonstrates stronger forecasting ability
than ANN and SVM, highlighting the model’s robustness and
effectiveness.

5.3 Influence factor analysis

In this section, the LDA-optimized BAANN model is utilized
to perform a sensitivity analysis aimed at identifying the influence
of each input variable on the shear strength prediction of dredged
soil. Since the BAANN framework integrates several ANN models,
the relative contribution of each input feature is quantified using
Garson’s method, which is mathematically described by Equation 5

(Kanungo et al., 2014; Zheng et al., 2024a; Zheng et al., 2024b).
Thus, the mean relative importance of each input variable, derived
via Garson’s Algorithm from individual ANN models, reflects
the overall influence of these features in the integrated BAANN
model. This aggregated measure reflects how influential each input
factor is in determining the model’s predictions. The detailed
distribution of these relative importance values for all input
variables is illustrated in Figure 9, providing clear insight into
which features most strongly affect the shear strength estimation
(Goh et al., 2005).

Rik =
∑L

j=1
(|WijWjk|/∑

N
r=1
|Wrj|)

∑N
i=1
∑L

j=1
(|WijWjk|/∑

N
r=1
|Wrj|)

(5)

whereRikmeans the relative significance for input variables,Wij,Wjk
indicates the connected weight for the hidden-output and hidden-
input layers (N, M means the output and input variable numbers,
respectively).

Understanding machine learning models is essential
for transparency and wider acceptance. Feature importance
analysis helps reveal the internal logic of these models by
explaining how input variables influence predictions. Among
interpretability methods, SHAP (Shapley Additive Explanations)
is widely used. Based on game theory, SHAP assesses the
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FIGURE 6
The predictive results on training dataset: (a) LDA-ANN; (b) LDA-SVM; (c) GA-BAANN; (d) PSO-BAANN; (e) LDA-BAANN.

contribution of each feature by considering all possible
combinations and assigns a value that indicates its positive
or negative effect on the prediction (Lundberg and Lee, 2017;
Yang et al., 2025).

Figure 12 presents the five most influential features affecting
the output of the LDA model, along with a brief analysis of
their respective impacts. The pie chart illustrates the mean SHAP
values for each feature, where a larger SHAP value denotes a

stronger contribution to the model’s prediction. On the left, the
bee swarm plot offers a more detailed visualization of feature
effects. In this plot, the horizontal axis corresponds to the SHAP
value, while the vertical axis represents the feature value. A high
SHAP value combined with a high feature value suggests a positive
correlation—larger feature values lead to higher predicted outputs.
With a relative importance of 29.2%, normal pressure is shown to
have the greatest influence on the shear strength of dredged soil, as

Frontiers in Earth Science 10 frontiersin.org

https://doi.org/10.3389/feart.2025.1645393
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yao et al. 10.3389/feart.2025.1645393

FIGURE 7
The R2 value for the algorithms on training datasets: (a) LDA-ANN; (b) LDA-SVM; (c) GA-BAANN; (d) PSO-BAANN; (e) LDA-BAANN.

illustrated in Figure 12. Next is temperature and dredged soil initial
density, with percentages of 26.43% and 20.02% respectively. In
contrast, the drying-wetting cycle number and shear displacement
rate, which occupy 14.33% and 10.02% of the shear strength,
respectively, have a negligible effect. The detailed mechanism please
refers to the Section of “Discussion”.

6 Formulation of a mathematical
model

From the previous analysis, it is evident that the LDA-optimized
BAANN model can accurately predict the shear strength of
dredged soil. However, the complexity inherent in machine learning
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FIGURE 8
The models’ RMSE scores.

FIGURE 9
The models’ MAPE scores.

models often poses challenges for practitioners who lack specialized
expertise in this area. To bridge this gap, this section proposes an
analytical expression derived from the LDA-tuned BAANN model
to facilitate easier prediction of shear strength.

As noted earlier, the BAANN model is composed of
multiple interconnected ANN models. The output of each
ANN can be calculated using the associated node weights and
biases, as formalized in Equation 6. By applying this equation
alongside the average connection weights and biases listed
in Table 6—which summarize the parameters of the ANN
components within the BAANN framework—one can directly
compute the predicted shear strength values generated by the
LDA-BAANNmode (Yaashikaa et al., 2020).

