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Ze Li

Shandong Leading Petro-Tech Co., Ltd., Dongying, Shandong, China

In oil and gas exploration and development, logging curves are the key data for
obtaining underground geological information. However, in actual acquisition
processes, problems such as drilling fluid invasion and wellbore collapse often
lead to the absence or distortion of logging data, thereby affecting their
subsequent analysis and application. Well logging curves exhibit clear context-
dependent characteristics. Traditional reconstruction methods are mostly based
on the assumption of independent and identically distributed data and are
difficult to capture the temporal dependencies between data, resulting in limited
accuracy of time series modeling. Therefore, for the shale reservoir in a certain
basin in the northeastern region, this paper introduces a method that combines
variational mode decomposition (VMD), convolutional neural network (CNN),
and bidirectional long short-term memory neural network (BiLSTM) to achieve
high-precision reconstruction of logging acoustic wave signals (DT). The VMD
method decomposes the logging curves into different mode functions (IMF),
achieving the extraction of features at different scales; the CNN method is used
to extract local features such as local morphology and change trends of IMF,
obtaining high-level feature representations; the BiLSTM is used to extract the
bidirectional long-term dependencies of features. By standardizing the logging
data, to avoid the subjectivity of manually selecting the input logging curves, the
XGBoost-SHAP method is introduced to optimize the logging curves, and an DT-
targeted gradient boosting regression model is constructed using XGBoost, and
the SHAP values are used to conduct game theory-based contribution analysis
for each input feature, obtaining the feature ranking based on the cumulative
SHAP contribution. Finally, three sensitive curves, CNL, GR, and RS, are selected
as input features to construct the VMD-CNN-BILSTM prediction model, which
is applied to two test wells, achieving a fitting goodness (R?) of 0.71 and 0.88
respectively. Further comparative experiments have shown that the VMD-CNN-
BiLSTM model has significantly improved performance in terms of MSE, MAE,
MAPE, R?, etc., compared to the SVR, random forest, and LSTM methods. The
MSE has increased by 20.5-33.9, MAE by 1.5-2.1, MAPE by 1.6%-2.3%, and R?
by 0.21-0.36.

variational mode decomposition, convolutional neural networks, logging
curvereconstruction, long short-term memory neural network, acoustic signal
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1 Introduction

In petroleum exploration, logging curves constitute essential
geological data that facilitate for-mation evaluation through
lithology interpretation, reservoir parameter determination, and
seismic inversion processes. Among them, the acoustic logging
curves directly reflect the coupling effect of the elastic modulus
of the rock matrix and the compressibility of the pore fluids by
recording the propagation time of the longitudinal waves in the
formation. They are mainly used in synthetic seismic records,
lithology discrimination, porosity calculation, and rock mechanics
parameter calculation. In the actual logging process, interference
from unfavorable factors such as borehole collapse and instrument
failure can lead to problems such as missing data and distortion of
logging curves (Wang et al., 2020), which increases the difficulty of
subsequent geological work. In view of the high cost of re-logging,
engineering difficulty and other problems (Zhou et al., 2022), how
to carry out logging curve re-construction has become a key link in
the exploration and development of oil and gas reservoirs.

To solve this problem, early researchers mainly used traditional
methods for curve reconstruc-tion, such as empirical formulas
(Chen and Wang, 2005; Yuan et al., 2009), petrophysical modeling
(Lietal, 2016; Zhao et al., 2016), and multiple regression (Yin et al.,
2014; Liao, 2014; Wang et al., 2016). However, in complex geological
formations, logging curves often exhibit intricate nonlinear correla-
tions. Conventional methods fail to adequately characterize these
relationships, leading to poor re-construction accuracy that falls
short of practical application standards.

