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The climate change impacts on hydrological conditions may be strongly 
modulated by the spatial variability of the intensity of human activities 
within watersheds. Despite growing recognition of climate and anthropogenic 
influences on hydrological regimes, comprehensive and spatially explicit 
assessments remain limited, hindering the development of robust watershed 
management and climate adaptation strategies. In this study, we propose an 
integrated framework for such analysis and deciphering by combining principal 
component analysis, hydrological modeling, and a range of variability approach 
to diagnose and attribute hydrological regime changes. The framework is 
tested on the case of the Taoer River Basin as a representative watershed 
system with pronounced human-activity variation along the upstream to 
downstream direction. Our results show that human activities contribute 
only 18% to hydrological regime changes in the upstream regions, where 
anthropogenic influence is relatively low, compared to 49% in the downstream 
areas with substantially greater human interference. While the upstream areas 
exhibit more pronounced changes in daily maximum streamflow (78%–79%) 
and count of low pulses (79%), the downstream areas experience more 
substantial alterations in monthly average streamflow (84%–99%) and high 
pulse durations (85%). Overarching the human-activity variability, the climate 
change impacts increase the risk of flooding, while the human activities exert 
greater influence in amplifying drought risk. Simulations based on CMIP6 
climate projections further indicate a significant increase in the likelihood of 
upstream flooding. Overall, our findings highlight the necessity of spatially 
differentiated management and adaptation strategies, tailored to steep human-
activity gradients across watershed zones, to effectively address hydrological 
changes under climate stress.
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climate change impacts on hydrology, hydrological regime alteration, human-activity 
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1 Introduction

Hydrological regimes, as a key indicator of watershed ecological 
health, are highly sensitive to environmental changes (Ficklin et al., 
2018). With the intensification of climate change and anthropogenic 
activities, these regimes may undergo significant alterations, 
affecting ecological, environmental, and socioeconomic services 
(Poff and Zimmerman, 2010; Sheikh et al., 2022). Such perturbations 
may manifest as increased risks of biodiversity loss (He et al., 
2024), heightened water scarcity (Jenkins et al., 2021), and more 
frequent and severe flood and drought events (Wang H. et al., 
2024). Therefore, understanding these changes at both regional 
and local scales is crucial for developing effective water resource 
management strategies (McMillan, 2021). Within a hydrological 
basin, upstream and downstream areas often differ markedly 
in terms of human activity intensity, ecological integrity, and 
hydrological response (Nkiaka and Okafor, 2024; Wang et al., 
2023). Despite such spatial differences, many previous studies have 
analyzed watersheds as uniform entities, with limited attention to 
internal variability (Tian et al., 2019).

Effective watershed management requires comprehensive 
assessment of hydrological regimes in terms of alteration, 
drivers, and prediction. Previous research has explored these 
aspects, including selecting hydrological indicators for specific 
ecological targets and assessing historical changes (Fang et al., 
2023); quantifying the contributions of various driving factors 
(Sheikh et al., 2022; McDowell et al., 2023); and utilizing 
hydrological models to predict future trends (Li J. et al., 2023). 
Previous studies have also shown that anthropogenic disturbances 
can cause spatially divergent hydrological responses within the same 
watershed (Levi et al., 2015). Nevertheless, few efforts have explicitly 
addressed the spatial variability of hydrological regime alterations, 
despite the fact that regime dynamics often exert greater ecological 
impact than absolute water availability (McDowell et al., 2023).

There are five key characteristics of hydrological regimes: 
magnitude, frequency, duration, timing, and rate of change 
(Rosenberg et al., 2000), with over 200 hydrological indicators 
developed for their quantification (Sheikh et al., 2022), including 
the well-known Indicators of Hydrologic Alteration (IHA) 
(Richter et al., 1996). However, many indicators exhibit 
autocorrelation and redundancy, which can introduce noise and 
compromise interpretability (Fang et al., 2023). Consequently, 
selecting an optimal subset of representative hydrologic indicators 
(RHIs) is a priority in hydrological assessments (Mims and 
Olden, 2013). Techniques such as principal component analysis 
(PCA) and autecology matrices have been employed to reduce 
redundancy among the 33 IHA indicators, helping to identify the 
most representative hydrological metrics (Suen et al., 2004).

