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Inverse electromagnetic (EM) modeling plays a pivotal role in subsurface 
exploration, enabling the characterization of the Earth’s electrical properties for 
various applications, including resource exploration, environmental monitoring, 
and geohazard assessment. Despite significant advancements in the field, the 
EM inverse problem remains inherently challenging due to its ill-posed and 
nonlinear nature. A diverse range of methodologies, including deterministic, 
non-deterministic, and machine learning-based (ML-based) approaches, have 
been proposed to address these challenges. However, there is a lack of a 
comprehensive synthesis that integrates both the theoretical evolution of these 
methods and their bibliometric performance. This paper addresses this gap by 
combining a systematic review of modern computational methodologies with 
a bibliometric assessment of the scientific literature on inverse EM modeling. 
The systematic review critically evaluates key computational approaches, 
examining their theoretical foundations, practical applications, and limitations, 
while the bibliometric assessment provides a quantitative assessment of 
scientific productivity, trends, and contributions from different nations. This 
integrated perspective offers a unified overview of the field, identifies emerging 
research directions, and highlights the state-of-the-art in inverse EM modeling. 
The findings provide valuable insights for researchers, practitioners, and 
policymakers, guiding future advancements and fostering interdisciplinary 
collaboration.
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Highlights

i. Provides a comprehensive synthesis of inverse EM modeling by combining systematic 
review methodologies with bibliometric assessment

ii. Examines deterministic, stochastic, and ML-based approaches, critically 
evaluating their applicability, advantages, and limitations in geophysical
exploration

iii. Identifies key global contributions, thematic evolution, and future research 
directions through quantitative bibliometric techniques and unsupervised neural
networks

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2025.1645896
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2025.1645896&domain=pdf&date_stamp=
2025-10-06
mailto:octavio.castillo@upc
mailto:octavio.castillo@upc
mailto:octavio.castillo@bsc.es
mailto:octavio.castillo@bsc.es
mailto:ursula@ciencias.unam.mx
mailto:ursula@ciencias.unam.mx
https://doi.org/10.3389/feart.2025.1645896
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2025.1645896/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1645896/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1645896/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Castillo-Reyes et al. 10.3389/feart.2025.1645896

iv. Enhances geophysical imaging strategies for mineral 
exploration, groundwater assessment, hydrocarbon 
detection, and environmental monitoring.

1 Introduction

Inverse electromagnetic (EM) modeling is an essential tool in 
subsurface exploration, facilitating the characterization of the Earth’s 
electrical properties for applications such as resource exploration 
(Newman and Alumbaugh, 1997; Eidesmo et al., 2002; Avdeev, 2005; 
Constable, 2006; Srnka et al., 2006; Orange et al., 2009; Constable, 
2010; Castillo-Reyes et al., 2018; Werthmüller et al., 2021), mineral 
and resource mining (Sheard et al., 2005; Queralt et al., 2007; Yang 
and Oldenburg, 2012), CO2 storage characterization (Girard et al., 
2011; Vilamajó et al., 2013), geothermal reservoir imaging and 
characterization (Piña-Varas et al., 2015; Coppo et al., 2016), 
crustal conductivity studies (Hördt et al., 1992; Hördt et al., 2000; 
Ledo et al., 2002; Campanyà et al., 2012), and hydrogeological 
(Chambers et al., 2006; Chang et al., 2017; Zhang et al., 2016). 
Among its key techniques, inverse EM modeling stands out for 
its ability to reconstruct subsurface conductivity structures from 
observed EM field data. However, the EM inverse problem is 
inherently challenging due to its ill-posed and nonlinear nature, 
necessitating the development of sophisticated computational 
and algorithmic approaches. Over the years, EM community 
have proposed a broad spectrum of methodologies, including 
deterministic, non-deterministic, machine learning-based (ML-
based) schemes, and deep learning-based (DL-based) techniques, 
to address these challenges. Despite this progress, the field lacks 
a cohesive synthesis of its evolution, trends, and future directions, 
making it difficult to identify critical knowledge gaps and prioritize 
areas for further research.

Previous works have explored various facets of inverse EM 
modeling (Etgen et al., 2009; Zhdanov, 2010; Newman, 2014; 
Sun et al., 2022; Heagy et al., 2017; Xue et al., 2020; Wagner and 
Uhlemann, 2021; Wang et al., 2021; Castillo-Reyes et al., 2023a; 
Castillo-Reyes et al., 2024). Earlier studies primarily focused on 
deterministic methods, emphasizing their mathematical rigor and 
suitability for well-constrained scenarios but also highlighting their 
sensitivity to noise and limitations in handling complex geological 
structures (Xue et al., 2020). Subsequent works expanded the scope 
to include non-deterministic approaches, such as stochastic and 
probabilistic methods, which introduced uncertainty quantification 
(Ernst et al., 2020) and demonstrated robustness in handling 
ill-posed problems (Gunning et al., 2010; Mittet and Morten, 
2012; Zhang et al., 2020). More recently, the integration of ML 
techniques has attracted significant attention, with works discussing 
their potential to process large datasets, identify patterns, and 
accelerate EM inversion workflows (Kim and Nakata, 2018; Puzyrev, 
2019; Russell, 2019; Ma et al., 2024; Schuster et al., 2024). 
Despite these contributions, existing reviews tend to concentrate 
on specific methodologies or application areas, lacking a holistic 
perspective that encompasses both theoretical advancements and 
bibliometric insights (Donthu et al., 2021) into the field’s evolution. 
This gap underscores the need for a comprehensive analysis that 
integrates systematic and bibliometric approaches to provide a 
broader understanding of inverse EM modeling.

This paper addresses this need by integrating a systematic 
review of modern computational methodologies with a bibliometric 
assessment of the scientific literature in inverse EM modeling. The 
systematic review provides a critical evaluation of the primary 
approaches employed in the field, highlighting their theoretical 
underpinnings, practical applications, and inherent limitations. 
Simultaneously, the bibliometric assessment offers a quantitative 
perspective on the field’s development, examining trends in 
scientific productivity, contributions from different nations, and 
the thematic evolution of research. Together, these complementary 
methodologies present a comprehensive view of the field, bridging 
the gap between qualitative insights and quantitative analysis. The 
novelty of this study lies in its ability to provide an integrated 
perspective that combines theoretical analysis with bibliometric 
evaluation. While previous relevant studies often focus on isolated 
aspects, such as algorithmic and numerical advancements or 
specific application fields, this paper offers a unified overview 
that contextualizes the field’s historical development and identifies 
emerging opportunities. By integrating qualitative and quantitative 
insights, this paper highlights the state-of-the-art in inverse 
EM modeling while setting the stage for future research and 
interdisciplinary collaboration. It serves as a valuable resource for 
researchers and practitioners, addressing existing challenges and 
uncovering emerging opportunities in the field.

The paper is organized as follows. Section 2 details the 
methodology for conducting the systematic review and bibliometric 
assessment. Section 3 establishes the theoretical foundation of direct 
and inverse EM modeling. Section 4 presents the systematic review, 
classifying computational approaches into deterministic, non-
deterministic, and ML methods while discussing their respective 
contributions and limitations. Section 5 reports the bibliometric 
assessment, highlighting trends in scientific performance, national 
contributions, and the thematic structure of the research 
field. Finally, Section 6 concludes with a summary of findings, their 
implications, and proposed directions for future research. 

2 Methodology

In this section, we outline the methodological approach used 
to conduct the literature review (Table 1 provides a summary 
of the reviewed literature). Our methodology includes two key 
components: a systematic review and a bibliometric assessment. 
The systematic review was used to identify, select, and critically 
evaluate relevant studies, ensuring a thorough examination of 
existing research. Following this, a bibliometric assessment was 
performed to quantitatively assess the research landscape, offering 
insights into publication trends, influential works, and collaborative 
networks within the field. Together, these methodologies 
provide a robust framework for synthesizing current knowledge 
and identifying future research directions. Below, we detail
each component.

