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Landslide disasters frequently occur in the upper reaches of the Yellow River,
particularly within the Gonghe to Xunhua section. A precise evaluation of
landslide susceptibility is vital for effective disaster prevention and mitigation.
Integrated models that combine statistical methods with machine learning
techniques have been widely adopted for landslide susceptibility assessments.
However, the quality and composition of the positive sample training data
have a significant impact on the accuracy of the outcomes. This study uses
historical landslide data from the region and applies two statistical approaches-
the information value (IV) and the coefficient of determination (CF) methods-
alongside three machine learning models: Random Forest (RF), Support Vector
Machine (SVM), and eXtremeGradient Boosting (XGBoost). Six integratedmodels
(IV-RF, IV-SVM, IV-XGBboost, CF-RF, CF-SVM, and CF-XGBoost) are developed
to evaluate landslide susceptibility in the Yellow River’s upper reaches (from
Gonghe to Xunhua). The Receiver Operating Characteristic (ROC) curve and
Accuracy (ACC) values are used to assess themodels’ performance, while spatial
features of newly identified landslides, determined through optical remote
sensing images, are compared using Small Baseline Subset-Interferometric
Synthetic Aperture Radar (SBAS-InSAR) technology. The CF-XGBoost model
is identified as the most effective. New landslide data were then added to
the positive sample dataset to retrain the CF-XGBoost model, enhancing its
predictive performance. The methodology proposed in this study not only
enables effective evaluation of the accuracy and reliability of computational
results derived from ensemble models, but also addresses the limitations
caused by untimely acquisition of insufficient landslide samples. Furthermore,
the resulting landslide susceptibility assessment establishes a reliable technical
foundation for local disaster management authorities to formulate scientifically
sound risk mitigation and control strategies.
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1 Introduction

Landslides are a common geological hazard, distinguished by
their sudden occurrence and widespread impact (Jia et al., 2022;
Jiang et al., 2022), presenting direct threats to nearby infrastructure
and the safety of residents’ lives and property (Pareek et al., 2025).
In the upper reaches of the Yellow River (from Gonghe to Xunhua),
the region’s complex geological features, steep topography, sparse
vegetation, and increasing human activities in recent years have led
to a higher frequency of landslides (Tu et al., 2023; Zhao et al.,
2022). Therefore, it is essential to improve the management of
landslide risks and enhance the capacity for disaster prevention
and mitigation in this area. Landslide susceptibility assessment,
a key method for disaster prevention, helps identify high-risk
zones through precise, reliable, and efficient technical systems,
providing a scientific foundation for effective disaster reduction
and prevention efforts (Wang and Bai, 2023; He et al., 2023;
Bhandary et al., 2013).

The goal of landslide susceptibility assessment is to forecast
the likelihood of landslides by examining the spatial patterns of
past landslides and the factors that influence their occurrence in
a specific area (Sabatakakis et al., 2014; Rohan et al., 2023). The
development of landslide disasters is influenced by a combination
of internal factors (e.g., topography, geology, geological structure,
transportation, and water systems) and external triggers (e.g.,
rainfall, earthquakes, and human engineering activities). The
likelihood of a landslide varies depending on these factors (Lu et al.,
2024). Traditional statistical methods calculate the probability of
landslides by establishing mathematical relationships, which are
simple and straightforward to apply but struggle to capture the
complex interactions between landslides and various factors, leading
to relatively low prediction accuracy (Zhang et al., 2022).With
advancements in computer technology, machine learning models
have increasingly been used for landslide susceptibility prediction
(Dou et al., 2023; Qi et al., 2024; Huang et al., 2023). Unlike
traditional statistical methods, machine learningmodels are capable
of identifying nonlinear relationships between landslides and
influencing factors, significantly improving prediction accuracy
(Huang et al., 2020). However, single machine learning models
often struggle to match training data with real-world conditions,
making it difficult to fully capture the nonlinear interactions
between landslides and evaluation factors. Combining statistical
methods with machine learning models can help address this issue
(Umar et al., 2014). The integration of these methods for landslide
susceptibility assessment has become a prominent trend in research.
For example, Wang et al. used the IV and CF methods along with
the RF model for landslide susceptibility assessment in Ningnan
County, demonstrating that the integrated model performed better
than individual models (Wang J. et al., 2024). Liu et al. proposed
the SF-Stacking method, which incorporates spatial heterogeneity
and feature selection, for landslide susceptibility assessment in Yibin
City. The results showed that SF-Stacking outperformed individual
models such as BPNN, SVM, and KNN in terms of accuracy (Liu
and Chen, 2024). Wang Jingjing et al., employed a bidirectional
long short-term memory model based on landslide density (LD-
BiLSTM) for landslide susceptibility assessment in Luding County,
achieving higher accuracy compared to both the RF and IV models.
These studies have proven that integrated models can effectively

overcome the limitations of single models and improve landslide
prediction accuracy (Wang L. et al., 2024).

In the existing body of literature, many studies have relied
on historical landslide data as training datasets for landslide
susceptibility assessments (Hong et al., 2024; Mao et al., 2021;
Xing et al., 2021; Gu et al., 2024; Xing et al., 2023), often
overlooking newly occurring landslide events. However, older,
larger, and more destructive landslides, which may have been
mitigated through measures like slope reinforcement by relevant
geological disaster management authorities, could lead to less
accurate predictions when based solely on historical data. This
study introduces a coupled approach that integrates statistical
methods, machine learning models, and SBAS-InSAR technology
to assess landslide vulnerability in the upper reaches of the Yellow
River. The study is structured in three key components: First,
historical landslide data from 1998 to 2012, provided by the China
Geological Survey (https://www.cgs.gov.cn/), were used to form
the sample set. Two statistical methods-the IV and CF methods-
were combined with advanced machine learning models, including
RF, SVM, and XGBoost. Landslide susceptibility predictions were
generated for six integrated models (IV-RF, IV-SVM, IV-XGBoost,
CF-RF, CF-SVM, CF-XGBoost). Second, SBAS-InSAR technology
along with optical remote sensing images were applied to detect
new landslides that occurred in the study area from 2021 to
2023. The newly identified landslides were then compared with
the susceptibility results from the six models, which revealed
that the CF-XGBoost model was the most effective. Finally, the
newly identified landslide data were incorporated into the CF-
XGBoost model as a positive sample set to calculate the landslide
hazard susceptibility index for the study area, and risk zoning was
performed using the natural breakpoint method. These findings
provide an important scientific foundation for landslide risk
management and prevention in the upper reaches of theYellowRiver
(from Gonghe to Xunhua).