With the development and application of machine learning,
relevant algorithms have been widely used in the petroleum
field. Machine learning algorithms such as K nearest neighbor
(Aftab etal., 2023), support vector machine, random forest (Ibrahim
and Elkatatny, 2022), and XGBoost (Zhang et al., 2022) have been
widely used in relevant research. These algorithms are able to mine
the complex nonlinear relationship between data, which improves
the reconstruction accuracy to a certain extent. However, the “point-
by-point prediction” paradigm has a fundamental flaw: they treat
time series as independent and identically distributed observation
points, thereby destroying the inherent temporal continuity. For
instance, KNN only relies on numerical similarity and ignores
the context order, making it prone to finding incorrect historical
similar points; Random Forest, through bootstrap sampling and
random feature selection, disrupts the temporal order, and its model
structure cannot jointly maintain or remember long-term temporal
states. Therefore, these methods are difficult to systematically
capture time dependence (Zhou et al., 2025).

Deep learning, as an important branch of machine learning,
provides a new solution for the re-construction of logging curves
(Zhan et al, 2024; LiuD. et al, 2024). Deep learning models
represented by convolutional neural network (CNN) (Zhai et al.,
2023; Gama et al., 2025; Li et al., 2023) and recurrent neural network
(RNN, LSTM) (Zhang et al., 2024; Liu J. et al., 2024; Shang et al,,
2022) have been widely introduced into this field. CNN can
effectively extract the spatial features of the logging data and explore
the correla-tion between different parameters; RNN and its variants
are good at dealing with the time-series da-ta and capture the
information of the logging curve changes with depth, which is
suitable for the re-construction of logging curve.
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We make the following key contributions in this paper:

1. We employed the XGBoost-SHAP method for interpretability-
based feature selection. This method is capable of effectively
extracting the nonlinear relationships between the feature
variables and the target variable, and can also explore
the influence of multi-variable interaction effects on the
prediction outcome.

. We employed a combined loss function that integrates the
soft dynamic time warping loss (Soft-DTW) and the mean
square error loss (MSE). The Soft-DTW is used to measure the
global similarity of the predicted curve and the actual curve,
while the MSE is used to measure the single-point error. The
combination of these two losses is utilized to better balance the
scatter error of the well logging curve points and the overall
trend error.

. We utilize VMD to decompose the input and target curves into
multi-frequency components, build CNN-BiLSTM models for
each component, and superimpose the predicted components
to reconstruct the final curve.

The rest of the paper is organized as follows: Section 2
summarizes the previous work. Section 3 explains the principles
of the algorithms involved. Section 4 involved data preprocessing,
feature selection, sample construction, model training, application
effect analysis, and comparison experiments. Section 5 concludes
the work of this paper.

2 Related works

As fundamental datasets for subsurface characterization, the
quality (completeness and preci-sion) of well logging curves directly
impacts the reliability of reservoir assessment. Traditional em-
pirical formulas and petrophysical modeling methods can make
preliminary estimation of the curve based on statistical laws, but
there are obvious limitations in reconstruction accuracy in the
face of the nonlinear relationship between logging data and its
obvious spatial sequence characteristics under complex geological
conditions.

The application of machine learning algorithms brings a
new technical path for logging curve reconstruction. Kim and
Cho (2024) applied a K-nearest neighbor collaborative filtering
interpolation method for missing logging completion in a district
in Norway, which demonstrated that the collab-orative filtering
method, which is mainly applied to recommender system, can
be better used for the interpolation of missing well logging data.
Zhang et al. (2022) found through comparative experiments that
the XGBoost algorithm has better accuracy and stability in the task
of logging curve reconstruc-tion, showing stronger generalization
ability. Li and Jiang (2025) further analyzed the XGBoost-based
acoustic logging curve reconstruction in combination with the
SHAP algorithm, confirming that fea-ture importance is crucial for
model prediction accuracy. Afifi and Anifowose (2023) investigated
the effectiveness of artificial neural networks, regression trees,
support vector machines, and random forests in predicting acoustic
wave curves. Among them, random forests had the lowest error
rate, and through different feature combinations, it was confirmed
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that only using cable logging data was sufficient to achieve high-
precision predictions. Nero et al. (2023) employed the support
vector machine (SVM), random forest (RF), and extreme gradient
boosting (XGBoost) algorithms to predict the acoustic wave curves
of the Tano basin of Ghana, and confirmed that the generalization
ability of the integrated machine learning algorithms is superior to
that of the non-integrated learning algorithms. Saleh et al. (2025)
examined the effectiveness of six machine learning algorithms,
including random forest, in predicting acoustic logging curves. They
concluded that the accuracy of ensemble models such as random
forest and XGBoost was the highest. Additionally, they emphasized
that feature engineering is crucial for enhancing the performance
of the models. Due to their architectural limitations, tradi-tional
machine learning methods often fail to effectively model long-term
temporal dependencies in datasets.