Furthermore, understanding the spatial variability of 
hydrological regime and the drivers is crucial for identifying 
underlying mechanisms of hydrological evolution. Hydrological 
modeling is instrumental in capturing the spatial and 
temporal variability of hydrological regime (Eum et al., 2017; 
Mohammadi et al., 2024), by simulating diverse scenarios and 
representing different flow processes across various spatiotemporal 
scales and land areas (Horton et al., 2022), such as cold and 
tropical regions (Mohammadi et al., 2023; Msigwa et al., 2022), 
and upstream and downstream sections of a basin (Zang et al., 

2012), over different temporal periods, including past, present, 
and future (Abbaszadeh et al., 2023; Stephens et al., 2019), and 
inter- or intra-annual scales (Mohammadi et al., 2022) and 
finer temporal resolutions (Azizi et al., 2021). The quantification 
separation methods for drivers include the Range of Variability 
Approach (RVA) (Richter et al., 1997), the Dundee Hydrologic 
Regime Alteration Method (DHRAM) (Black et al., 2005), 
Histogram Matching Approach (HMA) (Shiau and Wu, 2008), 
Histogram Comparison Approach (HCA) (Huang F. et al., 2017), 
etc. Among them, RVA derived from IHA, is widely used to quantify 
hydrological alterations (Berghuijs et al., 2017; Destouni et al., 2013; 
Guo et al., 2024). Studies have shown that hydrological changes can 
vary significantly across different areas within the same watershed, 
sometimes even exhibiting opposing trends (Li and Quiring, 2021). 
By integrating hydrological models with RVA, it is also possible to 
quantify the contribution of various drivers to hydrological regime 
changes across different spatial and temporal scales.

This study systematically investigate the spatial variability in 
hydrological regime evolution, underlying drivers, and projected 
future changes. To this end, the Taoer River Basin (TRB) (Figure 1) 
is used as a representative case study due to its pronounced 
distinct natural and human-induced disturbances in upstream 
and downstream regions. Our goal is to explore to what degree 
and how spatially variable human activities in watersheds drive 
distinct evolution and future trends of hydrological regimes. 
To achieve this, we integrate PCA, IHA, RVA, and hydrological 
modeling. First, PCA is applied to reduce redundancy in IHA 
indicators. Next, RVA and the Soil and Water Assessment Tool 
(SWAT) are combined to assess the spatiotemporal evolution 
of hydrological alterations and attribute changes to climate 
versus anthropogenic drivers Finally, SWAT and the Hydrologic 
Engineering Center’s Hydrologic Modeling System (HEC-HMS) 
are coupled with climate change projections of the Coupled 
Model Intercomparison Project Phase 6 (CMIP6) to explore 
future trends in both ordinary and extreme hydrological 
regimes under different Shared Socioeconomic Pathways (SSP)
scenarios.

2 Methods and materials

2.1 The research framework

The framework of the developed approach is shown in Figure 2. 
The framework integrates IHA, PCA, RVA, and hydrological 
modeling to arrive at the most important RHIs and the driving 
factors behind their changes, and to predict their future trends. 
Analysing the hydrological regimes in both upstream and 
downstream areas of the watershed, PCA is used to remove 
the redundancy in IHA, yielding the most important RHIs. 
Subsequently, using the SWAT model and referencing the RVA 
approach, the contribution of climate change and human activities 
to changes in hydrological regimes are quantitatively assessed 
separately for the upstream and downstream areas. Finally, based 
on CMIP6 outputs, the SWAT model and HEC-HMS are combined 
to project future trends in hydrological regimes under both general 
and extreme scenarios.
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FIGURE 1
Geographic location and water system map of the Taoer River Basin (TRB).

FIGURE 2
Framework for hydrological regime and predictions. RHIs, PCA, IHA, SWAT represent the most Representative Hydrologic Indicators, Principal 
Component Analysis, Indicators of Hydrologic Alteration, and Soil and Water Assessment Tool, respectively. RVA and ESMD represent Range of 
Variability Approach, and Extreme-point Symmetric Mode Decomposition method. CMIP6 and HEC-HMS represent Coupled Model Intercomparison 
Project Phase 6, and Hydrologic Engineering Center’s ‐Hydrologic Modeling System.

2.2 Hydrological models

This study applies SWAT and HEC-HMS to simulate 
hydrological regime. SWAT serves two functions to reflect the 
ordinary hydrological regime under long-term daily meteorological 
conditions in this study. First, it simulates the natural state of 

upstream and downstream areas from 1980 to 2014 to calculate 
values of RHIs. Second, it predicts the future ordinary conditions of 
the hydrological regime. HEC-HMS was further utilized to examine 
the extreme hydrological regime in the basin, i.e., flood processes 
at the hourly scale. The use of both SWAT and HEC-HMS stems 
from their differing strengths and applicable scenarios. Specifically, 
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SWAT is widely used for watershed-scale modeling and long-term 
hydrological simulations but has limited capability in capturing 
short-term extremes (Ferreira et al., 2021; Geng et al., 2025). In 
contrast, HEC-HMS is better suited for fine temporal resolution 
and is more effective in simulating high-frequency extreme events 
such as floods (Kalakuntla and Umamahesh, 2025). Therefore, the 
combined use of both models allows for a complementary approach 
to better capture the full range of hydrological regime.