In summary, to address the current limitations in research on
landslide susceptibility assessment in the upper reaches of the Yellow
River, the Gonghe to Xunhua section was selected as the study area
for conducting systematic landslide susceptibility prediction. The
main contributions of this study are as follows:

• A positive sample set was established based on historical
landslide points identified in the study area between
1998 and 2012. Landslide susceptibility was predicted by
integrating statistical methods with advancedmachine learning
techniques.The predictive performance of the integratedmodel
was further validated using newly identified landslide points
from 2021 to 2023, which were detected through SBAS-InSAR
and optical remote sensing imagery.

• The newly identified landslide points were incorporated into
the positive sample set to update it. The optimal model (CF-
XGBoost) was retrained using the updated dataset, resulting in
an improved landslide susceptibility assessment for the upper
reaches of the Yellow River. This approach ensures that the
training samples remain temporally relevant and enhances the
model’s predictive accuracy.
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FIGURE 1
Overview and historical landslide distribution of the study area.

2 Materials and methods

2.1 Research area

The upper reaches of the Yellow River, particularly the Gonghe
and Xunhua sections, are located in the southeastern part of the
Qinghai-Tibet Plateau. The topography features elevated areas in
the west, north, and south, with lower elevations in the east.
Altitudes in this region range from 1657 to 4121 m. The river
passes through significant areas, including the Longyang Gorge,
Lijia Gorge, Guide County, Jianzha County, and Xunhua County
(Wang Q. et al., 2024; Fei et al., 2023; Du et al., 2023). The climate
in the study area is a plateau continental type, with average annual
rainfall over the last 5 years ranging from 550 to 670 mm. Due to
the relatively low precipitation, the normalized difference vegetation
index (NDVI) remains below 0.3 in most parts of the region,
indicating sparse vegetation and considerable desertification. In this
ecologically fragile environment, which is further affected by river
erosion and human engineering activities, landslide occurrences are
common (Shi et al., 2019; Dong et al., 2018). Figure 1 illustrates
the general situation and historical landslide data for the area.
These landslides pose significant risks to infrastructure along

the riverbanks and threaten the safety of residents and their
property.

2.2 Data sources

To accurately detect new, unrecorded landslides, this study
employed a method that combines SBAS-InSAR technology
with optical remote sensing imagery. Data from Sentinel-
1A ascending and descending tracks from January 2021 to
December 2023 were used, with 123 scenes for ascending and
149 scenes for descending tracks. SRTM external elevation data
with a 30 m resolution and precise orbit data were utilized
for orbit error correction. Optical remote sensing images from
Landsat-8, also with a 30 m resolution, were chosen for this
study. The specific data sources are shown in Table 1. For the
selection of non-landslide points, this study randomly selected
167 non-landslide points outside the 2 km buffer zone of
landslide locations to maintain a 1:1 ratio between positive and
negative samples. This balanced sampling approach prevents
potential degradation in ensemble model accuracy caused by
imbalanced sample distribution. The classification criteria of
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TABLE 1 Evaluation factors and data sources.

Primary factors Abbr Data Source Resolution (m)

Elevation EL

DEM
United States Geological Survey (https://

www.usgs.gov/)
30

Slope SL

Aspect AS

Plane curvature PLC

Profile curvature PRC

Topographic wetness index TWI

Surface roughness SR

Topographic relief TR

Surface cutting degree SCD

Normalized Difference
Vegetation Index

NDVI Landsat-8 Geospatial data cloud (https://www.
gscloud.cn/)

30

Distance to river DR HydroRIVERS HydroRIVERS (https://www.hydrosheds.
org/)

-

Distance to road DTR DTR Open Street Map (https://www.
openstreetmap.org/)

-

Distance to fault DF
Geological map of upper Yellow River

China Geological Survey (https://www.
cgs.gov.cn/)

-
Formation lithological FL

Rainfall RFL Rainfall National Tibetan Plateau Science Data
Center (https://data.tpdc.ac.cn/)

1000

Land use LU GlobeLand30 http://www.globallandcover.com -

Historical landslides China Geological Survey (https://www.
cgs.gov.cn/)

-

Sentinel-1A
Alaska Satellite Facility (ASF)

(https://vertex.daac.asf.alaska.edu/)
10

Precise orbit data

evaluation factors, spatial distribution of landslide points, and
detailed procedures for non-landslide point selection are visually
presented in Figure 2.

Landslide disasters develop through a complex process,
typically influenced by a combination of natural factors and
human engineering activities (Nguyen et al., 2025). In this
study, 16 evaluation factors were initially selected from five
key landslide influencing categories: geological environment,
topography and geomorphology, meteorology and hydrology,
vegetation and soil, and human engineering activities. These
factors include elevation, slope, aspect, plan curvature, profile
curvature, topographic wetness index, normalized difference
vegetation index, rainfall, distance to faults, distance to rivers,
distance to roads, formation lithology, land use, surface roughness,
topographic relief, and surface cutting degree. To maintain
consistency in the spatial representation of each factor, a 30 m spatial

resolution was applied. Continuous factors were classified using
the natural break method, while discrete factors were categorized
based on their actual states (Wu et al., 2016). More details are
provided in Supplementary Material.