2.1 Systematic review component

Inspired by Grant and Booth (2009); Paré and Kitsiou (2017), 
we followed a comprehensive and rigorous process to identify and 

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2025.1645896
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Castillo-Reyes et al. 10.3389/feart.2025.1645896

TABLE 1  Overview of key inversion methods in EM modeling, their main characteristics, and representative works.

Inversion approach Characteristics Reference

Gradient-Based Methods (e.g., Nonlinear Conjugate 
Gradient, Limited-memory BFGS)

Based on the gradient of the objective functional; 
typically have first-order convergence; suitable for 
large-scale problems; sensitive to initial models and 
regularization assumptions

Rodi and Mackie (2001), Newman and Boggs (2004), 
Haber (2005), Avdeev and Avdeeva (2009), Egbert and 
Kelbert (2012), Meju et al. (2019)

Newton-type methods (e.g., Newton, Gauss-Newton, 
Occam)

Improved convergence (≈ second order) and 
robustness; suitable for large-scale problems; needs to 
compute a good approximation of Hessian; sensitive to 
initial models and regularization assumptions

Newman and Alumbaugh (1997), Haber et al. (2000), 
Newman and Hoversten (2000), Grayver et al. (2013), 
Key (2016), Dehiya et al. (2017a), Malovichko et al. 
(2019), Cai et al. (2021)

Stochastic and Bayesian approaches (e.g., MCMC, 
transdimensional inversion)

Enables uncertainty quantification; posterior 
distributions for model parameters; high 
computational cost

Buland and Kolbjørnsen (2012), Ray and Key (2012), 
Gehrmann et al. (2015), Blatter et al. (2019), 
Jaysaval et al. (2019), Ayani et al. (2020)

Hybrid and low-rank approximation schemes Combines simulation and optimization decoupling; 
reduced memory and computation; designed for large 
3D inversion

Commer and Newman (2008), Amaya et al. (2016), 
Dehiya et al. (2017b), Mittet and Avdeeva (2024)

ML, DL, and Physics-informed neural networks Real-time inversion without explicit gradient 
computation; generalization from synthetic data; 
integration of physical laws (e.g., Maxwell’s equations) 
into neural architectures; enables mesh-free solutions 
in complex heterogeneous media

Puzyrev (2019), Piao et al. (2024), Puzyrev and 
Swidinsky (2021), Li et al. (2019), Hu et al. (2023), 
Sagar et al. (2021), Arbogast et al. (1998), Guo et al. 
(2023), Asif et al. (2023), Shahriari et al. (2020a), 
Shahriari et al. (2020b), Shahriari et al. (2022), 
Zhang et al. (2022a), Liu et al. (2021), Liu et al. (2024), 
Rosas-Carbajal et al. (2013)

select relevant papers and studies for this literature review. Multiple 
academic and institutional databases were searched to ensure wide 
literature coverage. Carefully chosen search terms encompassed 
various aspects of direct and inverse EM modeling. Initially, broad 
terms were used, and then refined using Boolean operators to 
increase result specificity. To ensure the quality and relevance of 
the selected literature, we applied strict inclusion and exclusion 
criteria (Rosenthal and DiMatteo, 2001). Inclusion criteria involved 
peer-reviewed journal articles, conference papers, and book chapters 
published within the last five decades. The studies had to focus 
on EM inverse modeling assessment methodologies and/or their 
applications in real-world case studies. Purely theoretical studies 
without practical applications and studies with insufficient data 
were excluded. Despite rigorous efforts to include all relevant 
literature, the review process may be affected by limitations and 
potential biases (Green and Hall, 1984). These biases could arise due 
to the search strategy’s reliance on specific keywords and the use of 
selected databases, which might inadvertently lead to the exclusion 
of some pertinent papers. Additionally, there is a possibility of 
publication bias, where studies with statistically significant findings 
are more likely to be included in the review. To address these 
bias issues, a comprehensive search strategy was implemented 
using specialized databases renowned for their extensive coverage 
of scientific literature. The search strategy was carefully designed, 
incorporating relevant keywords related to EM inverse modeling, 
EM scattering, and associated methodologies. The use of Boolean 
operators AND and OR effectively combined these terms to 
maximize the retrieval of relevant studies. Furthermore, we critically 
examines studies that demonstrate high-quality methodologies, 
sound data validation, and reliable results, thus minimizing the 
impact of publication bias. During the data extraction process, a 

systematic review approach was adopted. Pertinent information, 
including type of EM inverse modeling schemes, employed 
methodologies, and case study details, was meticulously extracted 
and organized into a standardized data extraction form. To ensure 
the quality and reliability of the studies, a thorough quality 
assessment was conducted. This assessment evaluated the robustness 
of the methodologies employed, the validity of data sources used, 
and the coherence of the findings reported.

Finally, we give particular attention to seminal works and 
influential papers that have made significant contributions to the 
field under consideration. Here, we highlight key methodological 
advancements, novel approaches, and innovative ideas presented 
in those papers, demonstrating their profound influence on the 
development of research in this domain. We also delve into an in-
depth analysis of validation techniques used to assess the accuracy 
and reliability of EM inverse modeling. By incorporating case 
studies from diverse geographic regions and hazard types, we 
thoroughly evaluate the practical application of these methods and 
the effectiveness of EM inverse modeling strategies implemented 
based on the assessment outcomes. 

2.2 Bibliometric review component

The rationale for employing a bibliometric approach stems 
from the goal of conducting a comprehensive literature review 
on EM imaging inversion methods and addressing pertinent 
questions within the academic community. For instance, what 
are the primary topics examined in this field? Which countries 
are most active in this research? Which agencies predominantly 
fund these studies? To investigate these questions, we utilize 
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a bibliometric methodology enhanced by unsupervised artificial 
neural networks (ANN) and various visual analytic tools. Therefore, 
in order to complement the systematic review component with 
a general analysis and visualizations of the EM inverse modeling 
domain, we followed well established methodologies of science 
mapping developed in the fields of bibliometrics and scientometrics, 
science of science (Fortunato et al., 2018) or we can also 
call it: Meta-Science. The main goals are twofold. Firstly to 
quantitatively assess the bibliometric performance of the EM inverse 
modeling domain, and secondly to describe its scientific structure 
and trends, using scientific and technological information. To 
accomplish our first goal, we follow the methodologies developed by 
Villaseñor et al. (2017); Jiménez-Andrade (2023); Ruiz-Sánchez et al. 
(2024) and for the analysis and visualization of the landscape EM 
inverse modeling, we use author keywords co-occurrence networks
(Radicchi et al., 2012).

Bibliometric indicators are commonly used to assess research 
output, though they are not without controversy (Moed, 2002). 
Despite these concerns, bibliometric scholars have consistently 
emphasized the importance of using multiple indicators to capture 
the various dimensions of academic activity (Moed, 2017). However, 
comparing units of analysis characterized by more than three 
indicators presents significant challenges. To address this, we employ 
ANN. The Self-Organizing Map (SOM) is an ANN that is based 
on competitive and unsupervised learning. It was first proposed 
by Kohonen (1981), Kohonen (1982) as a visualization tool and 
later revisited in by Kohonen (2001), Kohonen (2013). It is mainly 
used for visualization and clustering of multidimensional data and 
it constitutes one powerful data mining technique. In the context of 
the bibliometric assessment the goal is to discover some underlying 
structure of the data by a non linear dimensionality reduction 
method. SOM clusters data such that of the statistical relationships 
between multidimensional data are converted into a much lower 
dimensional latent space that preserves the geometrical relationships 
among the data points. SOMs provide a very powerful tool to 
visualize multidimensional data in a 2-D retina that gives us the 
possibility to see hidden interrelationships among the data.