Yn = fsig{b0 +
h

∑
k=1
[wk × fsig(bhk +

m

∑
i=1

wikXi)]} (6)

where, Yn denotes uniformly formatted forecasting data in [-1,1];
b0 indicates output layer joint bias; wk indicates the connection
weight between the kth node in the output layer and the hidden
layer node; bhk indicates the kth hidden layer joint bias; h represents
the number of nodes in the hidden layer; wik denotes the connected
weight between the ith junction in the input layer and the kth
node in the hidden layer; Xi denotes the ith uniformly formatted
input parameter in [-1,1]; fsig indicates Hyperbolic Tangent Sigmoid
Transfer Function.

Equation 6 was used to derive the analytical formula
for calculating the shear strength of concrete, which is
presented in Equation 7.

τ = 0.5(Yn + 1)(Ymax −Ymin) +Ymin (7)

where, Ymax and Ymin denotes the highest and low data for the shear
strength within the database, as such Ymax = 30.6kPa, and Ymin =
109.2kPa.

Among Equation 8:

Yn =
eC1 − e−C1

eC1 + e−C1
(8)

Among Equation 9:

C1 = 0.36+
4

∑
i=1

gi ×
eAi − e−Ai

eAi + e−Ai
(9)

where, gi represents the connection weights between the ith hidden
layer and the output layer junction of the constructed LDA-BAANN
algorithm, as detailed in Table 5.

In Equation 10:

Ai = hi +
4

∑
j=1

pj ×Nj (10)

where, hi denotes the biases of the jth hidden layer node; pj
denotes the connected weight between the ith hidden layer node
and the jth input layer node;Nj denotes the ith uniformly formatted
input variable.

7 Experimental validation of the
model’s predictive performance

The predicted shear strength of dredged soil from the proposed
analytical formula and machine learning models was compared
with experimental measurements to assess their accuracy. The
verification process involved the following steps:.

(1) A comprehensive series of direct shear tests were carried out
on dredged soil samples with controlled initial densities.These
tests considered different numbers of drying-wetting cycles
and were conducted under varying normal stresses, shear
displacement rates, and temperatures. The key parameters
of the soil samples and the experimental conditions are
summarized in Table 7, which includes 32 distinct test cases.

(2) Shear strength values were calculated using Equation 7, which
incorporates the physical properties of the soil samples and the
test variables.
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FIGURE 10
The predictive results on testing dataset: (a) LDA-ANN; (b) LDA-SVM; (c) GA-BAANN; (d) PSO-BAANN; (e) LDA-BAANN.

(3) The predicted shear strengths derived from the analytical
formula were then compared with those obtained via
the machine learning model. The comparison results are
presented in Figure 13, demonstrating the accuracy and
reliability of the proposed methods.

As shown in Figure 13, the shear strength values predicted by the
analytical formula closely match those measured through physical
experiments on dredged soil samples. The comparison yields an
RMSEof 2.45, aMAPEof 3.03%, and a correlation coefficient of 0.99,
indicating a very strong consistency betweenpredicted andobserved
results.These findings highlight the analytical formula’s effectiveness

in capturing the key factors influencing shear strength, confirming
its reliability and practical value for engineering assessments.

8 Discussion

The sensitivity analysis reveals a massive influence of normal
pressure on the dredged soil shear strength,with a relative significance
of 29.2%. This phenomenon can be attributed to the relatively loose
structureofdredgedsoil (Fudala-Ksiazeketal.,2017).Normalpressure
causes the loose dredged soil to be compressed, which is crucial
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FIGURE 11
The R value for the algorithms on testing datasets: (a) LDA-ANN; (b) LDA-SVM; (c) GA-BAANN; (d) PSO-BAANN; (e) LDA-BAANN.

for enhancing the shear strength of dredged soil. With the increase
of normal pressure, the compaction degree of dredged soil rises,
which significantly changes the shear strength of dredged soil. Thus,
normal pressure ranks the most influence factor. Temperature also
has remarkable impact on the shear strength of dredged soil, with the
percentage of 26.43% (Tanguay-Rioux et al., 2022). This is because
as aforementioned, dredged soil contains many thermal-softening
materials, such as plastic, etc. In elevated temperature, the softening of
dredged soil has adverse influenceon its shear resistance,which results
in the high relative significance of temperature (Velvizhi et al., 2020).

