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Yaqing Wang, Xiaoyan Sun, Mingyong Zhang, Shiyue Liang and 
Ze Li

Shandong Leading Petro-Tech Co., Ltd., Dongying, Shandong, China

In oil and gas exploration and development, logging curves are the key data for 
obtaining underground geological information. However, in actual acquisition 
processes, problems such as drilling fluid invasion and wellbore collapse often 
lead to the absence or distortion of logging data, thereby affecting their 
subsequent analysis and application. Well logging curves exhibit clear context-
dependent characteristics. Traditional reconstruction methods are mostly based 
on the assumption of independent and identically distributed data and are 
difficult to capture the temporal dependencies between data, resulting in limited 
accuracy of time series modeling. Therefore, for the shale reservoir in a certain 
basin in the northeastern region, this paper introduces a method that combines 
variational mode decomposition (VMD), convolutional neural network (CNN), 
and bidirectional long short-term memory neural network (BiLSTM) to achieve 
high-precision reconstruction of logging acoustic wave signals (DT). The VMD 
method decomposes the logging curves into different mode functions (IMF), 
achieving the extraction of features at different scales; the CNN method is used 
to extract local features such as local morphology and change trends of IMF, 
obtaining high-level feature representations; the BiLSTM is used to extract the 
bidirectional long-term dependencies of features. By standardizing the logging 
data, to avoid the subjectivity of manually selecting the input logging curves, the 
XGBoost-SHAP method is introduced to optimize the logging curves, and an DT-
targeted gradient boosting regression model is constructed using XGBoost, and 
the SHAP values are used to conduct game theory-based contribution analysis 
for each input feature, obtaining the feature ranking based on the cumulative 
SHAP contribution. Finally, three sensitive curves, CNL, GR, and RS, are selected 
as input features to construct the VMD-CNN-BiLSTM prediction model, which 
is applied to two test wells, achieving a fitting goodness (R2) of 0.71 and 0.88 
respectively. Further comparative experiments have shown that the VMD-CNN-
BiLSTM model has significantly improved performance in terms of MSE, MAE, 
MAPE, R2, etc., compared to the SVR, random forest, and LSTM methods. The 
MSE has increased by 20.5–33.9, MAE by 1.5–2.1, MAPE by 1.6%–2.3%, and R2

by 0.21–0.36.
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1 Introduction

In petroleum exploration, logging curves constitute essential 
geological data that facilitate for-mation evaluation through 
lithology interpretation, reservoir parameter determination, and 
seismic inversion processes. Among them, the acoustic logging 
curves directly reflect the coupling effect of the elastic modulus 
of the rock matrix and the compressibility of the pore fluids by 
recording the propagation time of the longitudinal waves in the 
formation. They are mainly used in synthetic seismic records, 
lithology discrimination, porosity calculation, and rock mechanics 
parameter calculation. In the actual logging process, interference 
from unfavorable factors such as borehole collapse and instrument 
failure can lead to problems such as missing data and distortion of 
logging curves (Wang et al., 2020), which increases the difficulty of 
subsequent geological work. In view of the high cost of re-logging, 
engineering difficulty and other problems (Zhou et al., 2022), how 
to carry out logging curve re-construction has become a key link in 
the exploration and development of oil and gas reservoirs.

To solve this problem, early researchers mainly used traditional 
methods for curve reconstruc-tion, such as empirical formulas 
(Chen and Wang, 2005; Yuan et al., 2009), petrophysical modeling 
(Li et al., 2016; Zhao et al., 2016), and multiple regression (Yin et al., 
2014; Liao, 2014; Wang et al., 2016). However, in complex geological 
formations, logging curves often exhibit intricate nonlinear correla-
tions. Conventional methods fail to adequately characterize these 
relationships, leading to poor re-construction accuracy that falls 
short of practical application standards.

With the development and application of machine learning, 
relevant algorithms have been widely used in the petroleum 
field. Machine learning algorithms such as K nearest neighbor 
(Aftab et al., 2023), support vector machine, random forest (Ibrahim 
and Elkatatny, 2022), and XGBoost (Zhang et al., 2022) have been 
widely used in relevant research. These algorithms are able to mine 
the complex nonlinear relationship between data, which improves 
the reconstruction accuracy to a certain extent. However, the “point-
by-point prediction” paradigm has a fundamental flaw: they treat 
time series as independent and identically distributed observation 
points, thereby destroying the inherent temporal continuity. For 
instance, KNN only relies on numerical similarity and ignores 
the context order, making it prone to finding incorrect historical 
similar points; Random Forest, through bootstrap sampling and 
random feature selection, disrupts the temporal order, and its model 
structure cannot jointly maintain or remember long-term temporal 
states. Therefore, these methods are difficult to systematically 
capture time dependence (Zhou et al., 2025).