Scientific papers are associated with other papers by means of 
citation in their bibliography or in the footnotes. Thus, bibliographic 
data can be naturally represented by complex networks. An 
important use of these networks is to describe scientific structure 
and trends of a given field such EM inversion. For this purpose, 
concurrence networks, are commonly employed in bibliometric 
reviews and they provide a visual representation of relationships 
between concepts, terms, or entities within academic literature. 
These networks facilitate the identification of patterns, connections, 
and clusters within a research domain. For instance, a co-occurrence 
network illustrates how frequently two entities, such as keywords, 
authors, or publications, appear together in a dataset. Such networks 
are instrumental in understanding popular topics, emerging trends, 
and thematic groupings within specific fields of study (e.g., van Eck 
and Waltman, 2014; Newman, 2001). To illustrate the author 
keyword co-occurrence we have included a network on Figure 5. 
To carry out the multidimensional analysis of bibliometric profiles 
we used the software tool LabSOM (Jiménez-Andrade et al., 2020) 
and for the citation networks analysis we used VoSViewer (Eck and 
Waltman, 2010). 

3 Theory

Generating accurate EM subsurface images requires addressing 
both the direct and inverse problems. The direct EM problem, 
or forward problem, involves simulating EM responses at various 
receiver locations based on a known survey setup and subsurface 
resistivity distribution. In contrast, the inverse problem seeks to 
refine an initial subsurface model by minimizing misfit between 
measured and forward-modeled data. This refinement is achieved 
through iterative adjustments to the initial model using optimization 
algorithms until the direct problem responses closely match the 
measured data. This iterative procedure arises due to the non-linear 
nature of the EM inverse problem.

The general relationship between the forward problem and 
inverse problem, as depicted in Figure 1, can be schematically 
represented by the following diagram.

Forward problem: dmod = As(m), (1)

Inverse problem:m = A−1s (dobs), (2)

where dmod and dobs are modeled/simulated and observed data (EM 
responses), respectively, m is the model parameters, As denotes 
the forward problem operator corresponding to a source s, and 
A−1s  is the inverse problem operator. In this scenario, it is assumed 
that the parameters associated with source s are known. The 
inverse problem associated with Equation 2, when applied to EM or 
acoustic field propagation, is commonly referred to as the inverse 
scattering problem.

The theoretical basis for studying EM responses, as investigated 
by the geophysical community through active-source methods 
like controlled-source EM (CSEM) techniques and passive-source 
methods such as magnetotelluric (MT) approaches, operates under 
the assumption of negligible displacement currents. In this context, 
assuming time-dependent variation as eiωt, Maxwell’s equations 
considered within the frequency domain (Stratton, 2007).

∇×E = −iωμH, (3)

∇×H = σE+ Js, (4)

∇ ⋅H = 0, (5)

∇ ⋅E = 0, (6)

where E is the electric field, H is the magnetic field, i is the imaginary 
unit, ω is the angular frequency of the EM wave, μ is the magnetic 
permeability, σ is the electric conductivity of the medium, and Js
is the current density due to source. Note that when MT methods 
are used, the natural electric and magnetic fields of the Earth’s 
subsurface are measured, and no external sources are generated, so 
Js = 0.

Based on the previously defined Maxwell’s equations, the EM 
properties of the media are characterized by two parameters: electric 
conductivity (σ) and magnetic permeability (μ). Consequently, the 
forward problem operator As, can be described as follows

{E,H} = As{σ,μ}. (7)
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FIGURE 1
Schematic representation of the relationship between the forward and inverse problems.

For simple 1D models, there exist analytical or semi-analytical 
solutions for Equation 7. For 2D and 3D models, the solutions 
are approximated numerically, thus a discrete formulation of the 
boundary value problem (BVP) is required. Several numerical 
schemes for solving this BVP have been developed. These 
numerical developments are based on four major strategies: finite 
differences (FD; Mackie et al., 1994; Newman and Alumbaugh, 
2002; Davydycheva et al., 2003; Dehiya, 2021), finite volumes 
(FV; Hermeline, 2009; Jahandari and Farquharson, 2014), finite 
elements (FE; Key and Ovall, 2011; Um et al., 2013; Jin, 2015; 
Rivera-Rios et al., 2019; Castillo-Reyes et al., 2019), and integral 
equations (IE; Raiche, 1974; Wannamaker et al., 1984; Wannamaker, 
1991; Xiong and Tripp, 1997). We refer to Avdeev et al. (2002), 
Avdeev (2005), Börner (2010), Castillo-Reyes et al. (2024) for 
comprehensive reviews of numerical scheme developments for EM 
forward modeling.

With the discrete equations, one can obtain a linear system 
of equations (LSE) of the form 𝔸x = b, where 𝔸 is the matrix 
defined by the input resistivity model and mesh discretization 
(e.g., FD, FV, FE, IE), x is the vector of unknown EM fields or 
degrees of freedom (dof), and b is given by the source term s
(e.g., total field (Zhdanov, 2009) or electric field decomposition 
(Castillo-Reyes et al., 2018)) and boundary conditions (e.g., dirichlet 
conditions (Cai et al., 2017; Castillo-Reyes et al., 2018) or perfectly 
matched layers (Park et al., 2008; Li et al., 2018)). Note that matrix 𝔸
is sparse, complex, and symmetric for FD, FV, and FE formulations. 
For IE-based solutions, 𝔸 is dense, complex, and symmetric.

The resulting LSE can be solved either iteratively or directly, 
with both methods exhibiting comparable memory demands and 
convergence rates. Once the solution is obtained, the forward EM 
responses are post-processed at specified locations of interest (e.g., 
receiver locations). To assess the accuracy of the EM forward 
responses, they can be compared against a reference solution or 
evaluated using error estimation techniques (Grayver et al., 2013; 
Grayver and Bürg, 2014). Additionally, to enhance the precision of 
the EM responses, the model discretization can be refined through 
the application of tailored gridding strategies (Plessix et al., 2007; 
Spitzer, 2022; Castillo-Reyes et al., 2023b).

In contrast, the inverse problem in EM applications entails 
determining the EM properties of the medium, specifically the 
electrical conductivity (σ) from the observed EM fields E and 
H. Consequently, the inverse problem operator A−1s  can be 
expressed as follows

{σ,μ} = A−1s {E,H}. (8)

This inverse problem is inherently nonlinear, making the 
inversion of EM data a complex and challenging task in geophysics, 
as it requires addressing three fundamental questions: Does a 
solution exist? Is the solution unique? Is the solution stable? These 
inquiries have driven extensive research into the formulation of 
inverse problems with respect to these criteria. Specifically, an 
inverse problem is considered well-posed if its solution exists, is 
unique, and is stable. Within the EM context, this subject has been 
extensively studied by O’Sullivan (1986), Tarantola and Valette, 
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(1982), Baumeister (1987), Sarkar et al. (1981), Groetsch and 
Groetsch (1993), Tarantola (2005), Alberts and Bilionis (2024). 

4 Systematic literature review

4.1 Deterministic methods

Deterministic inversion is a widely used approach in geophysics 
for solving inverse problems, employing optimization principles. 
This method is intuitive and interpretable, enhancing the 
development of comprehensive mathematical theories for inverse 
modeling. Deterministic inversion modeling aims to find a 
model that fits the simulated data for an estimated model to 
the observed data. Therefore, a mechanism must be defined to 
evaluate the fit between simulated and observed data. In general, 
the observed/simulated data are finite in numbers and can be 
arranged in vector representation. A point-by-point difference of 
data points gives a misfit vector, and subsequent norms are employed 
to determine the misfit as a scalar. The minima of the norms can be 
evaluated by differentiating the norm and finding a solution where 
it is first derivative vanishes. The 2-norm is preferred among other 
norms due to its quadratic form, which leads to a linear system of 
equations during the optimization. A 2-norm (denoted as |.|2) misfit 
functional (Φ(m)) can be written as

Φ(m) = |dobs − dmod|2, (9)

The aim of inverse modeling is to evaluate model parameters, 
m by minimizing the above defined functional. As the forward 
modeling operator depends on the model parameter for EM 
modeling, minimizing the above functional is a nonlinear problem. 
Furthermore, it is an ill-posed problem in the case of EM data. 
Therefore, additional constraints are required to optimize the 
above functional, which is why its optimization is categorized 
as an inverse problem. Tikhonov and Arsenin (1977) provide a 
technique known as the regularization method that allows ill-
posed problems to be solved. Using a Lagrange multiplier strategy, 
this method assembles an augmented functional by including 
additional constraints. A general expression for regularized objective 
functional can be written as

Φ(m) = |W(dobs − dmod)|2 + λ
n

∑
j=1

αj|Ljm|2, (10)

where W is data covariance matrix, λ denotes regularization 
parameter, Li are regularization operators whose operation on 
model parameter, m, imposes the additional constraints, n denotes 
the number of regularization functional and αj represents the 
weight to jth regularization term. It is to be noted that Li may 
be designed to enforce the characteristic of prior information. 
In this case, its structure depends on prior information, such 
as a reference model. Generally, a single regularization operator 
(n = 1) is used in EM inversion algorithms, particularly in
isotropic cases.