2.3 Methods

2.3.1 Evaluation factor screening
To ensure accurate landslide prediction results, it is important

to conduct a correlation analysis of the 16 primary evaluation
factors to assess their independence (Li et al., 2022). While
all selected factors play a role in the development of landslide
hazards, strong correlations between them can affect the evaluation
outcomes and cause collinearity problems (Yang C. et al., 2023).
Therefore, screening the evaluation factors is crucial to maintain
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FIGURE 2
(Continued).

the accuracy of the results. In this study, the Pearson correlation
coefficient method was employed, and its calculation formula is
as follows (Li C. et al., 2024):

rxy =
∑xiyi − n

−
xy

(n− 1)sxsy
=

n∑xiyi −∑xi∑yi

√n∑x2i − (∑xi)
2√n∑y2i − (∑yi)

2
(1)

The correlation between the factors can be measured
according to the calculated Pearson correlation coefficient (rxy)
as shown in Equation 1. If 0 < rxy ≤ 0.3 indicates a weak correlation;
0.3 < rxy ≤ 0.5 indicates moderate correlation; 0.5 < rxy ≤ 1 indicates
a strong correlation.

2.3.2 Statistical approaches
The IV method is based on assessing the uncertainty of

information. By calculating the information value of each
evaluation factor affecting landslides in the study area, a higher

information value suggests a greater likelihood of landslide
occurrence. The formula for computing the information content
is as follows (Lv et al., 2024):

IV(Xi,Y) = ln
Ni/N
Si/S

(2)

In Equation 2, IV(Xi,Y) represents the information quantity
value of evaluation factor Xi for landslide event Y; Ni represents
the number of landslides distributed within the evaluation
factor Xi; N indicates the total number of landslides in the
study area. Additionally, Si represents the area covered by the
evaluation factor Xi, and S represents the overall area of the
study region.

The CF coefficient calculates the prior probability of landslide
occurrence based on the states of different index factors using
landslide point data. The CF value ranges from −1 to 1, where,
similar to the IV method, a higher value indicates a greater
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FIGURE 2
(Continued). The classification of each evaluation factor and the landslide point and non-landslide location.

tendency for landslides to occur. The formula for calculating CF is
as follows (Ding et al., 2025):

CF =
{{{{
{{{{
{

PPa − PPs
PPs(1− PPa)

,PPa < PPs

PPa − PPs
PPa(1− PPs)

,PPa ≥ PPs
(3)

In Equation 3, PPa denotes the ratio of landslide points to the
area within the evaluation factor region, while PPs represents the
ratio of the total number of landslide points to the total area of the
study region.

2.3.3 Machine learning algorithms
Random forest (RF) is an ensemble learning algorithm that

integrates multiple classification and regression trees. It constructs
several decision trees using subsets of the data, aggregates the
predictions from these trees, and ultimately determines the optimal

result (Akinci, 2022). The RF algorithm randomly selects portions
of the training dataset and features from these samples to
train each individual learner, ensuring both independence among
the trees and greater accuracy in the aggregated predictions.
This method surpasses the performance of a single decision
tree by averaging the outcomes, which minimizes overfitting
and enhances predictive accuracy (Yang et al., 2024). The
fundamental formula is as follows:

f(x) = 1
K

k

∑
k=1

ti(x) (4)

In Equation 4, f(x) is the prediction result of regression tree; K
is the number of regression trees; ti(x) is the prediction result of the
ith regression model.

Support Vector Machine (SVM) is a widely used machine
learning model for classification and regression tasks, with its
primary concept being the identification of an optimal hyperplane
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to separate various categories of data (Zhang et al., 2023;
Huang et al., 2022). Initially, all evaluation factors (xi) for
each sample are organized into a vector Xj, Subsequently, the
corresponding vectors of all samples are compiled into the training
dataset (Xj,uj), which represents the training output, specifically
the probability of landslide occurrence. Ultimately, a mapping
relationship is developed between low-dimensional space and
high-dimensional space, resulting in the construction of a linear
fitting function (Li Z. et al., 2024), as demonstrated below:

f(x) =
n

∑
i=1
(ai − a

∗
i )K(xi,x) + b (5)

In Equation 5, the terms ai and a
∗
i represent Lagrange

multipliers; the kernel function is denoted as K(xi,x); and the
threshold is represented by b.

The eXtreme Gradient Boosting (XGBoost) optimizes the loss
function by employing the second derivative information, and
determines the split node based on whether a reduction is achieved.
The core formula is as follows (Guo et al., 2024):

θ(x) =
j

∑
j=1
[(∑μi)w j

+ 1
2
(∑hi + λ)w2

j ] + γT (6)

In Equation 6, objective function is represented by θ(x); the
regularization coefficient is denoted by γ,λ; the first partial derivative
of the loss function is represented by μi; the second partial derivative
of the loss function is denoted by hi; the number of leaves is indicated
by T; and the number of leaf nodes is represented by wj.

2.3.4 SBAS-InSAR technology
This study utilizes Sentinel-1A ascending and descending

orbit data from January 2021 to December 2023 to calculate
the 3-year average annual surface deformation rate in the study
area using SBAS-InSAR technology. The SBAS-InSAR processing
involves correcting track errors with precision track data and
DEM, and performing phase unwrapping using the minimum-cost
flowmethod (Yang S. et al., 2023). To generate sufficient interference
pairs, the time baseline is set to 90–120 days and the spatial baseline
is set at 120 m. A deformation rate threshold of 10 mm/a is applied,
with values below this considered stable. If the deformation rate
exceeds this threshold, optical remote sensing images are combined
with visual interpretation to assess whether the area is affected by
landslides.