Deep learning, as an important branch of machine learning, 
provides a new solution for the re-construction of logging curves 
(Zhan et al., 2024; Liu D. et al., 2024). Deep learning models 
represented by convolutional neural network (CNN) (Zhai et al., 
2023; Gama et al., 2025; Li et al., 2023) and recurrent neural network 
(RNN, LSTM) (Zhang et al., 2024; Liu J. et al., 2024; Shang et al., 
2022) have been widely introduced into this field. CNN can 
effectively extract the spatial features of the logging data and explore 
the correla-tion between different parameters; RNN and its variants 
are good at dealing with the time-series da-ta and capture the 
information of the logging curve changes with depth, which is 
suitable for the re-construction of logging curve.

We make the following key contributions in this paper: 

1. We employed the XGBoost-SHAP method for interpretability-
based feature selection. This method is capable of effectively 
extracting the nonlinear relationships between the feature 
variables and the target variable, and can also explore 
the influence of multi-variable interaction effects on the 
prediction outcome.

2. We employed a combined loss function that integrates the 
soft dynamic time warping loss (Soft-DTW) and the mean 
square error loss (MSE). The Soft-DTW is used to measure the 
global similarity of the predicted curve and the actual curve, 
while the MSE is used to measure the single-point error. The 
combination of these two losses is utilized to better balance the 
scatter error of the well logging curve points and the overall 
trend error.

3. We utilize VMD to decompose the input and target curves into 
multi-frequency components, build CNN-BiLSTM models for 
each component, and superimpose the predicted components 
to reconstruct the final curve.

The rest of the paper is organized as follows: Section 2 
summarizes the previous work. Section 3 explains the principles 
of the algorithms involved. Section 4 involved data preprocessing, 
feature selection, sample construction, model training, application 
effect analysis, and comparison experiments. Section 5 concludes 
the work of this paper. 

2 Related works

As fundamental datasets for subsurface characterization, the 
quality (completeness and preci-sion) of well logging curves directly 
impacts the reliability of reservoir assessment. Traditional em-
pirical formulas and petrophysical modeling methods can make 
preliminary estimation of the curve based on statistical laws, but 
there are obvious limitations in reconstruction accuracy in the 
face of the nonlinear relationship between logging data and its 
obvious spatial sequence characteristics under complex geological 
conditions.

The application of machine learning algorithms brings a 
new technical path for logging curve reconstruction. Kim and 
Cho (2024) applied a K-nearest neighbor collaborative filtering 
interpolation method for missing logging completion in a district 
in Norway, which demonstrated that the collab-orative filtering 
method, which is mainly applied to recommender system, can 
be better used for the interpolation of missing well logging data. 
Zhang et al. (2022) found through comparative experiments that 
the XGBoost algorithm has better accuracy and stability in the task 
of logging curve reconstruc-tion, showing stronger generalization 
ability. Li and Jiang (2025) further analyzed the XGBoost-based 
acoustic logging curve reconstruction in combination with the 
SHAP algorithm, confirming that fea-ture importance is crucial for 
model prediction accuracy. Afifi and Anifowose (2023) investigated 
the effectiveness of artificial neural networks, regression trees, 
support vector machines, and random forests in predicting acoustic 
wave curves. Among them, random forests had the lowest error 
rate, and through different feature combinations, it was confirmed 
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that only using cable logging data was sufficient to achieve high-
precision predictions. Nero et al. (2023) employed the support 
vector machine (SVM), random forest (RF), and extreme gradient 
boosting (XGBoost) algorithms to predict the acoustic wave curves 
of the Tano basin of Ghana, and confirmed that the generalization 
ability of the integrated machine learning algorithms is superior to 
that of the non-integrated learning algorithms. Saleh et al. (2025) 
examined the effectiveness of six machine learning algorithms, 
including random forest, in predicting acoustic logging curves. They 
concluded that the accuracy of ensemble models such as random 
forest and XGBoost was the highest. Additionally, they emphasized 
that feature engineering is crucial for enhancing the performance 
of the models. Due to their architectural limitations, tradi-tional 
machine learning methods often fail to effectively model long-term 
temporal dependencies in datasets.