Different optimization techniques can be used to minimize 
Equation 10, such as steepest descent, Levenberg-Marquart 
technique, non-linear conjugate gradient (NLCG (Rodi and 
Mackie, 2001)), Newton’s method (Haber et al., 2000) and its 

variants (Newman and Alumbaugh, 1997). All of these methods 
use the gradient of the objective functional calculated at its 
current position to update the model. Since the gradient points 
in the direction of maximum change, the reverse direction of the 
gradient provides the direction in which the functional reduces 
the most at that position. The above-listed optimization methods 
applied various transformations/corrections to achieve faster 
convergence. Therefore, a generalized expression for correction 
in model parameter (denoted by δm) at ith inversion iteration can be
written as

δm = −L∇(Φ(m)), (11)

where ∇(.) represents a gradient operation and L denotes 
transformation, which depends on the choice of the optimization 
method. The negative sign ensures the reversed gradient direction. 
The gradient of the functional given in Equation 10 can be
written as

∇(Φ(m)) = −JTWTW(dobs − dmod) + λ
n

∑
j=1

αjLT
j Ljm, (12)

where J is the Jacobian matrix calculated for current model 
parameters. The convergence of the inversion depends on the 
Jacobian matrix’s singular values and the optimization method. 
The distribution of singular values of the Jacobian determines 
the shape of the objective functional (ϕ(m)), where wider 
distribution causes a slow convergence. The Jacobian associated 
with the EM inverse problem has numerous zero singular values, 
which is why additional constraints are required to stabilized
the solution.

In the case of the steepest descent method, L is a scalar, 
known as step length, that controls how much correction is 
applied using the current gradient. It is generally chosen such 
that the objective functional for the next updated model lies 
at the point where the reverse gradient tangentially touches a 
contour of the objective functional. The steepest descent shows a 
very slow convergence, particularly as it approaches the minima 
due to the wider singular value distribution from EM inverse 
modeling. Hence, it is not a choice to solve EM inverse modeling 
(Ruder, 2016). NLCG (Rodi and Mackie, 2001) belongs to the 
Krylov subspace-based optimization method, which searches for a 
model update along mutual conjugate vectors (Liesen and Strakos, 
2013). Consequently, the operator L is designed to find mutually 
conjugate search directions using the gradient. Generally, successive 
search directions lose the conjugacy condition as the inversion 
iteration progresses due to the round-off error during floating point 
operations. This issue is addressed by resetting the search direction 
to the steepest decent direction after some inversion iteration when 
the convergence does make much progress with inversion iterations 
(Egbert and Kelbert, 2012). The convergence of conjugate gradient 
(CG) class of the method depends on the distribution of singular 
values; more specifically, if there are q distinct singular values 
theoretically, the CG method converges in q iteration (Daniel, 
1967). Therefore, convergence is faster in the case of clustering 
of singular values. NLCG typically requires three direct problem 
(or equivalent) simulations per source at an inversion iteration. 
Owing to these qualities, the NLCG has been applied in many 
EM inversion algorithms (Commer and Newman, 2008; Egbert 
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and Kelbert, 2012). Preconditioned NLCG algorithms have been 
employed to speed up the convergence of EM inverse problem
(Newman and Boggs, 2004).

On the other hand, Newton’s method delivers a quadratic 
convergence compared to the linear convergence as in the 
case of NLCG. Therefore, the inversion reaches the minima in 
much fewer iterations than NLCG. However, Newton’s method 
requires the computation of a second-order derivative of the 
objective functional known as Hessian and the operator denoted 
by L in Equation 11 is constructed using Hessian matrix. The 
computation of Hassian is very intensive, particularly in the 
case of 3D inverse modeling. Though Newton’s method has 
been employed for EM inversion (Haber et al., 2000; Newman 
and Hoversten, 2000), its variants are more popular among the 
EM geophysical community. For example, the Gauss-Newton 
method approximates the Hessian matrix using the Jacobian 
matrix, making it comparatively less demanding of computational 
resources per iteration while maintaining the convergence nearly 
equivalent to Newton’s method. Hence, Gauss-Newton’s method 
has been applied extensively to EM inversion (Newman and 
Alumbaugh, 1997; Dehiya et al., 2017a; Malovichko et al., 2019). 
Schemes such as preconditioned Gauss-Newton using direct solver 
(Grayver et al., 2013), low-dimension approximation of Jacobian 
(Amaya et al., 2016; Dehiya et al., 2017b), and decoupling of 
simulation-optimization grids (Mittet and Avdeeva, 2024) have been 
proposed for the Gauss-Newton method to reduce computation 
costs. Other methods, like Occam inversion (Siripunvaraporn et al., 
2005) are similar to the Gauss-Newton method, which is also 
popular among EM geophysical researchers. The Occam inversion 
seeks a smooth model, which is achieved through a two-stage 
inversion procedure (Key, 2016). Another prevalent Newton’s 
variant is quasi-Newton’s method, where the Hessian matrix is 
updated using the previous Hessian matrices. To reduce the 
memory requirement for storing the information from all previous 
iterations, a limited memory quasi-Newton’s method is designed 
that uses data from a limited number of the last iterations only 
(Newman and Boggs, 2004; Avdeev and Avdeeva, 2009). The 
quasi-Newton’s method reduces the computation per inversion 
iteration considerably. Therefore, it has been employed in many EM 
inversion algorithms (Haber, 2005). However, the convergence is 
much slower in the case of quasi-Newton method than in Gauss-
Newton’s method.

The gradient calculation is an integral part of all the methods 
mentioned above, which requires solving Equation 12. Jacobian 
computation is the most computationally intensive part of this 
equation. Furthermore, the Hessian matrix can also be computed 
using the Jacobian matrix, at least in the case of the Gauss-
Newton method Avdeev (2005). Jacobian is a dense matrix having 
a dimension as, the number of data points by the number of model 
parameters. The model parameters may run into several million 
in large 3D inversion, while the observed data points are of the 
order of hundreds of thousands. Therefore, the Jacobian matrix’s 
construction and storage are computationally challenging tasks. This 
issue is overcome by expressing the Jacobian matrix as a product of 
several matrices (or inverse of matrix) where all these matrices are 
either sparse or much smaller in dimension than the Jacobian matrix 
(Newman and Alumbaugh, 1997). Consequently, the gradient is 

calculated by matrix-vector multiplications. In the case of the Gauss-
Newton method, the inverse of the regularized Hessian matrix is 
calculated approximately by employing the CG technique (Newman 
and Hoversten, 2000). Such implementation of the Gauss-Newton 
method is called the inexact Gauss-Newton algorithm, as the inverse 
is calculated only approximately. Since CG involves matrix-vector 
products, these operations can also be performed efficiently using 
the Jacobain factors, consequently avoiding the construction of 
Jacobain. There are two strategies to such a scheme. In one approach, 
the forward and adjoint solutions are first computed, and the model 
parameter is subsequently calculated (Dehiya et al., 2017b) by 
solving Equation 11, and the second approach involves solving 
only the forward solution and performing adjoint computation 
during the model parameter update. Generally, the first approach 
favours the CSEM case, while the second is suitable for MT 
inversion. Another interesting strategy is employing an IE solver for 
forward and Frechet derivative calculations (Gribenko & Zhdanov, 
2007). The IE solver-based inversion algorithms derive the 
advantage of only requiring the discretization of the inversion 
domain. Likewise, hybrid schemes have been developed by 
integrating the different forward solvers for CSEM data inversion
(Yoon et al., 2016).