2.3.5 Accuracy evaluation
To ensure the validity of the research method, the accuracy

(ACC) and ROC curve were utilized to assess the model’s
performance. Accuracy is the proportion of correctly predicted
samples out of the total number of samples. The ACC value serves
as a direct indicator of the model’s precision, with larger values
reflecting higher accuracy (Wang J. et al., 2024). The ROC curve is
frequently used to evaluate the classification effectiveness of amodel,
depicting the area under the curve created by the true positive rate
(TPR) and the false positive rate (FPR) to measure the model’s
accuracy (Liu andChen, 2024). A greater area under the ROC curve,
or a higher AUC value, signifies improved model accuracy and
stronger predictive performance. The fundamental concept of ACC
is as follows (Qi et al., 2024):

ACC = TP+TN
TP+TN+ FP+ FN

(7)

In Equations 7–9, TP and FN refer to the number of landslide
points correctly and incorrectly predicted by themodel, respectively;
FP and TN represent the number of non-landslide points that are
incorrectly and correctly predicted by the model, respectively.

Precision refers to the proportion of all samples predicted as
landslides by the model that are correctly identified as landslide
samples. The fundamental concept of Precision is as follows:

Precision = TP
TP+ FP

(8)

Recall represents the proportion of correctly predicted landslide
samples among all actual landslide samples, and its mathematical
expression is as follows:

Recall = TP
TP+ FN

(9)

In Equation 10, F1-Score represents the harmonic mean of
accuracy and recall, which can quantitatively evaluate the accuracy
and completeness of a model. Its mathematical expression formula
is as follows:

F1− Score = 2× Precision×Recall
Precision+Recal

(10)

Assuming the model shows good accuracy, the new landslide
data identified by SBAS-InSAR technology in conjunction with
optical remote sensing images are compared with the landslide
susceptibility prediction results from different models. If all the new
landslide data fall within high-risk areas, the effectiveness of the
model for landslide susceptibility assessment in the upper reaches
of the Yellow River is confirmed, thereby verifying the accuracy
of the model’s predictions. The technical approach employed in
this study is depicted in Figure 3. First, a correlation analysis was
conducted on the initially selected 16 evaluation indicators using the
Pearson correlation coefficient method. Strongly correlated factors
were eliminated to establish a landslide susceptibility evaluation
index system. Second, 167 historical landslide locations within
the study area were selected as positive samples, while 167 non-
landslide points, randomly chosen from areas outside the 2-km
buffer zones surrounding historical landslides, were used as negative
samples. To address spatial autocorrelation, a spatial block cross-
validation approach was applied. Specifically, all samples were first
divided into a regular 10 × 10 geographic grid based on their
spatial coordinates. Subsequently, group-based cross-validation was
conducted to ensure that all samples within the same spatial block
were exclusively assigned to either the training set or the validation
set, thereby maintaining spatial independence between these two
datasets. Finally, 70% of the samples were used for training and
30% for validation. The IV and CF values of each influencing factor
were calculated and integrated with three models-RF, XGBoost, and
SVM-to generate six integrated models. Through model training
and prediction, six landslide susceptibility maps were produced.
The performance of these models was evaluated using ROC curves,
with accuracy and precision metrics, and susceptibility results were
classified using the natural breaks method. Additionally, an overlay
analysis was performed between the susceptibility zonation results
and 227 newly identified landslides detected via InSAR and optical
imagery to further validate the methodology’s reliability. Finally,
the optimal model (CF-XGBoost) was applied to predict landslide
susceptibility using training data derived from new landslide points,
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non-landslide points, and evaluation factors. For the training data,
227 new landslide points were defined as positive samples, with an
equal number of non-landslide points randomly selected outside a
2 km buffer zone of these new landslides. Regarding the evaluation
factors, NDVI, rainfall, and land use required resampling, while
other factors were treated as static over time.

3 Results and analysis

3.1 SBAS-InSAR and new landslide
identification results

Using Sentinel-1A data from January 2021 to December 2023
in the study area, this research employs SBAS-InSAR technology
to calculate the average annual surface deformation rate over the
past 3 years. The findings are presented in Figure 4. Specifically,
Figure 4a depicts the deformation rate in the ascending orbit
direction, while Figure 4b illustrates the deformation rate in the
descending orbit direction. The entire SBAS-InSAR technical
workflow was implemented using the SARscape module within
ENVI 5.6 software.

To achieve accurate landslide identification within the study
area, deformation rates were overlaid onto Landsat imagery and
Google Earth basemaps. A deformation threshold of 10 mm/a
was established based on ascending and descending orbital
datasets, with areas exhibiting deformation rates below this
threshold classified as relatively stable regions. Preliminary landslide
boundaries were delineated by comparing regional deformation
rates against the established threshold. Subsequently, visual
interpretation methods were systematically applied to verify
each preliminary landslide polygon. The final landslide inventory
presented in Figure 4c identifies 227 new landslides throughout
the study area. Among these, 171 landslides were detected in
ascending orbit data (indicated by white points in Figure 4c), 154
landslides were identified in descending orbit data (blue points),
and 98 landslides showed detection consistency in both orbital
directions (red points). Historical landslides are represented by
black points in Figure 4c. Spatial distribution analysis reveals
approximately 40 new landslides occupy pre-existing landslide
footprints, while the majority constitute newly developed slope
failures. Notably, both newly identified and historical landslides
demonstrate clustered distributions concentrated within the
Longyang Gorge, Lijia Gorge, Jianzha County, and Hualong County
sectors.

3.2 Screening primary factor

Before training the coupling model, a correlation analysis
was performed on the primary evaluation factors to prevent
data redundancy due to high correlations, which could impact
the model’s precision and the accuracy of landslide predictions.
Pearson correlation coefficients were calculated to evaluate the
relationships between the factors, as shown in Figure 5. The results
reveal that the absolute correlation coefficient between surface
roughness and slope exceeds 0.5, indicating a strong correlation.
Excluding surface roughness led to an improvement of about 0.02

in the ROC value for each coupling model. As a result, surface
roughnesswas excluded from the subsequent landslide susceptibility
modeling.