The rise of deep learning has revolutionized the new paradigm 
of logging curve reconstruction. Zhai et al. (2023) used a two-
dimensional convolutional neural network (CNN) and introduced 
an at-tention mechanism to strengthen the deep learning network’s 
ability to capture the autocorrelation and inter-correlation feature 
information of logging curves, and verified the reconstruction 
results with high accuracy through synthetic seismic records. 
Zhang et al. (2024) used a two-way long-short-term network 
method optimized by a particle swarm algorithm for the 
reconstruction of The particle swarm method obtains reasonable 
hyperparameters for the network and reduces the uncertainty of 
manual parameter adjustment, and the model has the ability of 
dynamic optimization and adaptive reconstruction in the process 
of logging reconstruction, which is applied to Qinshui Ba-sin with 
good results. Qu et al. (2025) proposed an interpolation method 
based on generative adver-sarial network algorithm for the problem 
of incomplete logging data. The application results show that the 
proposed method can effectively extract spatio-temporal features 
and correlations from log-ging data, and has stable interpolation 
capability for logging data with different missing rates and missing 
locations.

This study proposes a novel hybrid VMD-CNN-BiLSTM model 
for acoustic time-series (DT) re-construction, with experimental 
results demonstrating its superior performance. 

3 Deep learning method for well 
logging acoustic signal reconstruction

3.1 Variational modal decomposition (VMD)

Variational Mode Decomposition (VMD) was proposed by
Dragomiretskiy and Zosso (2013). It is an adaptive signal processing 
method. Different from traditional signal processing methods based 
on Fourier transform or wavelet transform, VMD decomposes 
complex multi-component signals into multiple Intrinsic Mode 
Functions (IMFs) with different central frequencies. These IMFs 
have specific physical meanings and excellent properties, enabling 
the effective extraction of features from different frequency 
components in the signal. As a result, VMD has been widely applied 
in the field of signal processing. The VMD method seeks a set 
of mode functions through variational optimization. Its objective 
function aims to minimize the sum of the bandwidths of all IMFs, 

with the constraint that the sum of all IMFs is equal to the original 
signal. The formula is shown in Equations 1, 2:

fmin = min
{uk},{ωk}
{∑

k
|∂(t)[(δ(t) +

j
πt
)∗ uk(t)]e−jωkt|

2

2
} (1)

s.t
K

∑
k=1

uk = f(t) (2)

Where δ(t) is the Dirac function, ∗ denotes the convolution 
operation, ∂(t) denotes the derivative with respect to time, j is the 
imaginary unit, and f(t) is the original signal, decomposed into 
k modal functions uk(t), each of which corresponding to a center 
frequency ωk.

In this study, the VMD method is used to decompose the logging 
curve data into sub-series with different frequencies, which respond 
to the overall trend, and local change characteristics of the logging 
curve. The high complexity and strong nonlinear characteristics of 
this time series can be solved by this processing. 

3.2 Convolutional neural network (CNN)

Convolutional Neural Networks (CNNs) represent a class 
of deep neural networks characterized by their convolutional 
operations, originally developed for and predominantly applied 
in computer vision tasks. The core idea of CNN is to utilize 
convolutional operation to achieve the extraction of local 
features (e.g., edges, textures). Through the stacking of multiple 
convolutional layers, CNN can gradually abstract from low-level 
features to high-level semantic features, realizing the hierarchical 
expression of data features. Compared with the traditional fully 
connected neural network, CNN significantly reduces the number 
of model parameters through the weight sharing strategy and 
effectively avoids the overfitting problem (Wu et al., 2024). In this 
study, the well logging curves are presented in a 1D sequence format, 
where each data point corresponds to a specific depth. The local 
correlation between adjacent depth points (such as the sudden signal 
change at the interface between sandstone and mudstone) directly 
reflects the subtle geological changes. The 1D-CNN is designed to 
scan the 1D well logging sequence using a 1D convolution kernel, 
thereby capturing local spatial features. This method is directly 
similar to the way two-dimensional convolutional neural networks 
capture textures and edges in images.

The core component of CNN is the convolutional layer, which 
generates feature maps through convolution operations (Figure 1). 
The input data passes through the convolution kernel, and the 
mathematical expression is shown in Equation 3:

Y[i, j] =
M−1

∑
m=0

N−1

∑
n=0

X[i+m, j+ n] ·W[m,n] + b (3)

Where M × N denotes the convolution kernel size, W is the 
weight, and b is the bias term.