The rise of deep learning has revolutionized the new paradigm
of logging curve reconstruction. Zhai et al. (2023) used a two-
dimensional convolutional neural network (CNN) and introduced
an at-tention mechanism to strengthen the deep learning network’s
ability to capture the autocorrelation and inter-correlation feature
information of logging curves, and verified the reconstruction
results with high accuracy through synthetic seismic records.
Zhang et al. (2024) used a two-way long-short-term network
method optimized by a particle swarm algorithm for the
reconstruction of The particle swarm method obtains reasonable
hyperparameters for the network and reduces the uncertainty of
manual parameter adjustment, and the model has the ability of
dynamic optimization and adaptive reconstruction in the process
of logging reconstruction, which is applied to Qinshui Ba-sin with
good results. Qu et al. (2025) proposed an interpolation method
based on generative adver-sarial network algorithm for the problem
of incomplete logging data. The application results show that the
proposed method can effectively extract spatio-temporal features
and correlations from log-ging data, and has stable interpolation
capability for logging data with different missing rates and missing
locations.

This study proposes a novel hybrid VMD-CNN-BiLSTM model
for acoustic time-series (DT) re-construction, with experimental
results demonstrating its superior performance.

3 Deep learning method for well
logging acoustic sighal reconstruction

3.1 Variational modal decomposition (VMD)

Variational Mode Decomposition (VMD) was proposed by
Dragomiretskiy and Zosso (2013). It is an adaptive signal processing
method. Different from traditional signal processing methods based
on Fourier transform or wavelet transform, VMD decomposes
complex multi-component signals into multiple Intrinsic Mode
Functions (IMFs) with different central frequencies. These IMFs
have specific physical meanings and excellent properties, enabling
the effective extraction of features from different frequency
components in the signal. As a result, VMD has been widely applied
in the field of signal processing. The VMD method seeks a set
of mode functions through variational optimization. Its objective
function aims to minimize the sum of the bandwidths of all IMFs,
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with the constraint that the sum of all IMFs is equal to the original
signal. The formula is shown in Equations 1, 2:
2
} 1
2
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sty w=f0)
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Where §(t) is the Dirac function, * denotes the convolution
operation, d(t) denotes the derivative with respect to time, j is the
imaginary unit, and f(f) is the original signal, decomposed into
k modal functions u,(t), each of which corresponding to a center
frequency wy.

In this study, the VMD method is used to decompose the logging
curve data into sub-series with different frequencies, which respond
to the overall trend, and local change characteristics of the logging
curve. The high complexity and strong nonlinear characteristics of
this time series can be solved by this processing.