3.3 IV and CF values of the second-level
partition of each evaluation factor

Prior to calculating the IV and CF values for the secondary
sub-regions of each factor, continuous factors should be classified
using the natural breaks method, while discrete factors should be
categorized according to their actual states. Following this, the
respective areas and landslide counts within each classification
interval of the factors are tallied. Subsequently, the IV and CF
values for each classified factor are respectively computed based on
Equation 2 and Equation 3.

The IV and CF values for secondary zones across different
evaluation factors reflect their contribution to landslide occurrence,
with higher values signifying a stronger influence. According to the
calculation results, the following conditions that exhibit the highest
IV and CF values include: elevation ranging from 2590 to 2754 m,
slope between 20° and 30°, north-facing slopes (337.5°–360°), plan
curvature from −1 to 0, profile curvature between −5.8 and −3.8,
topographic wetness index less than 4.9, topographic relief ranging
from 71 to 109 m, surface cutting degree between 40 and 60 m,
NDVI ranging from 0.31 to 0.39, distance to rivers between 400
and 800 m, distance to roads is less than 400 m, distance to faults
between 800 and 1200 m, lithology from Paleogene to recent,
rainfall exceeding 651 mm/year, and land use as cultivated land, as
detailed in Supplementary Material.

3.4 Model accuracy evaluation

Hyperparameter optimization is a critical step for enhancing
the overall performance of machine learning models. It not
only strengthens model robustness and generalization capabilities,
effectivelymitigating overfitting and improving training stability, but
also significantly reduces computational resource consumption.

This study employed a strategy combining random search with
fivefold cross-validation to identify the optimal hyperparameter
configuration. Specifically, 2000 sets of hyperparameters were
randomly sampled. For each set, a fivefold cross-validation
procedure was performed: the training set was uniformly
partitioned into fivemutually exclusive subsets. Sequentially,models
were trained on four subsets while the remaining subset served as
the validation set for performance evaluation, rotating the validation
set across each fold. After evaluating all parameter combinations,
the system selected the hyperparameter set achieving the highest
average AUC score across the five cross-validation rounds as the
final configuration.

Theoptimal hyperparameters of eachmodel are shown inTable 2.
This study implements hyperparameter optimization and model
training based on Python 3.9 software and the Scikit-learn
(sklearn) package.

The IV and CF values derived from the information content
method and the determined coefficient method, were applied to
train three machine learning models-RF, XGBoost, and SVM-to
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FIGURE 3
Technical flow chart of this paper.

generate landslide susceptibility evaluation results for six integrated
models. The ROC curves and ACC values for each integrated
model are presented in Figure 6. In terms of each precision

index, the accuracy of the machine learning models coupled with
the determined coefficient method generally outperformed those
using the information content method. The AUC values for all
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FIGURE 4
Average annual surface deformation rate and spatial distribution of new landslides in the study area (2021–2023). (a) represents deformation in the
ascending direction, (b) represents deformation in the descending direction, and (c) illustrates the spatial distribution characteristics of different
landslides.

integrated models surpassed 0.84, indicating strong fitting accuracy
and predictive capability. Among them, the CF-XGBoost model
achieved the highest accuracy with an AUC value of 0.916. The
similar performance of the integrated models may be attributed to
the resemblance between randomly generated non-landslide points
and the environmental conditions of landslide points, minimizing
the impact of subjective influences.

Table 3 shows the comprehensive precision metrics for six
ensemblemodels.TheCF-XGBoost demonstrates relatively superior
overall accuracy. However, all models exhibit substantially lower
recall rates compared to other precision metrics. This limitation
arises from two primary factors: 1) the insufficient representation

of positive-class instances (n = 167) in the training dataset, which
hinders effective feature learning; and 2) the application of a fixed 0.5
decision threshold, which imposes stringent criteria for identifying
positive-class outcomes. This is also the main reason why 9% of the
new landslides occurred outside high-risk areas, as shown inTable 4.
As a result, the models tend to minimize false positives while
increasing the likelihood of false negatives in landslide detection.
Nevertheless, the consistently high precision values indicate strong
reliability in distinguishing true positive cases.

In addition to using the above five precision metrics, SBAS-
InSAR technology combined with optical remote sensing images
was also employed to compare and analyze the spatial distribution
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FIGURE 5
Pearson correlation coefficient graph.

TABLE 2 Main hyperparameters of the integrated model.

Parameter Description CF-XGBoost CF-RF IV-XGBoost IV-SVM CF-SVM IV-RF

n_estimators The number of trees 190 265 210 245

learning_rate The model learning rate 0.08 0.1

max_depth The maximum number of splits for trees 7 9 7 5

kernel The kernel of the model linear linear

min_samples_split The minimum sample size of leaf nodes 1 2 3 2

min_samples_leaf The minimum sample size of node splitting 2 5 5 3

C Regularization parameter 1 1

of landslides identified by the integrated models and the predicted
landslide susceptibility. This allowed for further validation of
the models’ predictive accuracy. When comparing the landslide
susceptibility results obtained from statistical analysis with the
spatial distribution of newly detected landslides, as shown inTable 4,
it is evident that most of the new landslides are concentrated in
moderate, high, and very high-risk areas, with only a small fraction
located in low-risk regions. The CF-XGBoost model predicted that

91% of the new landslides occurred in high-risk and very high-
risk areas, with no new landslides found in low-risk areas, further
confirming its superior performance in landslide prediction.

3.5 Landslide susceptibility results

In this study, the natural breaks method was adopted to classify
the landslide susceptibility indices predicted by six integrated
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FIGURE 6
ROC curve and ACC value. (a) represents the ROC curve, and (b) represents the ACC value.

TABLE 3 All the metrics of six models.

Precision metrics CF-XGBoost CF-RF IV-XGBoost IV-SVM CF-SVM IV-RF

AUC 0.916 0.903 0.890 0.858 0.848 0.845

ACC 0.866 0.832 0.806 0.836 0.746 0.782

Precision 0.900 0.867 0.857 0.853 0.786 0.833

Recall 0.818 0.788 0.789 0.829 0.667 0.769

F1-Score 0.857 0.825 0.822 0.841 0.721 0.800

TABLE 4 Overlay analysis of landslide susceptibility results and new landslide data.