Another critical issue in the inverse problem is the choice of 
regularization technique. The two most common constraints in 
EM inverse modeling are the smoothest structural and reference 
model regularization (Zhang Y. et al., 2022). The smoothest 
structural strategy minimizes model parameters’ first or second-
order derivative as regularization, occasionally referred to as the first 
and second-order Tikhonov regularization method, respectively. In 
the case of structured grid being used for the discretization of the 
model, the computation of the derivative of model parameters is 
straightforward. However, in the case of an unstructured grid, the 
calculation of the derivative is challenging. Unstructured gridding 
is a powerful tool for dealing with complex topographic variations 
and geologic structures. Several recent studies have presented 
various schemes for computing derivatives of model parameters 
for unstructured grids (Jahandari et al., 2017; Spitzer, 2022; 2024). 
The reference model regularization approach imposes a closeness 
to user defined reference model. In most of the algorithms, the 
first or second-order derivative of the difference of unknown and 
reference vectors is minimized as regularization (Wang et al., 
2018; Cai et al., 2021). Alternatively, techniques such as focused 
inversion have also been implemented to aim for sharp boundaries 
of anomalous bodies for CSEM data inversion (Gribenko and 
Zhdanov, 2007). Another approach is to apply cross gradient 
operator to impose structural similarity of the reference model as 
an additional constraint (Kho et al., 2024). The inverted model 
of such implementation shows bias towards the reference model. 
Sometimes, other regularization terms are included in addition to 
the above-stated terms, particularly in the case of anisotropic and 
joint inversion.

Several researchers have highlighted the necessity of considering 
the anisotropy of the subsurface in an inversion algorithm, as the 
omission of anisotropy can cause severe artifacts in the inverted 
model parameters (Newman et al., 2010; Mohamad et al., 2010). 
Anisotropic inversion aims to estimate the multiple components of 
the conductivity tensor (Abubakar et al., 2010; Brown et al., 2012; 
Wang et al., 2018). The simple form of anisotropy is when the axis 
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of anisotropy is parallel to the coordinate axis of model parameters 
space. Furthermore, vertical transversely isotropic (VTI) is often 
observed in sedimentary rock, which requires two components of 
conductivity tensor defining horizontal and vertical conductivity of 
the subsurface. Several researchers have developed CSEM inversion 
algorithms for VTI cases (Carazzone et al., 2008; Jing et al., 2008; 
Hansen et al., 2018; Dehiya, 2024). The other two simple forms of 
anisotropy are horizontal transversely isotropic (HTI) and triaxial 
anisotropy, where later has three independent conductivity tensor 
elements. Due to the folding of beds, the axis of symmetry of the 
isotropy gets rotated and likely be spatial varying, which requires 
considering the symmetry axis’s tilt. Such anisotropic cases are 
known as tilted transversely isotropic (TTI), which demands six 
independent conductivity elements to be evaluated during inverse 
modeling. It is instructive to add that anisotropic consideration 
leads to more model parameters, consequently, a greater degree of 
freedom in optimization. Hence, the conductivity images of different 
conductivity tensor elements may differ due to the insensitivity of 
CSEM data to some of the conductivity tensor elements (Dehiya, 
2024). To overcome this issue, researchers have imposed similarity 
constraints among different components. The simplest form is 
to minimize the difference between these elements (Key, 2016). 
Another elegant approach is to minimize the cross-gradient among 
them to impose similarity (Meju et al., 2019). The cross-gradient 
approach was introduced for joint inversion of multi-physics data 
where no physical relationship exists among different physical 
properties.

Some of the above-stated strategies are general concepts of 
CSEM inverse modeling, which can be applied to 1D, 2D, or 
3D inversion, and other issues such as computational strategies 
(e.g., 3D tailored meshing), are mainly relevant to 3D inversion. 
The computation cost increases exponentially as the dimension 
of inversion is raised. The evolution of CSEM inversion from 
1D to 3D was more rapid than MT inversion. Despite, CSEM 
data shows sensitivity mostly between transmitter and receiver, 
whereas a distant large conductor can influence MT data. Yet, 
2D CSEM inversion was not as famous as 2D MT inversion. 
One of the potential reasons is that CSEM research gained 
momentum in the last two decades, and computation power was 
pretty decent then. Another potential reasons is the 3D nature of 
the source, which makes 2D CSEM modeling expensive compared 
to 2D MT modeling. The 3D nature of the source requires the 
computation of forward modeling for several wavenumbers followed 
by inverse Fourier transform. Nevertheless, several wavenumber 
domain 2D inversion algorithms have been developed (Unsworth 
and Oldenburg, 1995; Mitsuhata et al., 2002; Ramananjaona 
and MacGregor, 2010; Abubakar et al., 2010), including publicly 
available (Key, 2016) that has been used in several studies. 
Recently, a space domain 2D CSEM inversion algorithm has been 
published (Chauhan and Dehiya, 2024). Nonetheless, the focus of 
CSEM inversion remains the development of 3D inversion. An 
essential issue of inverse modeling is the uncertainty estimation 
of the inverted model. The uncertainty of the inverted model 
can be calculated for linear inverse problems given the inverse 
modeling operator, data- and model-covariance matrix. This 
concept has been extended to non-linear inversion, where the 
uncertainty is estimated for the final inverted model (Tarantola, 
2005). The limitation of such a method is that the estimation 

is valid in the neighborhood of the final inverted model, and 
the regularization influences their estimate significantly. Ren and 
Kalscheuer (2020) presents an excellent review of uncertainty 
estimation. A more robust approach for uncertainty estimation is the 
Bayesian inversion algorithm, which is part of stochastic inversion 
techniques.

Deterministic inversion techniques have evolved significantly, 
however, they still face several challenges, such as the high 
computational burden and the risk of undesired premature 
convergence in complex multimodal optimization models 
(Bian et al., 2023). As describe above they involve the usage 
of gradient-based methods like the Gauss-Newton method, but 
the introduction of non-linearity through generative adversarial 
networks (GANs) could complicate some processes. While 
GANs reduce parameter dimensionality and ensure geostatistical 
consistency, non-linearity can delay convergence even in a 
linear forward model. Deterministic inversion performance 
is influenced by the inversion approach, starting model, and 
noise, with probabilistic methods offering more consistent 
solutions despite higher computational costs (Laloy et al., 
2019). In investigating on the challenges and critical elements 
of deterministic inversion, Han and Misra (2021) discusses 
some of these aspects including EM-based characterization of 
subsurface materials, algorithmic approaches for adjusting model 
parameters, sensitivity to initial model, development of unified 
inversion schemes or frameworks, improvements in robustness 
and efficiency, and methods to prevent being trapped in local 
minima. Furthermore, Liang et al. (2024) highlights several 
applications of deterministic inversion methods, especially in 
marine CSEM. Despite their extensive use, deterministic techniques 
face challenges such as dependence on initial models, potential 
loss of resolution due to regularization constraints, and lack of 
robust estimates of uncertainties. Furthermore, the computation 
cost remains a challenge for large-scale 3D inversion despite 
the significant improvement in computing power. Solutions to 
these challenges are being explored using non-deterministic 
methods and recent advancements in mechanic learning-based
inversion algorithms. 