A conventional CNN framework typically comprises three 
fundamental components: (1) an input layer for raw image data 
reception, (2) a convolutional module containing sequentially 
arranged convolutional operations, nonlinear activation units, 
and downsampling layers for hierarchical feature extraction and 
dimensional reduction, and (3) a fully-connected classifier for final 
feature-to-label transformation. 
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FIGURE 1
Schematic of 1D convolutional computation.

FIGURE 2
Structural diagram of the neural network for long short-term memory.

3.3 Long short-term memory network 
(LSTM)

Long Short-Term Memory network (LSTM) is a special kind 
of Recurrent Neural Network (RNN) proposed by Hochreiter and 
Schmidhuber (1997), the core of which is to solve the problem 
of gradient vanishing and explosion encountered by RNN when 
dealing with long sequence data. Long Short-Term Memory (LSTM) 
networks are suitable for processing temporal data and are widely 
used in speech processing and natural language processing. LSTM 
controls the flow of information through three gate structures: 
forgetting gate, memorizing gate, and output gate (Figure 2).

Oblivion Gate: selectively forgets historical information about 
the input. This component receives the information ht−1 of the 
previous time state and the current input xt, expressed as the formula 
is shown in Equation 4:

ft = σ(Wf · [ht−1,xt] + bf) (4)

Where ft is the output information of the forgetting gate, σ is the 
activation function, W f  is the weight, and b f  is the bias.

Input Gate: Controls the addition of current input information 
to the memory cell. The update of the information in the memory 
cell and the generation of a new memory value is controlled 
by an activation function, expressed by the formula is shown in 
Equations 5, 6:

it = σ(Wi · [ht−1,xt] + bi) (5)

̃Ct = tanh(WC · [ht−1,xt] + bC) (6)

Where it is the output of the input gate, ̃Ct is the candidate 
memory value at the current moment, and tanh is the 
activation function.

Output gate: the output gate selectively filters the composite 
information derived from both the memory cell state and 
current input features, thereby determining the final output 
representation and generating an updated hidden state through 
a gating mechanism, which is expressed by Equations 7, 8:

ot = σ(Wo · [ht−1,xt] + bo) (7)

ht = ot · tanh(Ct) (8)

Where ot is the output of the output gate and ht is the hidden 
state at the current moment.

Memory updating: the memory cell state undergoes dynamic 
updating through the coordinated operation of both input and 
forget gates, which collectively regulate the incorporation of new 
information and the retention of historical context, which is 
expressed by Equation 9:

Ct = ft ·Ct−1 + it · ̃Ct (9)

In this study, the LSTM’s ability to preserve depth-dependent 
dependencies allows it to model geological transitions that are not 
apparent from shallow features alone. 
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FIGURE 3
Architecture of VMD-CNN-BiLSTM model.

3.4 VMD-CNN-BiLSTM model structure

The CNN-BiLSTM model combines the advantages of 
convolutional neural network (CNN) and bi-directional long 
short-term memory network (BiLSTM) (Redwan et al., 2025). 
The hybrid architecture leverages complementary strengths: CNN 
demonstrates superior capability in extracting localized temporal 
patterns, while the bidirectional LSTM (BiLSTM) effectively 
captures long-range dependencies through its dual-directional 
processing, enabling comprehensive utilization of inter-strata 
contextual information.

In this paper, a VMD-CNN-BiLSTM cascade model is 
constructed by combining VMD, CNN, and BiLSTM, and the 
model structure is shown in Figure 3. Each VMD component is 
independently fed into a CNN-BiLSTM model, whose output is 
a subcomponent of the final DT curve; these are then summed 
to reconstruct the complete acoustic profile. Specifically, the 
VMD method is used to decompose different logging curves 
into multiple secondary curves with different frequencies, and 
construct the prediction model of logging curves with different 

frequencies, for each model, firstly, the secondary logging curves 
of the frequency are used as the input of CNN, and after feature 
extraction of the local features by CNN, BiLSTM receives the 
sequences processed by CNN, and extracts the before-and-after 
correlation information of the logging data, and then, the BiLSTM 
processed features are input to a fully connected layer to map 
to the secondary acoustic curve of the same frequency, and 
finally, the secondary acoustic curves obtained from each model 
are superimposed to obtain the final acoustic reconstruction
curve. 