Operationally, the SWAT model for TRB was constructed 
using DEM, land use, soil, meteorological, and hydrological data. 
The upstream (Charlson) and downstream (Taonan) hydrological 
stations served as the outlets for the subbasins. The SUFI-2 
algorithm was employed for model calibration and validation 
(Collins et al., 2022). The coefficient of determination (R2), 
Nash–Sutcliffe efficiency (NSE), and percentage bias (PBIAS) were 
used as the evaluation metrics. When R2 >0.6, NSE >0.65 and 
PBIAS <15%, the simulation results were considered satisfactory 
(Molina-Navarro et al., 2017). Based on the calibrated parameters 
of a selected reference period (with minor human activity), the data 
of precipitation, air temperature and solar radiation of the change 
period were then used as input for the SWAT model to simulate the 
natural runoff processes at each of the hydrological stations during a 
following change period (with significant human activity). Detailed 
parameters for the calibration and validation of the SWAT model are 
provided in Supplementary Methods S1.

There are four computational modules in HEC-HMS: Loss, 
Transform, Baseflow, and Rounting models (Chakraborty and 
Biswas, 2021). In this study, SCS Curve Number, SCS Unit 
Hydrograph, Recession, and Muskingum were selected for these 
four computational modules, respectively (Vafakhah et al., 2018). In 
addition, the simulation results were evaluated using four indexes: 
peak flow relative error (EQ), peak time difference (ΔT), runoff 
depth relative error (ER), and the determination coefficient (DC). 
Detailed parameters for the calibration and validation of the HEC-
HMS model are provided in Supplementary Methods S2. 

2.3 Establishment and calculation of RHIs

For the 33 IHA indicators of the upstream and downstream 
areas of the TRB, PCA analysis was conducted. Indicators with 
eigenvalues greater than 1 and a cumulative contribution rate 
exceeding 80% were selected as principal components. The most 
frequently occurring indicators were then chosen to obtain the 
most important RHIs. The PCA method reduces dimensionality by 
transforming the original correlated variables to a smaller number 
of uncorrelated variables while retaining as much of the original 
data information as possible (Wang T. et al., 2024). Therefore, the 
principal components are these fewer comprehensive variables, 
which were selected as the RHIs to replace IHA in this study. 

2.4 The change degree of RHIs

RVA was applied to the selected RHIs to calculate their change 
degree, including the degree of alteration for the i-th RHI (Di) and 
the degree of alteration for all RHIs (D0), which are respectively 
referred to as the change degree and the integrated change degree 

(Guo et al., 2024). Specifically, the extreme-point symmetric mode 
decomposition (ESMD) method was applied to analyze trends in the 
annual runoff series of the TRB from 1958 to 2016 (Li and Zhang, 
2024), and double mass curve of rainfall-runoff was employed to 
validate the results (Liu et al., 2013). Accordingly, the study period 
was divided into the reference period (with minor human activity) 
and the change period (with significant human activity), with the 
change year as an intermediate node. The degree of hydrological 
alteration of RHI indicators was calculated using Equations 1–4:

Si =
Ppost,i − Ppre,i

Ppre
× 100% (1)

Di = |
Ni −Ne

Ne
| × 100% (2)

Ne = r×Nt (3)

D0 = √
1
n

n

∑
i=1

Di
2 (4)

where Si is the degree of deviation of RHI indicator i; Ppre,i and 
Ppost,i are the values of RHI indicator i before and after the change 
year, respectively; Ni and Ne are the number of years and expected 
years remaining, respectively, within the RVA threshold after the 
change year of RHI indicator i; r is the proportion of the indicator 
within the RVA threshold before the change year (50% in this study); 
and Nt is the number of years after the change year. The degree of 
change in the hydrological regime based on D0 was categorized as 
follows: low variation (<33%), medium variation (33%–67%), and 
high variation (>67%). 