4.2 Non-deterministic methods

Non-deterministic inversion methods involve exploring the 
model space generally by random walk to find the model that 
describes the observed data. However, an exhaustive search of model 
space is not computationally viable. Hence, various algorithms have 
been proposed to guide the efficient model space search. These 
search algorithms are based on different natural processes, as nature 
is assumed to operate optimally (González et al., 2008; Chopard and 
Tomassini, 2018). Yet, these algorithms require a large number of 
forward simulations while walking the model space. Hence, these 
algorithms are generally restricted to 1D or 2D inverse modeling. For 
example, Jaysaval et al. (2019) apply simulation annealing technique 
for 2.5D CSEM inverse problem whereas Ayani et al. (2020) develop 
1D inversion code using genetic algorithm. Bayesian inversion 
(Buland and Kolbjørnsen, 2012) is a more elegant method than 
other non-deterministic methods. It is based on the Bayes theorem, 
which allows to represent posterior probability distribution, p(m|d), 
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of model parameter (m) for given data (d; here, superscript has been 
dropped for brevity) as

p(m|d) =
p(d|m)p(m)

p(d)
, (13)

where p(d|m) is the probability distribution of the data given 
the model, commonly referred to as the likelihood distribution. 
p(m) and p(m) represent the probability distributions of the model 
and the data, respectively. It is computationally challenging to 
compute the probability distribution of data, additionally it is not 
required until we want to compute probability of model parameter. 
Therefore, it is typically not calculated as we can compare the 
probability for different models bypassing the computation of p(d). 
Nevertheless, Bayesian inversion delivers a probability distribution 
containing significantly more information than a final model. Thus, 
the obtained distribution can be used to derive a more thorough 
analysis of the inverted model, such as the mean model, mode 
model, uncertainty estimated, etc. Markov Chain Monte Carlo 
(MCMC) strategy is typically used for random sampling of modeling 
space. Metropolis-Hastings sampling algorithm is the most common 
choice for MCMC-based Bayesian codes. Generally, the number 
of model parameters is kept variable in the Bayesian algorithm, 
and such schemes are referred to as transdimensional algorithms. 
To avoid sampling only in the neighborhood of a local minimum, 
parallel tempering approach is used, where few MCMC chains 
are evaluated at higher temperatures, and these chains interact 
with the chains run at normal temperatures during sampling. 
Therefore, it requires running several chains in parallel. Bayesian 
inversion has been applied to both 1D (Grandis et al., 1999; 
Buland and Kolbjørnsen, 2012; Ray and Key, 2012; Ray et al., 
2013) and 2D (Ray et al., 2014; Gehrmann et al., 2015) and 3D 
(Penz et al., 2018) CSEM inversion problems. Bayesian inversion 
schemes is also applied for joint inversion of CSEM and MT data 
(Xiang et al., 2018; Blatter et al., 2019; Seillé and Visser, 2020; 
Ardid et al., 2021; Yao et al., 2023). 

4.3 Machine learning methods

With the increasing computational power in recent years, 
the application of machine learning (ML) and deep neural 
networks (DNNs) has expanded significantly in geophysics. These 
techniques are particularly relevant for EM methods used to 
map subsurface geology by analyzing variations in the electrical 
resistivity of subsurface materials. In Puzyrev and Swidinsky (2021), 
the authors use a DNN to estimate or predict subsurface model 
properties from measurements as an alternative to traditional 
deterministic optimization methods. Specifically, they applied 
Deep Convolutional Neural Networks (DCNN) to invert both 
frequency-domain marine EM data and onshore time-domain 
EM data. Their results, based on synthetic and real datasets, 
demonstrated satisfactory performance. Furthermore, they assessed 
the uncertainty of their predictions, concluding that regions 
with resistivity anomalies exhibited higher uncertainty. This is 
based on a previous work by Puzyrev (2019) who pioneered 
the application of fully Convolutional Neural Networks (FCNNs) 
for electromagnetic inversion. This study demonstrated that deep 
learning could enable real-time estimation of subsurface resistivity 

distributions, eliminating the computational burden of gradient-
based optimization methods. This work significantly advanced 
the potential of data-driven approaches in geophysical inversion 
problems. In addition, this paper holds particular bibliometric 
significance, having achieved an exceptional Category Normalized 
Citation Impact (CNCI) score of 19.19 -indicating that it has been 
cited more than 20 times more frequently than average publications 
in this field.

From a bibliometric perspective, the paper by Li et al. (2019) 
is particularly noteworthy due to its remarkable CNCI score 
of 20.75. The authors presented a novel deep neural network 
architecture specifically designed for non-linear electromagnetic 
inverse scattering problems. The proposed DeepNIS framework 
demonstrated significant improvements in both reconstruction 
accuracy and computational efficiency compared to conventional 
inversion methods, achieving citation impact more than 20 times 
the field average.

The main advantage of using ML for these problems is that there 
is no need to compute the gradient, and once the neural network is 
trained, it can provide immediate results.

Physics-Informed Neural Networks (PINNs), known for their 
powerful ability to solve Partial Differential Equations (PDEs), 
have also been applied to various EM problems. Maxwell’s 
equations, which form the foundation of classical EM and 
electric circuit theory, are crucial in fields such as EM scattering 
and antenna design. However, solving Maxwell’s equations in 
heterogeneous media presents a significant challenge for PINNs. To 
address this, Piao et al. (2024) introduces a domain-adaptive PINN 
to solve Maxwell’s equations in heterogeneous media. The method 
incorporates a parameter to locate the media interfaces and divides 
the domain into smaller subdomains. By integrating EM interface 
conditions into the loss function, the approach improves prediction 
performance near interfaces.

In another study, Hu et al. (2023) combines PINNs with 
unsupervised learning for inversion in medium with electrically 
large and high-contrast scatterers. This work considers a 2-D 
transverse magnetic inverse scattering model, where three synthetic 
models are used to train the PINNs. The networks successfully detect 
scatterer locations while putting in permittivity and the longitudinal 
electric field component. Key innovations, including a frequency 
scale factor, adaptive activation function, and dynamic sampling 
technique, enable high accuracy, efficiency, and generalizability 
in the inversion of high-contrast electrically large scatterers. In 
Sagar et al. (2021), a comprehensive review of ML applications 
in EM is presented. The topics covered include antenna design 
optimization, synthesis and modeling; antenna position, direction, 
and radiation estimation; remote object detection and recognition; 
inverse scattering problems; and fault detection systems. These 
applications employ a variety of supervised and unsupervised 
learning techniques, ranging from DCNN to shallow learning 
methods, as well as deterministic and non-deterministic (stochastic) 
approaches. Arbogast et al. (1998) introduces an extensive database 
of large-scale electrical resistivity models. This database includes a 
diverse array of geologically plausible and geophysically detectable 
subsurface structures designed for widely used ground-based and 
airborne EM systems. The authors claim that this database can 
facilitate the development of surrogate models, thereby enhancing 
generalization capabilities.
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In Guo et al. (2023) authors provide a comprehensive overview 
of how to incorporate physics into ML techniques together with 
the use of big data to improve EM imagining the generalization 
of ML techniques. Currently, there are no standardized datasets 
available for electromagnetic methods, making it challenging to 
evaluate the advancements of Deep Learning algorithms in this 
field. In Asif et al. (2023), the authors introduce an extensive 
database of electrical resistivity models (RMD) that features a 
diverse range of geologically realistic and geophysically detectable 
subsurface structures, tailored for widely used ground-based and 
airborne EM systems. In Shahriari et al. (2020a) DNNs were 
trained to simulate borehole resistivity measurements. The same 
team of researchers later applied a deep learning network to the 
inversion of the resistivity measurements of the wells Shahriari et al. 
(2020b). Subsequently, Shahriari et al. (2022) trained DNN on a 
large data set of EM measurements to design a borehole instrument 
such that inversion yields a unique solution for a given Earth 
parameterization. In Zhang J.-B. et al. (2022), the authors propose 
a method to address integral equations for dynamic EM scattering 
problems using PINNs.

The study by Liu et al. (2021), introduces a deep learning-based 
approach using a modified deep belief network (DBN) with a scaled 
momentum learning rate and a novel activation function (DSoft), 
enabling rapid and accurate 2D MT inversion while using k-means 
clustering for previous data generation.

In their recent work Liu et al. (2024), MaxwellNet is introduced, 
a mesh-free and unsupervised neural network designed for time-
domain electromagnetic simulations. The authors demonstrated 
that this deep learning framework can effectively predict 
electromagnetic fields in various structural synthetic configurations 
and geometries. Once trained, MaxwellNet serves as a Maxwell-
equation solver for the inverse problem, where structural parameters 
are optimized using Adam optimizer.