In marine engineering reclamation projects, controlling the internal
temperature of the fill body is of great importance, as it helps enhance
thestabilityofengineeringstructures.Theinitialdensityof thedredged
soil is also a critical factor affecting its shear strength, with a relative
importance of 20.02%. This indicates that proper compaction of the
dredged soil prior to reclamation can improve its shear strength to
some extent, serving as an effective measure to increase the stability
of the reclamation fill. In comparison, drying-wetting cycle number
has relatively small effects on the shear strength of dredged soil, with
the proportions of 14.33%.This can be explained by that the dredged
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FIGURE 12
Relative significance for the input variables. (a) Sensitivity comparison analysis. (b) SHAP value.

TABLE 6 Interlinking weights and biases in the developed LDA-BAANNmodel.

Hidden layer joint number Weight Bias

Input parameter Output parameter Hidden
Layer

Output
Layer

P I T D R S

1 0.24 −2.14 0.63 0.27 1.11 −1.90 1.20

0.36
2 1.36 1.93 −1.27 −1.30 −2.29 −2.01 1.01

3 0.46 2.34 −2.39 2.30 −2.01 3.09 −0.33

4 1.04 1.09 2.14 2.77 0.46 4.15 −0.20
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TABLE 7 Key parameters of the dredged soil samples and the testing conditions.

Dredged soil initial
density (kN/m3)

Drying-wetting
cycle number

Temperature (°C) Shear displacement
rate (mm/min)

Normal pressure
(kPa)

7, 9 2, 4 40, 79 1.5, 2.9 90, 150

FIGURE 13
Validation results include: (a) MAPE and RMSE; (b) R values; (c) comparison of predicted and measured values.

soil is mainly produced in urban areas, which comprises less quantity
of water-soluble materials and the component that occurs volumetric
deformationwhencontactingwithwater, suchas expansive clayey soil,
etc. Thus, drying-wetting cycle number cannot significantly alter the
structure of dredged soil to impact its shear strength. The marginal
influence of shear displacement rate (10.02%) on the dredged soil
shear strength can be attributed to the lowVisco-plasticity of dredged
soil, which indicates the time-dependent effect is insignificant when
conducting pressure loading on dredged soil.

The research underscores the significantly greater optimization
effectiveness and efficiency of LDA compared to GA and PSO. This
is because LDA can implement the similar taxis and dissimilation
operation. Firstly, the comparable taxis and assimilation
operations can be implemented independently to enhance the
optimization efficacy remarkably; Secondly, the similarity and
alienation operations in LDA allow for the storage of multiple
generations of subgroup evolutionary data, which contributes
to a more robust and effective optimization process. Thirdly,
the similar taxis and dissimilation procedures in LDA combine

the advantages of powerful global and local search capabilities,
leading to efficient and precise determination of alternative
optimal solutions.

Looking ahead, this research needs to address two key areas
for further development. First, since the composition of dredged
soil in real-world projects is often complex and variable, future
studies should aim to enrich the dataset by including more
comprehensive soil properties. This expanded data will support
the creation of machine learning models capable of delivering
more accurate shear strength predictions tailored to practical
engineering conditions. Second, the stress conditions experienced
by dredged soil on-site are typically multifaceted. Therefore,
conducting experiments that simulate diverse stress states is
essential. The insights gained from these tests will help improve
the dataset and enable the construction of machine learning
algorithms better suited to predict shear strength under realistic
loading scenarios.

The experimental data utilized in this study were generated
under controlled laboratory conditions, which, while ensuring
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experimental precision and reproducibility, may limit the
generalizability of the findings to complex field environments.
This inherent limitation is explicitly acknowledged. To enhance the
applicability of the proposedmodels in practicalmarine engineering
contexts, future work should focus on validating these models with
in-situ field data encompassing a broader spectrum of soil types and
environmental conditions.