2.5 Quantification of driver contribution 
rate

Assuming that climate change and human activities are the 
two primary and independent drivers of runoff variation, and that 
their impacts on hydrological regimes are both linear and additive 
(Huang et al., 2024), the integrated change degree of RHIs for the 
observed runoff series was calculated using Equation 5:

Dobs = Dc +Dh (5)

where Dobs is the integrated change degree of the observed runoff 
series; Dc and Dh are the integrated change degrees due to climate 
change and human activities, respectively.

The integrated change degrees due to climate change and human 
activities were calculated from Equations 6 and 7, respectively:

Dc = Dsim (6)

Dh = ΔD = Dobs −Dsim (7)

where Dsim is the integrated change degree of the runoff series 
simulated by hydrological model.

The contribution rates of climate change (Ic) and human 
activities (Ih) to the evolution of the hydrological regime were 
calculated using Equations 8 and 9, respectively:

Ic =
Dsim

Dobs
× 100% (8)
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Ih =
Dobs −Dsim

Dobs
× 100% (9)

 

2.6 Future predictions

To inform adaptive water management and disaster mitigation 
under future climate change, this study further simulates 
hydrological regimes under both ordinary and extreme future 
scenarios. For ordinary hydrological regimes, the SWAT model 
was applied to characterized the conditions between the history 
period (1970–2014) and the future change period (2025–2060). 
To obtain temperature and precipitation conditions for future 
periods, we used output data from the TaiESM1 climate model 
under the SSP126, SSP245, and SSP585 scenarios. These data were 
further bias-corrected before used as input for the SWAT model, 
based on observed meteorological data for the reference period 
using the quantile mapping and the data assimilation method 
(Ngai et al., 2017; Reichle, 2008).

For extreme conditions, we used M3D precipitation data 
under the SSP245 scenario to analyze flood characteristics in 
the upstream areas of TRB for the future period 2025–2034. 
Historical floods in these upstream areas were primarily caused by 
prolonged precipitation events lasting around 72 h, so the duration 
of extreme precipitation was set at 3 days (Hiraga et al., 2025). To 
simulate flood processes under extreme precipitation, annual M3D 
precipitation was downscaled to hourly levels based on historical 
storm statistics (Trinh et al., 2022). The 1998 flood in the TRB, the 
most severe in the last 60 years, served as a reference for two future 
extreme precipitation scenarios:

Scenario A: Assuming that the temporal distribution of future 
M3D precipitation will follow a similar pattern to the storm events 
observed in the historical period, selected based on a matching 
criterion for similar total precipitation.

Scenario B: Assuming that the temporal distribution of 
future M3D precipitation is based on an unfavorable scenario, 
corresponding to the historical flood event on 9 July 1998. 

3 Case study characteristics

3.1 Study area

The TRB (Figure 1) in northeastern China is the largest right-
bank tributary of the Nenjiang River system, with a main stream 
length of approximately 563 km. The TRB is situated within a 
semiarid region, with temperate continental climate. Based on 
the records from 1958 to 2018, precipitation in TRB exhibits 
highly irregular spatiotemporal distribution patterns. The typical 
annual precipitation is currently 434 mm, with up to 83% of 
the total precipitation occurring between June and September. 
Geographically, downstream areas receive only 42.3% of the rainfall 
observed in upstream areas. In this study, the Charlson and Taonan 
hydrological stations were selected to represent the upstream and 
downstream extents of the study area, respectively. The TRB was 
chosen because of the significant spatial differences in land use and 
runoff processes in the basin (Liu et al., 2017). 

3.2 Data

Runoff data for the TRB hydrological stations were sourced 
from the Hydrological Yearbook, comprising annual runoff data 
from 1958 to 2016 and daily runoff data from 1980 to 2014. 
Meteorological data for the Arxan, Suolun, Ulanhot, and Baicheng 
stations from 1970 to 2014 were obtained from the China 
Meteorological Data Service Center. Flood and corresponding storm 
data with a time step of 1 hour was obtained from the Songliao River 
Water Resources Commission of the Ministry of Water Resources.

Digital elevation models (DEM) with a spatial resolution of 
30 × 30 m was downloaded from the Geospatial Data Cloud. Soil 
data with a spatial resolution of 1 × 1 km obtained from the 
Harmonized World Soil Database. Land use data from the Resource 
and Environment Sciences Data Platform. CMIP6 data with a spatial 
resolution of 288° × 192° was sourced from the Earth System Grid 
Federation. 