Rosas-Carbajal et al. (2013) implemented a 2D pixel-based 
MCMC inversion for EM data, demonstrating that model 
constraints reduce uncertainty but may omit poorly resolved 
features. Their hierarchical Bayesian approach, validated on 
synthetic and field data, shows improved resolution through 
joint EM-Electrical Resistivity Tomography inversion while 
successfully estimating error statistics and regularization
parameters. 

5 Bibliometric assessment of inverse 
EM modeling

For the bibliometric assessment we downloaded full records 
from Web of Science and indicators from InCites, both Clarivate’s 
platforms. To define the retrieval strategy, we started searching 
by topic (using the tag TS which looks at the title, abstract, and 
author keywords) with the following text: TS=(“electromagnetic 
forward modeling” OR “electromagnetic inverse modeling” OR 
“invers∗electromagnetic” OR “electromagnetic invers∗”) OR 
TS=(“electromagnetic invers∗problem∗”) OR TS=(“deterministic 
invers∗”), recovering 1,535 documents, published between 1968 
and 2024 (recovered on 10 October 2024). Figure 2 shows the annual 
production of electromagnetic inversion. In the first two decades, we 
identified few documents, with only one document in most years, 7 

documents in 1981, and 5 documents in 1987. However, from 1998 
onwards, a sustained growth is observed.

5.1 EM’s bibliometric performance 
evolution

Traditionally, the number of citations and the average citations 
per paper have been used to measure the impact of scientific 
research. However, the varying citation styles across different 
scientific fields make comparisons using only the number of 
citations or the impact factor inadequate. Furthermore, citation 
levels change over time within the same scientific field, and the type 
of publication also influences the number of citations received; for 
instance, review articles tend to receive more citations than regular 
articles. For this reason, the bibliometric community has worked 
on designing indicators that enable comparisons of scientific impact 
across different fields. The goal of this section is to determine the 
impact of scientific production in the EM field over time. To achieve 
this, we selected four bibliometric impact indicators, normalized 
by research area, document type, and year of publication. These 
indicators are as follows: Category Normalized Citation Impact 
(CNCI), Percentage of Documents in the Top 1%, Documents 
in the Top 10%, and Average Percentile (AP). In addition to 
these four indicators, we include the total number of documents 
and the percentage of documents produced through international 
collaboration. These six indicators characterize the performance 
profile of EM research.

To analyze how the performance profile of EM research has 
evolved, we used these indicators for each year during the period 
2000–2023. As outlined in the Methods section, we take advantage 
of a SOM to visually represent the evolution of the performance 
profile in two dimensions. Figure 3 shows the SOM neural network 
representation of the EM’s performance profile evolution. Each year 
annotated on the maps represents the EM performance profile. Each 
plot is divided into four regions of varying sizes, determined by 
agglomerative hierarchical clustering and the silhouette coefficient 
Rousseeuw (1987). The plots span the years 2000–2023, and the 
black line represents the temporal evolution of the performance 
profile in a six-dimensional space. The first indicator, Web of Science 
Documents, highlights the steady annual increase in publications, 
as previously shown in Figure 2. The Category Normalized Citation 
Impact shows a peak in 2003, marked in red, indicating a high 
number of highly cited publications. A value of 1 in the indicator 
means that the impact factor is equal to the average impact factor 
of the field where the articles were published. Therefore, in the years 
when values above 1 were reached, EM articles received, on average, 
more citations than the average for the field in which they were 
published.

Looking at the EM inversion field, years with CNCI values 
exceeding 1 are likely to include publications with exceptionally high 
individual CNCI scores. For example, in 2001, the average CNCI 
was 1.47. However, the paper by Rodi and Mackie (2001) achieved 
a CNCI of 18.511, indicating that it received more than 18 times 
more citations than the average publication in the same field. Their 
contributions included the development of a nonlinear conjugate 
gradient (NLCG) algorithm for 2D magnetotelluric inversion, 
which significantly improved computational efficiency and reduced 
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FIGURE 2
Annual increase of EM papers from 1982 to 2023.

FIGURE 3
Self-Organizing Map (SOM) visualization of EM’s bibliometric performance profile from 2000 to 2023. Each of the six heatmaps corresponds to a 
distinct bibliometric indicator that, together, define the annual performance profile. Color intensity reflects the magnitude of each indicator: green 
denotes lower values, whereas red indicates higher values. The black curve traces the years in chronological order, illustrating the evolutionary path of 
EM’s performance. This trajectory offers an integrated view of how the six indicators have shifted over time. Overall, the maps indicate a clear trend in 
the past decade toward greater research output, stronger citation impact, and increased international collaboration.

memory requirements compared to conventional Gauss-Newton 
approaches. Similarly, in 2003, Colton et al. (2003) achieved a 
CNCI of 9.7668, almost ten times the field average. Their study 
provided a comprehensive survey of the linear sampling method 
for solving inverse scattering problems involving time-harmonic 
electromagnetic waves. Their work advanced the understanding 
of regularization techniques for ill-posed problems and included 
numerical examples in both 2- and 3-D. In 2012 a notable increase 
was observed in the CNCNI and the proportion of publications in 

the Top 1%. That year, the paper by Martin et al. (2012) achieved 
a CNCI of 18.75, reflecting its substantial influence. The authors 
addressed computational challenges in large-scale Bayesian inverse 
problems by introducing a stochastic Newton Markov Chain Monte 
Carlo (MCMC) method. Their approach leveraged gradient and 
Hessian information to construct local Gaussian approximations, 
significantly improving computational efficiency.

Also in 2012, the paper by Egbert and Kelbert (2012) achieved a 
CNCI of 16.27. Their work established a generalized mathematical 
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framework for computing Jacobians in electromagnetic 
geophysical inversions, enabling the development of modular 
inversion codes applicable to diverse active- and passive-source
EM methodologies.

In 2019, a paradigm shift occurred with the publication of 
two machine learning studies: Li et al. (2019) and Puzyrev (2019). 
Remarkably, these works achieved unprecedented citation impact, 
with Li et al. (2019) attaining a Category Normalized Citation 
Impact (CNCI) of 20.75 and Puzyrev (2019) reaching a CNCI of 
19.19 -the highest values recorded in the field at the time. These 
metrics signify that both articles were cited approximately 20 times 
more frequently than the average publication in their respective 
research categories, underscoring their exceptional influence and 
the transformative nature of their contributions.

The next two indicators, Percentage of Documents in the Top 1% 
and Documents in the Top 10%, follow a similar trend over the years, 
with 2003 coinciding with the highest value in CNCI. It should be 
noted that, for these two indicators, the maximum values achieved 
exceed the expected values (1% and 10%, respectively). In 2003, 2.8% 
of the articles published in EM were among the top 1% most cited in 
the field. Similarly, nearly 18% of the publications ranked within the 
top 10% most cited. Similarly to the previous indicators, the Average 
Percentile reaches its peak in 2003 and then declines by half in more 
recent years. An interesting aspect of the Percentage of International 
Collaborations is its significant increase over time, despite a 
decline in citation numbers. This indicator reaches its highest point 
between 2017 and 2019, followed by a slow decrease over the
past 5 years. 

5.2 Nation’s contribution to EM

As expected, the United States and the People’s Republic of 
China lead with 23.77% and 29.44% of the total documents, 
respectively. However, in the last 5 years of the analyzed period 
(2019–2023), China accounts for 48.3% of the documents, while 
the United States accounts for 17%. To evaluate each country’s 
contribution to the domain and their bibliometric performance, 
we characterized their profiles using the following six bibliometric 
indicators: Share (the country’s percentage contribution to the 
domain), National Share (% E−3) (the domain’s share within the 
country), Category Normalized Citation Impact (CNCI, citations 
normalized by thematic category, publication year, and document 
type), % Documents in Top 10% (percentage of documents 
among the top 10% most cited), Average Percentile, and % 
Corresponding Author (2008–2024) (percentage of documents 
with a corresponding author from the country). Each country’s 
performance profile is represented as a vector of six indicators. 
Given the challenges of directly comparing multidimensional data, 
we utilized a SOM neural network to classify and visualize the 
performance of the countries.