3.5 Loss function

In this study, a composite loss function combining mean square 
error (MSE) and soft dynamic time regularization loss (Soft-
DTW) (Cuturi and Blondel, 2017; Jiang et al., 2022) is used to 
balance the optimization objective of local point-by-point error 
and global morphological similarity in time series forecasting. The 
traditional MSE loss is sensitive to point-by-point errors, but it is 
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FIGURE 4
Boxplot of logging data distribution before data normalization.

FIGURE 5
Boxplot of logging data distribution after data normalization.

difficult to capture the overall trends and interrelationships of the 
sequences; Soft-DTW introduces a differentiable approximation 
to the classical dynamic time warping algorithm through 
continuous relaxation of alignment paths, thereby enabling 
direct integration with neural network training frameworks that 
traditional DTW cannot support due to its non-differentiable
nature.

The mean square error (MSE) represents a fundamental 
loss metric in regression analysis, quantifying the expected 
squared deviation between predicted and observed values 

across temporal data points. The formula is shown in
Equation 10:

LMSE =
1
N

N

∑
i=1
( ̂yi − yi)

2 (10)

Where ̂yi is the predicted value of the ith data point, yi is the 
corresponding true value, and N is the total number of data points.

While MSE offers computational advantages including 
straightforward gradient computation and stable optimization 
convergence, its underlying assumption of temporal independence 
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FIGURE 6
Heat map of pearson correlation coefficient.

FIGURE 7
Histogram of importance of features.

limits its ability to capture sequential dependencies and global 
morphological patterns in time-series data.

Soft Dynamic Time Regularization Loss (Soft-DTW), on the 
other hand, is an improvement of traditional DTW, aiming 
at solving its problem of non-trivial discrete path search. The 
conventional DTW algorithm employs dynamic programming to 
identify the optimal nonlinear alignment path between temporal 
sequences, providing an effective measure of global morphological 
similarity. However, its discrete optimization nature precludes 

direct integration with neural network architectures for end-to-
end learning. Soft-DTW transforms the discrete path selection into 
continuous probability distributions based on the softmax function 
through the introduction of the smoothing relaxation technique, 
making the loss function microscopic. Specifically, a similarity 
matrix M is constructed between the predicted sequence and the 
actual sequence, as shown in Equation 11:

Mi,j = | ̂Yi −Yj |22 (11)

Where Mi,j denotes the squared Euclidean distance for the ith 
and jth data points.

The accumulation matrix A is then computed by dynamic 
programming, as shown in Equation 12:

Ai,j =Mi,j + log(exp(Ai−1,j) + exp(Ai,j−1) + exp(Ai−1,j−1)) (12)

Where each element Ai,j represents a smooth approximation 
of the minimum cumulative distance from the starting point 
(1,1) to (i,j).

The final Soft-DTW loss is the normalized value of the element 
AT,T in the lower right corner of the accumulation matrix, where T
is the length of the sequence. This loss function is insensitive to the 
time axis offset and can effectively capture the global characteristics 
of the sequence such as trend and period.

Frontiers in Earth Science 07 frontiersin.org

https://doi.org/10.3389/feart.2025.1658516
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2025.1658516

FIGURE 8
SHAP summary plot (showing the impact and direction of each log feature on DT prediction; color indicates feature magnitude).

The MSE is finally combined with Soft-DTW to construct the 
composite loss function, as shown in Equation 13:

Ltotal = λLMSE + (1− λ) · LSoft‐DTW (13)

Where λ is used to regulate the weights of the two losses as 
hyperparameters of the model. 

4 Experiment and result analysis

4.1 Experimental data

The data of this experiment comes from the open-source logging 
dataset of Xu et al. (2024), which includes four wells, GY1, C21, 
SYY1, and YX58, in GL block, and the purpose layer of this 
experiment is the QSK layer, and the total depth of the four wells 
is about 1,542 m. The logging curves include the natural gamma 
(GR), the deep lateral resistivity (RD), the shallow lateral resistivity 
(RS), the density (DEN), the neutron (CNL), as input features, and 
acoustic time difference curve (DT) as prediction curve, with a 
longitudinal sampling rate of 0.125 m. 