4 Results

4.1 The selected RHIs

As illustrated in Figure 3, the eigenvalues of PC1∼PC8 at 
Charlson Station are greater than 1 and have a cumulative 
contribution rate of 92%. Similarly, the eigenvalues of PC1∼PC7 
at Taonan Station are greater than 1 and have a cumulative 
contribution rate of 87%. The highest absolute loading values of IHA 
in the PCs for the Charlson and Taonan stations are taken as the 
main components of the upstream and downstream sections in the 
TRB, respectively. Consequently, the selected most important RHIs 
are the most frequent indicators for the two hydrological conditions. 
These are: mean value for January (MVJan), mean value for July 
(MVJul), maxima 3-day (M3D), julian date of 1 day maximum 
(JD1DM), low pulses count (LPC), high pulses duration (HPD), and 
fall rate (FR). Figure 4 shows that most of the correlation coefficients 
between these indicators are generally low, verifying the validity of 
the selected RHIs.

4.2 Spatially variable alterations and drivers 
of hydrological regime

Despite the decline trend and change point (in 1998) being 
identical for the upstream and the downstream runoff series, as 
determined by ESMD and double mass curve of rainfall-runoff 
(Figures 5–7), there are also important differences. The downstream 
section shows a significantly greater decline compared to the 
upstream section (Figure 5), and there were six change points 
(1963, 1967, 1973, 1979, 1983, and 1998) in the upstream annual 
runoff series while only four (1973, 1975, 1983, and 1998) in the 
downstream using ESMD (Figure 6). This suggests that the drivers 
may also differ. Based on these results, the study period is divided 
into the reference period relative to recent change (1980–1998) and 
the recent change period (1999–2014).

The change degrees in flow characteristics from the reference 
period (1980–1998) to the change period (1999–2014) at Charlson 
and Taonan stations due to climate change alone (Dc in Equations 5 
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FIGURE 3
Principal component analysis (PCA) of indicators of hydrologic alteration (IHA).

FIGURE 4
The correlation heatmap of the most representative hydrologic indicators (RHIs). (a) Charlson Station. (b) Taonan Station. MVJan, MVJul, M3D, JD1DM, 
HPD, LPC and FR represent the flow characteristics of mean value for January, mean value for July, maxima 3-day, julian date of 1-day maximum, high 
pulses duration, low pulses count and fall rate, respectively.

and 6) are those simulated by the SWAT model. The total 
change degrees due to both climate change (Dc) and human 
activities (Dh) are those given by the observation time series 
(Dobs), such that Dh is obtained according to Equation 7. Table 1 
lists the resulting observed and simulated changed degrees for 
all RHIs at the two hydrological stations. Subsequently, the 
contribution rates of climate change and human activities to the 

change degrees in the hydrological regime are calculated based on
Equations 8 and 9.

The resulting integrated change degrees of the RHIs for 
the observed and simulated series at Charlson Station are 
62% and 50% (Table 1), respectively, with major changes emerging 
for daily maximum flow (79% M3D and 78% JD1DM) and LPC 
(79%). The contribution rates of climate change and human activities 
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FIGURE 5
Observed annual runoff series and adaptive global mean (AGM) curve of the Taoer River Basin (TRB) from 1958 to 2016. (a) Charlson Station. (b) Taonan 
Station. AGM is the residual model obtained by Extreme-point Symmetric Mode Decomposition (ESMD) method to the observed annual runoff series.

to the change at this station are 81% and 19%. Comparatively, 
Taonan Station exhibits dramatic decline in monthly mean flow 
(99% MVJan and 84% MV Jul) and HPD (85%). The integrated 
change degrees of the RHIs for the observed and simulated series 
at Taonan Station are 72% (high alteration) and 37% (moderate 
alteration), respectively. The contribution rates of climate change 
and human activities to the changes in the hydrological regime at 
this station are 51% and 49%, respectively. 

4.3 Future ordinary and extreme 
hydrological regime

Figure 8 illustrates the resulting ordinary hydrological regime 
in the TRB under different future scenarios. These scenarios are 
obtained using the SWAT model, with climate data taken from 
the TaiESM1 climate model of CMIP6 and 2020 land use data as 
the underlying surface conditions. The results imply that the water 
volume during the flood season in both the upstream and the 
downstream areas of the TRB should be expected to decrease in 
the future. However, during the non-flood season, the upstream and 
downstream areas exhibit opposite trends. Compared to the baseline 
period (1980–2014), MVJan for the upstream areas is projected 
to decrease by 9%, 26%, and 52% under the SSP126, SSP245, and 
SSP585 scenarios, respectively. In contrast, the downstream MVJan 
is expected to increase by 231%, 169%, and 48% under the same 
scenarios.