Landslide statistics Landslide
susceptibility

CF-XGBoost CF-RF IV-XGBoost IV-SVM CF-SVM IV-RF

Number of new landslides

Very low 0 0 0 0 0 4

Low 0 5 28 16 1 9

Moderate 20 20 49 54 41 37

High 57 104 65 76 99 101

Very high 150 98 85 81 86 76

models into five classes: very low, low, moderate, high, and very high
susceptibility. The landslide susceptibility threshold corresponding
to each class are shown in Table 5. The results demonstrate
that the threshold structure defined by the natural breaks

method enables the CF-XGBoost model to exhibit exceptional
capability in precisely isolating very low-risk zones and effectively
distinguishing very high-risk zones, thereby confirming its superior
predictive performance. Compared to other ensemble models, this
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TABLE 5 Six integrated model landslide susceptibility thresholds.

Classification
standard

Landslide
susceptibility

CF-XGBoost CF-RF IV-XGBoost IV-SVM CF-SVM IV-RF

Landslide susceptibility
threshold

Very low 0.000-0.158 0.000-0.238 0.000-0.142 0.000-0.190 0.000-0.212 0.000-0.269

Low 0.158-0.369 0.238-0.356 0.142-0.333 0.190-0.336 0.212-0.341 0.269-0.398

Moderate 0.369-0.584 0.356-0.513 0.333-0.549 0.336-0.461 0.341-0.455 0.398-0.527

High 0.584-0.795 0.513-0.667 0.549-0.768 0.461-0.594 0.455-0.569 0.527-0.678

Very high 0.795-1.000 0.667-1.000 0.768-1.000 0.594-1.000 0.569-1.000 0.678-1.000

threshold structure significantly enhances the characterization
accuracy of the spatial gradient of landslide probability. This
advancement holds substantial practical significance for geohazard
risk management planning.

The results of landslide susceptibility of each integrated model
are illustrated in Figure 7. The findings show that areas to the north
of Lijiaxia, Jianzha County, and Hualong County exhibit higher risk
levels, corresponding with zones of landslide concentration. This is
due to factors such as steep terrain, relatively high rainfall, a dense
population along the Yellow River, frequent human engineering
activities, and weak stratigraphic lithology, which collectively
increase the likelihood of landslides. However, these differences
mainly stem from variations in statistical methods and model
characteristics. In terms of statistical methods, different approaches
may result in significant discrepancies during feature extraction
in the training phase, thereby affecting the composition of feature
subsets used in model development. With regard to the machine
learning models themselves, tree-based ensemble models such as
RF and XGBoost are capable of effectively capturing and utilizing
nonlinear relationships among features. In contrast, SVMwith linear
kernel functions depend heavily on the linear separability of input
features. Moreover, key hyperparameters in tree-basedmodels, such
as the number of trees, maximum depth, and learning rate, have a
direct impact on model performance. Similarly, the regularization
parameter plays a critical role in determining the performance
of SVM with linear kernels. For instance, CF-RF, CF-SVM, IV-
RF, and IV-SVM models identify fewer low-risk regions but more
areas in the medium to high-risk categories. On the other hand,
the IV-XGBoost model identifies more low-risk areas but provides
lower prediction accuracy for landslides. The CF-XGBoost model
successfully predicts high-risk areas based on historical landslide
data, with a strong alignment to actual landslide distributions.

4 Discussion

4.1 Prediction of landslide susceptibility in
the upper reaches of the Yellow River (from
Gonghe to Xunhua section)

Using historical landslide data as the training sample set
for the integrated model, it was found that the CF-XGBoost
model demonstrated high accuracy and effective prediction

performance. Consequently, this model was applied to predict
landslide susceptibility in the upper reaches of the Yellow River
(from Gonghe to Xunhua). When processing evaluation factors,
only the normalized difference vegetation index and rainfall data
from 2021 to 2023 were updated, while other factors remained
consistent throughout the year. To ensure the authenticity of the
existing landslide data and the accuracy of positive sample data,
new landslide data identified by SBAS-InSAR technology and optical
remote sensing images were selected as the training sample set.

Following model retraining with an increased number of
positive samples (from 167 to 227), the CF-XGBoost model
demonstrated a notable improvement in Recall, which increased
from 0.818 to 0.911, as show in Table 6. This indicates that
after sufficiently learning the characteristics of the positive class,
the model successfully captured a greater number of actual
landslides. However, Precision experienced a slight decrease of
0.028. This decline is attributable to an inevitable increase in false
positives (non-landslides incorrectly classified as landslides) as the
model reduced the number of missed detections. Overall, the
model exhibited improvements in its discriminative ability (AUC),
overall accuracy (ACC), landslide detection performance (Recall),
and comprehensive performance (F1-Score). These enhancements
collectively indicate strengthened model generalization capability
and stability.

Figure 8a illustrates the landslide susceptibility zoning results
obtained using the new landslide data and trained with the CF-
XGBoost model. Compared to the historical landslide susceptibility
evaluations, Jianzha County and Hualong County remain in
high-risk zones, but there is an increase in low-risk areas, with
the distribution of high-risk zones becoming clearer, particularly
concentrated in Jianzha, Hualong, and Xunhua Counties. This
suggests that the use of older historical landslide data could lead to
inaccuracies in identifying high-risk areas. Field surveys in a high-
risk area of Jianzha County, shown in Figures 8b–f, further validated
the model’s ability to accurately identify the spatial distribution
and landslide susceptibility of new landslides. The red area in
Figure 8b highlights the sliding boundary, while Figure 8c shows
subsidence on the slope surface, with the red areamarking the active
landslide front that has subsided by about 1 m. Figure 8d offers a
closer look at Figures 8c,e,f display tensile fractures caused by the
active landslides.