4.1.1 Data preprocessing
Data standardization process is crucial, the main purpose is to 

eliminate the influence of the magnitude of different logging curves 
and to ensure the fair contribution of individual logging curve 
features to the model results during the model training process. It 
helps to improve the prediction accuracy and convergence speed 
of the model. The standardization method used this time is the 

min-max normalization method, and the normalization formula 
is shown in Equation 14:

x =
xi − xmin

xmax − xmin
(14)

Where x and xi are the values of the same data point after 
normalization and before normalization, respectively, and xmax and 
xmin are the maximum and minimum values in the features.

After the data processing, the dimensional differences of each 
well logging curve were eliminated, and the input features had a 
range of magnitudes of [0,1], while also ensuring the distributional 
characteristics of the original data (Figures 4, 5). 

4.1.2 Feature selection
The accuracy of logging curve reconstruction directly depends 

on the type of input curve, and optimizing the DT-sensitive curve 
is the key step. SHAP (SHapleyAdditiveexPlanations), as a powerful 
feature interpretation tool, can quantify the degree of each feature’s 
contribution to the model output and the interaction effect between 
features through the game-theoretic method (Wu et al., 2025). In this 
logging curve reconstruction analysis, the correlation of different 
logging curves is first evaluated based on the Person correlation 
coefficient, and then the influence mechanism of five logging curve 
features on the target variable DT is analyzed through the XGBoost 
model combined with the SHAP value, and the sensitive parameters 
used for DT prediction are screened by combining the two methods.

The magnitude of linear correlation of different logging 
curves was quantified by Person correlation coefficient 
analysis, and Figure 6 shows that different logging curves show 
different positive and negative correlations with DT curves, CNL 

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2025.1658516
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2025.1658516

FIGURE 9
SHAP dependence plot matrix.
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FIGURE 10
SHAP interaction heatmap.

has the highest correlation coefficient of 0.83 with DT, followed by 
DEN, which has a negative correlation with a coefficient of 0.58, 
and the rest of the curves show correlation coefficients of less than 
0.5 with DT.

The multilinear-nonlinear relationship was further explored 
by the XGBoost-SHAP method. According to the characteristic 
importance plot (Figure 7), the mean absolute value of the SHAP 
value of CNL is the highest (5.43), indicating that it has the most 
significant influence on the DT prediction, which is consistent 
with the geologic law to a certain extent, because the neutron 
curve directly reflects the formation porosity characteristics, and 
the acoustic time difference is also closely related to the formation 
porosity. The significance of RS and GR is the next highest, with 
the significance of 1.52 and 1.30, respectively. DEN and RD have 
relatively lower importance, 0.99 and 0.82, respectively, probably 
because they are more complexly affected by lithology and fluid 
properties, and their direct correlation with DT is weaker.

The SHAP summary plot (Figure 8) further reveals the direction 
of the relationship between the eigenvalues and the model output. 
High values of CNL (red) correspond to positive SHAP values, 
indicating that high neutron porosity leads to an increase in the DT 
value. High values of RS and GR also had a positive effect on DT, 
while DEN showed a negative correlation.

The dependence plot and SHAP interaction effect heatmap 
(Figures 9, 10) indicate that there are significant nonlinear 
interaction effects among different logging parameters. The 
synergistic interaction between CNL and RS demonstrates the 
most pronounced effect (interaction strength = 0.408), indicating 
their combined influence on DT substantially exceeds the sum of 
their individual contributions, revealing a non-additive effect. The 
interaction strength between GR and CNL ranks second at 0.367, 
while that between RS and RD reaches 0.362. These results suggest 
a significant interaction enhancement effect between lithology - 
related curves and porosity - related curves.

Based on the importance of a single feature and the feature 
interaction effect, CNL, RS, and GR are preferred as the key features 

for predicting DT, although the interaction effect of RD with RS 
is also stronger, considering that the same resistivity curve will 
introduce redundant information, the inclusion of RD logging curve 
is not considered. 

4.1.3 Dataset construction
In sequence prediction research, the sliding window method can 

fully utilize the contextual relevance of long sequence data and is the 
core method for constructing training samples. The deep sequence 
data is divided by the sliding window method to construct the 
sample format that meets the input requirements.