The change trends indicate possible reduction of future surface 
water availability in the basin. In contrast, the future M3D flows 
in both the upstream and downstream areas of the TRB are 
considerably higher than in the baseline period, with a notably 
increased frequency of high flows. It is this intensification of high 

flows that points to an increased future flood hazard in the future, 
particularly in the upstream areas.

Figure 9 and Table 2 show the resulting hydrological regime 
under the two future extreme precipitation scenarios. It can be 
observed that the total precipitation amounts vary across different 
years, leading to considerable differences in peak flows and flood 
volumes. This indicates that total precipitation amount is the 
dominant factor controlling flood response in the TRB. In contrast, 
the hydrographs for Scenario A and Scenario B are remarkably 
similar, suggesting that the flood response in the TRB is relatively 
insensitive to the temporal distribution of precipitation. Compared 
with the historical flood events, with an effective precipitation 
duration of approximately 3 days, the mean peak flows for the next 
10 floods under Scenario A and B are expected to increase by 
12.26% (43.0 m3/s) and 17.51% (61.4 m3/s), respectively, while the 
total mean flood volumes increase by 10.94% (17.3 million m3) and 
11.06% (17.5 million m3), respectively.

5 Discussion

5.1 Contribution of the proposed 
framework

The initial advantage of this study is the simplification of IHA. 
The seven indicators included in the RHIs given by PCA are 
largely consistent with those selected in many previous studies 
(Gao et al., 2009). These indicators are considered to effectively 
capture key aspects of the hydrological regimes that impact 
ecosystems (Fang et al., 2023). The refined indicator system, after 
removing redundancies, is clearer and more efficient, facilitating the 
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FIGURE 6
Time-varying amplitude-frequency of annual runoff series in the Taoer River Basin (TRB) from 1958 to 2016. (a) Charlson Station. (b) Taonan Station. 
The solid lines represent the frequency variations over time of each Intrinsic Mode Function (IMF) obtained through Extreme-point Symmetric Mode 
Decomposition (ESMD) method, while the symbol-lines represent the amplitude variations. The number of IMFs depends on the complexity of the 
extreme points, there were 36 and 32 extreme points in the upstream and downstream annual runoff series, respectively, with extreme point densities 
of 0.61 and 0.54. Thus, the number of IMFs for the annual runoff series at the upstream station is greater than that at the downstream station.

assessment of changes in hydrological regimes, their driving factors, 
and future trends within a watershed.

A second strength of this study lies in the complementary use 
of two hydrological models (SWAT and HEC-HMS) to analyze 
the spatial heterogeneity of hydrological regimes and their driving 
factors. Previous studies have also observed that the degrees 
of hydrological alteration vary, and in some cases even exhibit 
opposing trends, for different regions within the same watershed 
(Levi et al., 2015; Tian et al., 2019; Sarremejane et al., 2020; 
Li and Quiring, 2021). However, few studies have quantified the 
distinct driving factors or explored the underlying mechanisms 
behind the variations. Considering that ecological targets may 
also vary between upstream and downstream areas, calculating 
average drivers over an entire watershed may obscure several 

important spatial variations (Tian et al., 2019). These spatial 
nuances are essential for accurately capturing hydrological features 
and implementing effective water resource management strategies 
(Sarremejane et al., 2020). In comparison, separately calculating 
the drivers for upstream and downstream sections better elucidates 
important spatial heterogeneities within a watershed (Li and 
Quiring, 2021).

Few models can achieve satisfactory performance across 
multiple temporal scales (Huang S. et al., 2017). In this study, 
SWAT and HEC-HMS are employed in a complementary manner, 
each with distinct strengths: SWAT is well-suited for continuous 
watershed simulation with a strong emphasis on land use–hydrology 
interactions (Geng et al., 2025), whereas HEC-HMS is more 
appropriate for event-based modeling, focusing on rainfall–runoff 
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FIGURE 7
Rainfall-runoff double cumulative curve from 1958 to 2016. (a) Charlson Station. (b) Taonan Station.

TABLE 1  Change degrees of RHIs at Charlson Station and Taonan Station in the TRB. MVJan, MVJul, M3D, JD1DM, HPD, LPC and FR represent the flow 
characteristics of mean value for January, mean value for July, maxima 3-day, julian date of 1-day maximum, high pulses duration, low pulses count and 
fall rate, respectively.