The landslide susceptibility prediction results indicate that urban
development and infrastructure planning should prioritize avoiding
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FIGURE 7
Results of historical landslide susceptibility mapping. (a–f) respectively represent the model results of CF-XGBoost, CF-RF, CF-SVM, IV-XGBoost, IV-RF,
and IV-SVM.

TABLE 6 Comparison of model accuracy between historical samples and new samples.

Model Positive sample dataset AUC ACC Precision Recall F1-score

CF-XGBoost
Historical landslides 0.916 0.866 0.900 0.818 0.857

New landslides 0.927 0.890 0.872 0.911 0.891

areas of high and very high susceptibility, directing siting efforts
toward zones of low and very low susceptibility. Furthermore,
comprehensive factor importance analysis reveals that disaster
prevention measures require enhanced implementation in high
and very high susceptibility regions during concentrated rainfall
seasons, particularly in areas exhibiting dense concentrations of high
susceptibility zones such as Jianzha, Hualong, and Xunhua counties.

4.2 Feature importance analysis

Machine learning models not only offer strong predictive
performance but also quantitatively assess the importance of each
evaluation factor, providing insights into the contribution of various
factors to landslide occurrence and facilitating the development of
targeted preventive strategies. In this study, Weight is employed

as the metric for calculating feature importance within the CF-
XGBoost model. This metric quantifies feature importance by
tallying the total number of times each feature is utilized as a split
node across all trees in the ensemble. The weights of each factor
calculated by the CF-XGBoost model are shown in Figure 9a. It can
be observed that all factors play a significant role in landslide hazard
development. According to the magnitude of factor weights, the
three factors with greater impact on landslide hazards are rainfall,
slope aspect, and stratigraphic lithology.

To further identify the principal controlling factors influencing
landslides, this study computed the feature importance ranking
using the CF-RF model, as illustrated in Figure 9b. Consistent
with the results from the CF-XGBoost model, rainfall, slope
aspect, and lithology remain the most significant factors affecting
landslide occurrence.However, a discrepancy exists between the two
models regarding the relative importance ranking of slope aspect

Frontiers in Earth Science 14 frontiersin.org

https://doi.org/10.3389/feart.2025.1652646
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zeng et al. 10.3389/feart.2025.1652646

FIGURE 8
New landslide susceptibility results and detailed map of field investigation. (a) displays the prediction results of landslide susceptibility in the study area.
(b) shows landslides verified through field investigation. (c) illustrates the front scarp of an active landslide, and (d) demonstrates a detailed view of
settlement features in (c). (e,f) represent tensile fractures caused by the active landslide.

FIGURE 9
Importance of evaluation factors. (a) represents the CF-XGBoost model, and (b) represents the CF-RF model.

and lithology, which is likely attributable to differences in their
hyperparameter configurations. Overall, the CF-XGBoost and CF-
RF models exhibit a high degree of consistency in the ranking of all
factorweights, with both confirming the predominant role of rainfall
among the influencing factors.

Analysis combining Supplementary Material shows that when
annual rainfall exceeds 636 mm, rainfall promotes landslide
occurrence, while north-south slope aspects have a significant
influence on landslides. Furthermore, based on geotechnical
mechanical properties, this study divides the research area into four

categories: hard lithology, moderately hard lithology, moderately
weak lithology, and weak lithology, as shown in Figure 4c. Most
new and old landslides occur in moderately weak lithology areas.
This is because rainwater preferentially infiltrates south-facing
slopes, further softening the already fragile lithology. After rainwater
infiltrates north-facing slopes, low water evaporation leads to long-
term high soil moisture content, continuously reducing the shear
strength of geomaterials and increasing the sliding force. Therefore,
the interaction among rainfall, slope aspect, and stratigraphic
lithology significantly increases landslide hazard risk.
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Secondary factors influencing landslides are elevation,
topographic relief, and vegetation coverage. This is particularly
significant within the ranges of elevation 2590–2754 m, topographic
relief 71–109 m, and vegetation coverage (NDVI) 0.31–0.39.
This occurs because gravitational potential energy increases with
elevation difference, and root stabilization effectiveness weakens
in areas with low vegetation coverage, leading to tension crack
formation under the self-weight of geomaterials. Additionally,
under rainfall infiltration, crack generation in slopes is accelerated
by these combined influences. The influence of other factors on
landslides is relatively small, demonstrating that landslides in the
Upper Yellow River region aremainly controlled by the area’s unique
geographical conditions. Human activity factors such as distance
to roads and land use exhibit no significant effects on landslide
movement.

4.3 Comparison with existing studies

4.3.1 Comparison of the spatial distribution of
newly detected landslides with existing studies

Due to the extensive spatial coverage of the study area, field
verification of all identified landslides across the entire region was
impractical, Consequently, a comparative analysis with existing
monitoring results was performed to validate the accuracy of the
landslide detection outcomes presented in this study. The detected
landslides are predominantly distributed in southeastern Longyang
Gorge, north of Lijia Gorge, Jianzha County, and Hualong County.
The comparative analysis revealed a high degree of consistency
between the landslide detection results obtained in this study
and those reported in previous research. For instance, Du et al.
employed Stacking-InSAR integrated with optical remote sensing
imagery to identify landslide distribution within the upper reaches
of the Yellow River (Du et al., 2023). Similarly, Zhao et al. utilized
SBAS-InSAR combined with optical remote sensing imagery to
determine the precise geographical locations of landslides in
this region (Zhao et al., 2022). Notably, the landslides identified by
both research groups were also primarily located in southeastern
Longyang Gorge, north of Lijia Gorge, Jianzha County, and
Hualong County.