As shown in Figure 11, a fixed window length w and step length 
s are used for sample set construction, the input features are CNL, 
RS and GR curves, and the labels are DT curves, and the DT 
values of the next depth point are predicted with consecutive input 
curves (CNL, RS, GR) of length w along the direction of increasing 
depth, and one sample can be constructed within the window for 
each moving step. A total of 11,986 sample sets were systematically 
constructed for model development and evaluation. The dataset 
from wells C21 and GY1 was partitioned into training (80%) and 
validation (20%) subsets, with the former employed for parameter 
optimization and the latter for real-time prediction monitoring and 
overfitting prevention. For independent model assessment, wells 
SYY1 and YX58 were reserved as hold-out test sets to evaluate 
practical application performance. 

4.2 Evaluation metrics

This study employs a comprehensive set of quantitative metrics 
to assess the model’s performance in curve reconstruction tasks. 
Four key evaluation indicators are utilized: Mean Squared Error 
(MSE), Mean Absolute Error (MAE), Coefficient of Determination 
(R2), and Mean Absolute Percentage Error (MAPE). Among 
these metrics, MSE and MAE primarily measure the magnitude 
of absolute deviations between the reconstructed curves and 
their corresponding ground truth values. The former emphasizes 
the overall degree of dispersion, while the latter highlights the 
magnitude of the average deviation. To evaluate the model’s curve-
fitting capability from the perspective of variance interpretation, 
the R2 quantifies how well the reconstructed curves explain the 
variance in the original data. MAPE is a relative error measure 
that eliminates the impact of dimensions. The formula for MSE is 
shown in Equation 10 and the calculations for the other indicators 
are shown in Equations 15–17:

MAE = 1
m

m

∑
i=1
| ̂yi − yi| (15)

R2 = 1−
∑m

i=1
( ̂yi − yi)

2

∑m
i=1
(y− yi)

2
(16)

MAPE = 1
m

m

∑
i=1
|

yi − ̂yi

yi
| × 100% (17)

Where m is the number of samples, yi denotes the true value of 
the ith sample, and ̂yi is the corresponding model prediction.

Lower values of MSE, MAE, and MAPE indicate higher 
reconstruction accuracy, while an R2 value closer to 1 reflects better 
curve-fitting performance. 
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FIGURE 11
Schematic diagram of the sliding window method.

FIGURE 12
Algorithmic process.

4.3 Experimental process

The workflow for reconstructing the DT curve based on the 
model proposed in this paper is shown in the Figure 12. First, 
preprocessing is performed on the collected curves, including 
outlier removal and normalization. Then, the optimized CNL, 
RS, and GR curves are decomposed using VMD. Additionally, 
the DT curve to be predicted also undergoes decomposition. On 
this basis, prediction models are established for each component 
IMF. Finally, all predicted values are superimposed to obtain 
the final reconstructed curve.

4.4 Model training

The experiment was run on Window11 operating system, 
using Python programming language and Tensorflow deep 
learning framework, using a computer configuration of NVIDIA 
RTX 3090 with 16G video memory. The model uses the 
above combination function as the loss function and the 
Adam optimizer, and the individual hyperparameters of the 
experiment are set as follows, with the Batchsize set to 32, the 
initial learning rate set to 0.01, λ set to 0.7, and 64 training
iterations.
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FIGURE 13
Loss function descent plot.

FIGURE 14
Scatterplot of raw and predicted acoustic curve values for SYY1 well.

Figure 13 shows the trend of the loss values of different 
component prediction models after VMD decomposition with the 
number of iterations, and it can be seen that with the increase 

FIGURE 15
Scatterplot of raw and predicted acoustic curve values for YX58 well.

of the number of training times, the loss values of the model are 
decreasing, and gradually converge to a stable state, and finally 
reach the convergence state.
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FIGURE 16
Logging curve of SYY1 well (Tracks from left to right: DT (yellow = VMD-CNN-BiLSTM prediction, blue = measured), CNL, DEN, GR, RD, and RS).

TABLE 1  Evaluation metrics performance of different models on 
the test set.

Model MSE MAE MAPE R2

SVR 64.21 6.33 6.4% 0.31

Random 
Forest

58.60 6.01 6.0% 0.37

LSTM 50.83 5.73 5.7% 0.46

VMD-CNN-
BiLSTM

30.30 4.20 4.1% 0.67

4.5 Application effect analysis

The trained model is applied to two test wells, thus 
demonstrating the practical application effect of the model.