RHIs Hydrological station Change rate (%) Change degree

Observation Simulation Observation Simulation

MVJan
Charlson 16 55 Low Medium

Taonan 99 68 High High

MVJul
Charlson 37 85 Medium High

Taonan 84 20 High Low

M3D
Charlson 79 6 High Low

Taonan 21 52 Low Medium

JD1DM
Charlson 78 6 High Low

Taonan 44 28 Medium Low

HPD
Charlson 47 10 Medium Low

Taonan 85 20 High Low

LPC
Charlson 79 14 High Low

Taonan 45 19 Medium Low

FR
Charlson 67 85 High High

Taonan 87 12 High Low

Integration
Charlson 62 50 Medium Medium

Taonan 72 37 High Medium
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FIGURE 8
Characteristics of the most representative hydrologic indicators (RHIs) changes under different future scenarios of Taiwan Earth System Model 
(TaiESM1). (a) Charlson Station. (b)Taonan Station. MVJan, MVJul, M3D, JD1DM, HPD, LPC and FR represent the flow characteristics of mean value for 
January, mean value for July, maxima 3-day, julian date of 1-day maximum, high pulses duration, low pulses count and fall rate, respectively.

transformation and flow routing (Kalakuntla and Umamahesh, 
2025). Therefore, integrating models across multiple time scales and 
thoroughly assessing uncertainties are crucial steps for improving 
the accuracy of future hydrological forecasts. Daily-scale predictions 
of hydrological regime facilitate the study of long-term hydrological 
trends by reducing the influence of short-term extreme values 
(Brunner et al., 2020). However, masking of these short-term 
extremes may lead to neglect of crucial hydrological processes and 

events occurring at smaller time scales (McMillan, 2021), which 
could pose significant threats to life and property, such as floods 
(Rufat et al., 2015). Hourly-scale predictions can capture such 
sudden events and the hydrological impacts of extreme weather 
with short duration, in support of improved flood forecasting and 
decision-making (Dehghani et al., 2023).

Hydrological projections involve uncertainties from model 
structure (Herrera et al., 2022), parameterization (Hui et al., 
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FIGURE 9
Future flood events under Scenario A and Scenario B. Scenario A distributes the design precipitation over time based on a historical storm event with a 
similar total rainfall amount. Scenario B distributes the design precipitation based on the most adverse conditions, using the historical storm event 
associated with the maximum flood. The vertical grey dashed lines in the figure demarcate flood events occurring in different future years.

TABLE 2  Comparative analysis of flood features under different scenarios. M3D represent maxima 3-day.

Scenario Historical period Scenario A Scenario B

Mean M3D precipitation (mm) 70.2 81.5 81.5

Mean peak flow (m3/s) 350.7 393.7 412.1

Mean flood volume (106m3) 158.2 175.5 175.7

2020), and climate model inputs (Chen et al., 2022). In terms 
of model structure, although some components rely on linear 
assumptions (Kollet et al., 2017), this study incorporates nonlinear 
modules such as the Green-Ampt infiltration method, the SCS 
Curve Number approach, and nonlinear reservoir routing. These 
selections, combined with event-specific parameterization and 
nonlinear variations in input data, help capture the complex 
feedback mechanisms of hydrological systems under both historical 
and future climate scenarios (Steinschneider et al., 2015). For 
parameter uncertainty, key sensitive parameters were selected 
based on previous studies, including CN, ESCO, and CH_K in 
SWAT (Liu et al., 2024), and initial abstraction and impervious in 
HEC-HMS (Acuña-Alonso et al., 2024). Calibration using multi-
site observations and historical extreme events helped reduce 
uncertainty in parameter identification and estimation. To reduce 
uncertainty from climate model inputs (Zhang et al., 2025), 
this study applied various methods including quantile mapping 
to correct biases in precipitation and temperature simulations 
(Supplementary Methods S3). Climate models were selected based 
on their historical performance to minimize systematic errors 
and improve the reliability of future hydrological projections 
(Ahmed et al., 2019; Yang et al., 2021).

5.2 Spatial heterogeneity and management 
implications

In this study, spatial heterogeneity is primarily reflected in 
two aspects. First, the dominant drivers of hydrological regime 
change differ between the upstream and downstream sections 
of the TRB. In the upstream section, the hydrological regime 
in the is predominantly influenced by climate change, while the 
downstream section is affected by the combined impacts of climate 
change and human activities. The differing contributions can be 
attributed to several reasons: 1) human activities are less prevalent 
in upstream areas (Liang et al., 2010); 2) downstream areas have 
lower flow velocities, which may make them more susceptible 
to human impacts (Zhang et al., 2017); and 3) downstream 
ecosystems have lower stability due to additional change factors, 
such as land use changes (Li M. et al., 2023). For example, the 
downstream area includes extensive agricultural land and urban 
settlements, with substantial industrial and domestic water use. 
Second, the hydrological responses themselves show contrasting 
patterns upstream, the maximum daily flow increases due to climate 
change while downstream, the average monthly flow decreases 
due to human activities. This reflects two distinct directions in 
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which climate change and human activities may increase extreme
events.