Figure 4 presents the comparisons made by the neural network. 
In this case, the internal divisions within the figures represent 
differences in performance profiles. While most countries have 
unique profiles, the proximity between them indicates similarity. In 
some cases, countries with highly similar profiles were placed in 
the same cluster by the neural network. While the United States 
and China lead in the global share of documents in this field, 

when this indicator is normalized per country’s total production 
(as we can see in National Share (%, E−3)), both countries lose 
their dominance. In contrast, although Singapore and Hong Kong 
have a lower Share, they exhibit strong performance in the Category 
Normalized Citation Impact, the % Documents in Top 10% and 
Average Percentile. The United States also maintains a relatively 
high performance in these three indicators. Note that in the 
maps of these three indicators, approximately one-third of the 
countries are shown in red and orange. These areas represent 
countries with a higher proportion of documents that perform 
well in terms of citations. In contrast, countries on the left side of 
the maps exhibit lower citation performance. Interestingly, some 
countries located in the low-performance zone, such as Türkiye, 
Iran, Taiwan, and South Korea, have a high percentage of documents 
authored by corresponding authors. This suggests that, although 
their documents may not have high impact, these countries are 
leading their own investigations. The Average Percentile (AP) 
indicator complements the impact indicator, as it is less sensitive 
to outliers than the CNCI. Both are calculated as averages across 
documents, but documents with an atypically high CNCI receive 
a percentile of 100 (the highest possible), limiting the variation 
range of the AP indicator. An example of the differences between 
these indicators can be seen with France and Australia, which 
have above-average CNCI values (orange) but average values in 
the AP. On the other hand, Spain and Germany show the opposite 
trend, with higher AP values but lower CNCI. This suggests that 
Australia and Germany have some highly cited documents that 
raise their CNCI, giving them a better indicator compared to 
Spain and Germany. However, in the AP, Spain and Germany 
outperform Australia and France. Additionally, France has low 
values in % Documents in the Top 10%, indicating that they lack 
a consolidated group of researchers consistently producing high-
performance documents.

5.3 EM’s thematic structure

Figure 5 presents an author keyword co-occurrence map, with 
color indicating the progression of time. Yellow represents more 
recent keyword co-occurrences, while green corresponds to the 
oldest keywords in the literature, considering a time span from 2010 
to 2023. The color gradient reflects the evolution of keyword co-
occurrence over time. The larger nodes represent higher occurrence 
frequencies. The most prominent co-occurring keywords are 
Inverse problems, Inverse scattering, and Electromagnetic inverse 
scattering. It is important to note that certain keywords appear 
multiple times due to variations such as singular versus plural 
forms or the inclusion of apostrophes, as in “Maxwell’s equations” 
and “Maxwell equations.” Despite this redundancy, it is noteworthy 
that computational methods and ML have recently emerged as 
impactful approaches in this domain. In the upper right section 
of the network (Figure 5), the newly introduced keywords can be 
observed, representing emerging topics in electromagnetics (EM). 
These topics may be regarded as a new research front within the 
EM field. Notably, the “deep learning” node, owing to its high 
connectivity with classical topics, is establishing itself as a central 
theme within this network.
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FIGURE 4
Self-Organizing Map (SOM) clustering of countries based on their multidimensional research performance profiles in EM. The main clustering map 
(top) groups countries with similar profiles. Countries located in the same or adjacent colored regions (e.g., United States and Switzerland) share 
comparable performance characteristics, while each colored zone represents a distinct profile type. The six accompanying heatmaps (bottom) display 
the distribution of individual indicators across the map. As in Figure 3, green indicates lower values and red indicates higher values. A country’s 
performance can be interpreted by locating it on the clustering map and then examining the corresponding areas in the six heatmaps. For example, 
countries in the top-left corner (e.g., Singapore, Switzerland) show high citation impact (Category Normalized Citation Impact) and a large share of 
documents in the top 10%, whereas those in the right-side cluster (e.g., India, South Korea, Japan) display different, yet distinctive, strengths.
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FIGURE 5
Author keyword co-occurrence network. Node size indicates the frequency of each keyword, edge thickness represents the strength of 
co-occurrence between keywords, and node color denotes cluster membership. An interactive version of the network is available at https://
app.vosviewer.com/AuthorKeyWord.

6 Conclusions

This study provides a comprehensive and integrated analysis 
of EM modeling by synthesizing a systematic review of 
deterministic, non-deterministic, and ML-based methodologies 
with a bibliometric evaluation of the field’s evolution. We examined 
the theoretical foundations, practical applications, and limitations 
of each approach, focusing on how they address the intrinsic 
challenges of the EM inverse problem, such as nonlinearity, ill-
posedness, and the need for accurate subsurface reconstructions. 
Deterministic methods, long considered the cornerstone of EM 
modeling, offer robust solutions in well-constrained scenarios 
and are typically characterized by their mathematical rigor and 
computational efficiency. However, these methods struggle with 
the uncertainty inherent in complex, heterogeneous subsurface 
environments, often requiring significant assumptions that limit 
their applicability in real-world settings. Non-deterministic 
approaches, including stochastic and probabilistic methods, provide 
a framework for uncertainty quantification and are better suited 

for addressing ill-posed problems. These methods offer greater 
flexibility, accommodating complex geophysical conditions and 
capturing variability in subsurface structures, but they are hindered 
by high computational costs and the need for sophisticated sampling 
strategies.

The advent of ML techniques signifies a major advancement in 
the field, providing promising solutions to address several limitations 
inherent in traditional methods. These ML-based approaches exhibit 
considerable potential in automating data preprocessing, expediting 
inversion workflows, and improving the accuracy of subsurface 
reconstructions. However, challenges persist, notably in achieving 
robust generalization across diverse geophysical environments and 
the reliance on large, high-quality training datasets. Despite these 
obstacles, the incorporation of ML techniques into inverse EM 
modeling represents a transformative development, facilitating more 
efficient and precise modeling workflows. 

In addition to exploring methodological advancements, this 
study has highlighted the ongoing efforts to bridge the gap between 
data accuracy and computational power. The increasing complexity
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of EM models, particularly in three-dimensional and multi-
scale scenarios, necessitates substantial computational resources. 
Recent advancements in high-performance computing (HPC) and 
parallel processing have enabled the simulation of larger and more 
intricate models (Castillo-Reyes et al., 2024), addressing some 
of the computational limitations faced by traditional methods. 
Furthermore, the push for more accurate data—through improved 
measurement techniques and instrumentation—remains central to 
advancing the field. Enhanced data resolution and precision are 
crucial for producing more accurate subsurface reconstructions and 
for validating complex models.

Furthermore, by utilizing unsupervised NNs, specifically SOM, 
this study revealed latent patterns within large-scale datasets that 
conventional literature review methods may fail to identify. Through 
the application of SOM techniques, we conducted a comprehensive 
bibliometric assessment to quantify, interpret, and evaluate the topic 
of interest. The bibliometric assessment highlights the consistent 
expansion of EM publications over the past two decades, with a 
significant surge in influence around 2003, which continues to shape 
the field today. The period from 2019 to 2021 was marked by an 
increase in both research output and impact indicators. However, the 
subsequent decline observed in 2022 and 2023 suggests a potential 
shift in the field, possibly indicating the emergence of new challenges 
or research domains that necessitate alternative methodologies and 
approaches. These trends emphasize the dynamic and evolving 
nature of the field, characterized by oscillating patterns in research 
emphasis and impact.

Finally, the insights presented here underscore the need for 
the continued development of more efficient, adaptable, and 
interdisciplinary methodologies. Future advancements in inverse 
EM modeling will depend on addressing the growing demands for 
improved data accuracy, computational power, and the integration 
of ML techniques. We hope that this work provides a clear direction 
for future research, laying the foundation for innovations that can 
transform the application of inverse EM modeling in subsurface 
exploration and beyond.
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