4.3.2 Comparison between model predictive
results and existing studies

Existing research on landslide susceptibility assessment in
the upper Yellow River remains limited. The most comparable
study is that of Li et al. (2016), who employed the Analytic
Hierarchy Process (AHP) to evaluate susceptibility in the Longyang
Gorge to Gongboxia Gorge segment. Their results identified high
susceptibility zones across the northwestern and southwestern
sectors of Longyang Gorge. While the present study similarly
detected localized high-susceptibility areas in these sectors, their
spatial extent is significantly reduced relative to Li et al.'s findings,
with low-susceptibility domains predominating. This discrepancy
likely stems from methodological differences, divergent evaluation
criteria, and temporal environmental variations.

4.3.3 Comparative analysis of the model’s
landslide prediction performance with existing
studies

The integrated model (CF-XGBoost) employed in this study
demonstrated superior performance in landslide prediction.
Predictive results on new landslide data revealed that 91% of the
landslides were located within high-risk and very high-risk zones.
Comparative analysis with existing research indicates that this
performance remains highly competitive. For example, Zhu et al.
(2024) evaluated how different nonlandslide sample selection
methods, specifically whole area random selection method, Buffer
method, Frequency Ratio method, and Analytic Hierarchy Process
(AHP), affected RF and XGBoost model performance in Huize
County. Their optimal model (XGBoost-AHP) correctly predicted
85.03% of landslides. Yu et al. (2025) proposed a novel framework
based on Dynamic Ensemble Selection (DES) to capture the spatial
development patterns of different landslide types, conducting
experiments in Wanzhou District, Chongqing, China. The DES
model achieved an accuracy of 80.84% in classifying landslides into
high-risk and very high-risk zones. Zhou et al. (2024) conducted
a landslide susceptibility assessment for the Zigui-Badong section
of China’s Three Gorges Reservoir area using a coupled approach
integrating ensemble learning and machine learning. Their
best-performing integrated model (LR-MLP-Boosting) correctly
identified 82.34% of landslide pixels as situated within high-risk and
very high-risk zones.

In summary, the upper reaches of the Yellow River constitute
a landslide prone region in China, yet research on landslide
susceptibility assessment in this area remains limited. Consequently,
this study’s approach integrating statistical methods, machine
learning models, and SBAS InSAR technology for landslide
susceptibility evaluation in the upper Yellow River holds significant
scientific merit. Furthermore, comparative analysis with existing
studies reveals that the CF-XGBoost model employed in this work
demonstrates superior landslide predictive performance.

4.4 Limitations and prospects

A primary limitation of this study stems from the temporal
mismatch between the modeling and validation datasets: the
historical landslide inventory covers the period 1998–2012, while
the InSAR deformation observations used for model validation
span 2021–2023. Environmental changes that may have occurred
during this interval, such as land use transitions (e.g., urbanization,
deforestation) and alterations in vegetation cover (e.g., degradation
or succession), could reduce the model’s applicability to current
conditions by modifying key landslide-controlling mechanisms.
These mechanisms include root reinforcement, rainfall-infiltration-
runoff interactions, and pore-water pressure dynamics. Such
environmental variability may introduce systematic biases into
model predictions, potentially leading to underestimation of
current instability risks in areas with significant vegetation loss
or, conversely, overestimation of risk in fundamentally altered
environments. Therefore, although the model primarily reflects
landslide occurrence patterns under historical environmental
conditions, direct application of its predictions to interpret InSAR
observations from 2021 to 2023 should be approached cautiously
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and integrated with concurrent assessments of environmental
change. Future research should incorporate time-series remote
sensing data (e.g., on land use and vegetation cover dynamics) to
update model parameters and develop dynamic risk assessment
frameworks compatible with near-real-time InSAR monitoring.

Evaluation factor selection significantly determines machine
learning model accuracy. This study initially considered 16
potential landslide-influencing factors. The application of Pearson’s
correlation coefficient method led to exclusion of surface roughness,
resulting in 15 causative factors for model training. However, data
availability limitations precluded incorporation of certain factors.
For instance, earthquakes-as natural, uncontrollable phenomena-
frequently trigger numerous landslides. Thus, future studies
should prioritize earthquake-related factors to enhance analysis
comprehensiveness and robustness.

Additionally, the natural break-point method partitioned the
susceptibility index predicted by the integrated model, maximizing
inter-group differences while minimizing intra-group variation.
Future research should explore alternative partitioning methods to
achieve more realistic zoning.

5 Conclusion

This study aimed to enhance landslide hazard prediction in the
upper reaches of the Yellow River (Gonghe to Xunhua section)
by obtaining high-precision and accurate landslide susceptibility
evaluation results. Historical landslide data were used to train six
integrated models (IV-RF, IV-SVM, IV-XGBoost, CF-RF, CF-SVM,
CF-XGBoost), and each model’s accuracy was assessed using ROC
curves and ACC values. New landslide data, identified through
SBAS-InSAR technology and optical remote sensing images, were
then overlaid with the susceptibility results from each model. The
model that performed best, CF-XGBoost, was analyzed further. The
results from this model, based on the new landslide data, were used
as a key factor in predicting landslide occurrences in the study area.
The key conclusions are as follows:

1 The CF-XGBoost model provided the highest accuracy among
the six integrated models, with an AUC value of 0.916.
Overlaying the model’s predictions with new landslide data
showed a high degree of accuracy, with 91% of new landslides
identified in high-risk and very high-risk areas, and no
landslides detected in low-risk areas.

2 Spatial differences were observed between the susceptibility
results based on historical data and those using new landslide
data. The models using new landslide data more accurately
reflected actual conditions, whereas those based on historical
data tended to misidentify high-risk areas due to long-term
landslide control, which led to inaccurate positive sample data
for training.

3 The landslide susceptibility evaluation indicated that the
highest-risk areas are concentrated in JianzhaCounty,Hualong
County, and Xunhua County. Based on the factor weights,
natural geographical conditions are the primary drivers of
landslide occurrence, with rainfall being the most significant
external factor. As such, landslide prevention efforts should be
intensified in these counties during the rainy season.
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