Our projections for the TRB indicate that peak flood flows 
increase with precipitation concentration and intensity, which may 
be due to decreased soil infiltration and associated increased 
runoff intensity. Peak flows and total flood volumes may thus 
be expected increase, while the majority of flood events in the 
upstream areas of the TRB case study are projected to be small and 
medium scale over the next decade under the M3D precipitation 
scenario. Consequently, given the safety utilization of floodwater 
resources, it may be possible to alleviate the water supply-demand 
imbalance within the basin (Binns, 2022). Notably, the trends 
in hydrological indices between the upstream and downstream 
sections of the TRB are not entirely consistent and, in some cases, 
even opposite (Figure 8). This highlights the importance of adopting 
a region-specific approach to managing water resources (Huang and 
Swain, 2022).

This finding has important implications for watershed 
management. Given the marked differences in hydrological 
response mechanisms between upstream and downstream 
regions, uniform water resource policies may fail to address 
localized needs and could even lead to unintended consequences 
downstream (Zhao et al., 2023). It is therefore essential to promote 
region-specific management strategies: upstream areas should 
prioritize enhancing natural water retention and ecosystem 
conservation, while downstream regions require improvements 
in water-use efficiency and risk mitigation capacity. In addition, 
local stakeholders should be actively involved in climate-adaptive 
water management, enabling the integration of monitoring data 
and scenario-based forecasts to support dynamic, resilient, and 
coordinated basin governance. 

5.3 Limitations and prospects

Despite the significant progress made in identifying the drivers 
of hydrological change and projecting future scenarios, several 
limitations remain. First, the attribution analysis assumes that 
climate change and human activities are the two primary and 
independent drivers of runoff variation, with linear and additive 
effects (Huang et al., 2024). However, interactions between climate 
and human influences in real-world hydrological processes are 
likely more complex, potentially involving nonlinear and synergistic 
effects (Yuan et al., 2017). Second, the SWAT and HEC-HMS 
models applied in this study rely in part on linear assumptions to 
simulate hydrological processes (Kollet et al., 2017). Under changing 
environmental conditions, key processes such as infiltration, 
runoff generation, and flow routing may exhibit pronounced 
nonlinear behaviors, which could compromise simulation accuracy. 
Third, the future hydrological scenarios were based primarily on 
optimal climate models under different SSPs, without a systematic 
assessment of the uncertainties arising from inter-model variability. 
Future research should incorporate more sophisticated models 
that capture climate–human interactions, explore the role of 
nonlinear processes in shaping hydrological responses, and, when 
selecting specific RHIs for ecological targets, such as fish diversity 
and abundance, it is essential to consider hydrological-ecological 

response relationships and underlying mechanisms in addition to 
the results from PCA (Mims and Olden, 2013; Yang et al., 2008). 

6 Conclusion

In this study, we have developed and applied a general modeling 
framework to assess hydrological regime response and quantify 
spatiotemporal variability in past-to-future environments and the 
associated main change drivers. The proposed framework, which 
integrates PCA, IHA, RVA, SWAT and HEC-HMS, has identified 
major differences in the degrees of hydrological regime changes, and 
their driving factors, and future trends between the upstream and 
downstream regions of the test case study of TRB. Failure to consider 
the spatial variability of hydrological regimes within a watershed can 
lead to inefficient water management strategies.

This study has employed the SWAT and HEC-HMS hydrological 
models to project both ordinary and extreme future hydrological 
regimes, addressing the limitations of traditional daily-scale 
predictions using only SWAT. Overcoming these limitations may 
be vital for water resource planning and real-time management, 
particularly in basins with recurrent seasonal flooding. Additionally, 
the uncertainties in future climate scenarios and underlying models 
and assumptions, along with other important change trends, 
e.g., in land use, will also influence the relevance, accuracy, and 
uncertainties of future hydrological projections. Even with such 
uncertainties, however, this study has shown that accounting for 
the spatial variability of human activities within watersheds can 
give valuable insights and considerably improve the relevance 
and accuracy of hydrological change estimation, projection, and 
adaptation.
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