Our sensitivity analysis highlights the dominant influence of
normal pressure on dredged soil shear strength, which accounts for
approximately 29.2% of the total effect. This finding corroborates
previous studies such as Fudala-Ksiazek et al. (2017), who emphasized
that the inherently loose structure of dredged soils makes them
highly sensitive to compression under normal loads. The increase
in compaction degree with rising normal pressure enhances
particle interlock and contact forces, thereby improving shear
resistance. Our results extend this understanding by quantifying
the relative importance of normal pressure under varied thermal
and loading conditions.

Temperature also emerges as a key factor, contributing 26.43%
to shear strength variation. This aligns well with the findings of
Thomoglou and Karabinis (2021) and Velvizhi et al. (2020), which
identified thermal softening of organic and plastic components
within dredged soils as a mechanism that reduces shear resistance
at elevated temperatures. Our study further emphasizes the critical
need to control internal temperatures in reclamation fills to
maintain structural stability, a consideration that has been relatively
underexplored in prior work.

Conversely, the drying-wetting cycle and shear displacement
rate showed comparatively minor influence (14.33% and 10.02%,
respectively), differing somewhat from some previous reports
on clayey soils where cyclic moisture changes or strain rates
significantly affect strength (Tang et al., 2023). This discrepancy can
be explained by the unique composition of urban dredged soils used
in our study,which contain fewerwater-sensitive expansive clays and
have low Visco-plasticity, thereby diminishing the impact of these
factors. Such nuanced understanding is essential for tailoring soil
improvement strategies to specific dredged soil types.

From a practical standpoint, the pronounced effect of normal
pressure and temperature informs design considerations in marine
engineering. For instance, optimizing compaction protocols to
achieve target densities can substantially enhance shear strength,
improving fill stability. Additionally, monitoring and managing
thermal regimes during and after reclamation can mitigate strength
degradation due to thermal softening, contributing to safer and more
durable marine infrastructure.

9 Conclusion

This research conducted 1,600 large direct shear tests on
dredged soil in diverse test conditions. Based on the test findings,
an extensive database was created, which served as a solid basis
for the creation of an inventive LDA-tuned BAANN model that
predicted the shear strength of dredged soil. The constructed LDA-
tuned BAANNmodel considers crucial input parameters, including
normal pressure, dredged soil initial density, temperature, drying-
wetting cycle number, shear displacement rate. This is the primary
occasion that the shear strength of dredged soil has been estimated

using the LDA-tuned BAANNmodel. In order to assess and contrast
the accuracy of the new approach, we built traditional machine
learning algorithms like GA and PSO-optimized BAANN, LDA-
optimized ANN, and SVM. Additionally, using the LDA-optimized
BAANN algorithm, a sensitivity assessment was carried out to
determine the relative significance of input factors on the shear
strength of dredged soil (dredged soil). Additionally, a mathematical
formula was created to allow machine learning specialists
to estimate shear strength accurately. The main conclusions
are as follows:

1. The proposed LDA-optimized BAANN model effectively and
accurately predicts the shear strength of dredged soil.

2. Compared to GA and PSO, LDA shows superior optimization
performance and efficiency.

3. Sensitivity analysis identifies normal stress, temperature,
and initial density as key influencing factors, while shear
displacement rate and drying–wetting cycles have relatively
minor effects.

4. An explicit empirical formula for shear strength was
established based on the optimized model, providing a reliable
tool for engineering applications.

In conclusion, the accurate prediction of dredged soil shear
strength remains a significant challenge due to the coupled influence
of multiple factors and complex interaction mechanisms. However,
the LDA-tuned BAANNmodel proposed in this study outperforms
traditional machine learning methods in both modeling efficiency
and predictive accuracy.Moreover, the LDAalgorithmdemonstrates
superior optimization capabilities compared to GA and PSO.
This model provides a robust theoretical foundation and
technical support for the efficient evaluation of dredged soil
properties and structural safety assessment in marine engineering,
offering considerable research value and engineering application
potential.
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