Figures 14, 15 respectively present the scatter plots comparing 
the predicted and measured values of the acoustic time difference 
(DT) for the SYY-1 well and the YX58 well. The scattered points 
are mainly distributed near the 45° diagonal line, indicating a good 
linear consistency between the two. Specifically, for Figure 14 (SYY-
1 well), the coefficient of determination R2 is 0.8783, and the slope 
of the regression equation is 0.8231; for Figure 15 (YX58 well), 
the coefficient of determination R2 is 0.7142, and the slope of the 
regression equation is 0.6354. There is a certain difference in the 
prediction results of the two wells. This is because the similarity of 
the logging curves between the YX58 well and the training well is 
lower than that of the SYY1 well, and at the same time, the formation 
thickness of the YX58 well is much smaller than that of the training 
well (Wu et al., 2024), reflecting the differences in sedimentary 
characteristics. Therefore, the difference in the prediction results 
of the two wells is acceptable. Furthermore, single-well logging 
curves are plotted. In the DT curve track of Figure 16, the blue and 
yellow curves denote the true and predicted values, respectively. 
The results demonstrate that the proposed method achieves accurate 
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FIGURE 17
Comparison of different model prediction results and real logging curve of well YX58.

predictions for the acoustic curves in both wells. Specifically, the 
predicted curve closely follows the overall trend of the true curve, 
effectively capturing its amplitude variations. Furthermore, the 
model reliably reproduces key features, including peak and valley 
positions, indicating strong agreement between predictions and 
ground truth. This indicates that the model can effectively uncover 
the correlations among different logging curves, and learn the 
local undulation characteristics, long-distance variation trends, and 
sequential correlations of the curves. 

4.6 Comparison experiments

To validate the effectiveness of the proposed method, we 
conducted comparative experiments against several conventional 

machine learning approaches, including Support Vector Regression 
(SVR), Random Forest, and standard LSTM models. The 
performance metrics of these models on the validation set are 
presented in Table 1, enabling a comprehensive evaluation of their 
relative strengths and limitations.

From the data in the table, it can be seen that the VMD-CNN-
BiLSTM model shows the optimal performance with MSE of 30.30, 
MAE of 4.20, MAPE of 0.041, and the fitting effect of R2 reaches 
0.67. Compared with the other models, it has reduced the error 
metrics, significantly improved the prediction accuracy, and the best 
reconstruction of acoustic wave curves.

The performance of the models can be further visualized from 
the corresponding test well prediction curve plots (Figure 17), where 
the green curve represents the predicted value and the blue curve 
represents the true labeled value. The SVR model exhibits significant
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deviations from the true curves in both morphological structure 
and absolute values, particularly in high-variability segments 
where prediction errors are most pronounced. While the Random 
Forest model demonstrates measurable improvement over SVR, 
it still shows limitations in capturing fine-scale variations. The 
LSTM model achieves superior performance overall, faithfully 
reconstructing the general trend of true curves across most depth 
intervals. However, its predictive accuracy diminishes in zones of 
rapid curve fluctuation, notably around the 2000 m depth region 
where complex patterns emerge. The VMD-CNN-BiLSTM model 
is the closest to the real labeled curves, and it can reconstruct the 
overall trend of the curves and the local peaks and valleys in the 
whole depth range. The results show that the VMD-CNN-BiLSTM 
model has better application in logging curve reconstruction. 

5 Conclusion

Aiming at the problems of missing and distorted data caused 
by irresistible factors during the acquisition of logging curves, 
this paper applies a VMD-CNN-BiLSTM cascade network model 
for DT reconstruction considering logging curves as a kind of 
depth sequence data, which has a good application in sequence 
prediction tasks. Through comprehensive feature selection, we 
identified CNL, GR, and RS curves as optimal input features due 
to their strong correlation with target variables. The variational 
mode decomposition (VMD) method was employed to decompose 
these curves into intrinsic mode functions. Distinct prediction 
models were then developed for each frequency component, with 
the final reconstruction achieved through superposition of all modal 
predictions.

This method breaks through the limitations of traditional 
feature selection based on linear correlation and point-to-point 
prediction in machine learning. It introduces the XGBoost-SHAP 
method to screen important features in a way that is interpretable, 
and innovatively implements a time series modeling model based 
on feature decomposition. Compared with traditional machine 
learning and simple long short-term memory neural networks, this 
method achieves better reconstruction results. Additionally, this 
method can be extended to reconstruct other well logging curves by 
adjusting parameters, and can also be used to train and predict well 
logging curve for other strata by adjusting the data set. This research 
to some extent can provide certain reference significance for tasks 
such as well logging curve reconstruction or completion.
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