3.2 Convolutional neural network (CNN)

Convolutional Neural Networks (CNNs) represent a class
of deep neural networks characterized by their convolutional
operations, originally developed for and predominantly applied
in computer vision tasks. The core idea of CNN is to utilize
convolutional operation to achieve the extraction of local
features (e.g., edges, textures). Through the stacking of multiple
convolutional layers, CNN can gradually abstract from low-level
features to high-level semantic features, realizing the hierarchical
expression of data features. Compared with the traditional fully
connected neural network, CNN significantly reduces the number
of model parameters through the weight sharing strategy and
effectively avoids the overfitting problem (Wu et al., 2024). In this
study, the well logging curves are presented in a 1D sequence format,
where each data point corresponds to a specific depth. The local
correlation between adjacent depth points (such as the sudden signal
change at the interface between sandstone and mudstone) directly
reflects the subtle geological changes. The 1D-CNN is designed to
scan the 1D well logging sequence using a 1D convolution kernel,
thereby capturing local spatial features. This method is directly
similar to the way two-dimensional convolutional neural networks
capture textures and edges in images.

The core component of CNN is the convolutional layer, which
generates feature maps through convolution operations (Figure 1).
The input data passes through the convolution kernel, and the
mathematical expression is shown in Equation 3:

M-1N-1

Y[ijl= ) Y X[i+m,j+n]-Wlm,n]+b

m=0 n=0

3)

Where M x N denotes the convolution kernel size, W is the
weight, and b is the bias term.

A conventional CNN framework typically comprises three
fundamental components: (1) an input layer for raw image data
reception, (2) a convolutional module containing sequentially
arranged convolutional operations, nonlinear activation units,
and downsampling layers for hierarchical feature extraction and
dimensional reduction, and (3) a fully-connected classifier for final
feature-to-label transformation.
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Schematic of 1D convolutional computation.
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FIGURE 2

Structural diagram of the neural network for long short-term memory.

3.3 Long short-term memory network
(LSTM)

Long Short-Term Memory network (LSTM) is a special kind
of Recurrent Neural Network (RNN) proposed by Hochreiter and
Schmidhuber (1997), the core of which is to solve the problem
of gradient vanishing and explosion encountered by RNN when
dealing with long sequence data. Long Short-Term Memory (LSTM)
networks are suitable for processing temporal data and are widely
used in speech processing and natural language processing. LSTM
controls the flow of information through three gate structures:
forgetting gate, memorizing gate, and output gate (Figure 2).

Oblivion Gate: selectively forgets historical information about
the input. This component receives the information #,_; of the
previous time state and the current input x,, expressed as the formula
is shown in Equation 4:

fi=o(Wy[he_yx] +by) (4)

Where f, is the output information of the forgetting gate, ois the
activation function, Wf is the weight, and b ¢ is the bias.

Input Gate: Controls the addition of current input information
to the memory cell. The update of the information in the memory
cell and the generation of a new memory value is controlled
by an activation function, expressed by the formula is shown in
Equations 5, 6:

i = o(W;- [h_yx] +b;) )
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C,=tanh(W¢ - [h_p,x,] +bc) (6)

Where i, is the output of the input gate, C, is the candidate
memory value at the current moment, and tanh is the
activation function.

Output gate: the output gate selectively filters the composite
information derived from both the memory cell state and
current input features, thereby determining the final output
representation and generating an updated hidden state through
a gating mechanism, which is expressed by Equations 7, 8:

0, = 0(W,-[h_y,x] +b,) (7)

h, = o,- tanh(C,) (8)

Where o, is the output of the output gate and b, is the hidden
state at the current moment.

Memory updating: the memory cell state undergoes dynamic
updating through the coordinated operation of both input and
forget gates, which collectively regulate the incorporation of new
information and the retention of historical context, which is
expressed by Equation 9:

Ci=f-C_+i,-C 9)

In this study, the LSTM’s ability to preserve depth-dependent

dependencies allows it to model geological transitions that are not
apparent from shallow features alone.
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FIGURE 3
Architecture of VMD-CNN-BIiLSTM model.

3.4 VMD-CNN-BIiLSTM model structure

The CNN-BiLSTM model combines the advantages of
convolutional neural network (CNN) and bi-directional long
short-term memory network (BiLSTM) (Redwan et al, 2025).
The hybrid architecture leverages complementary strengths: CNN
demonstrates superior capability in extracting localized temporal
patterns, while the bidirectional LSTM (BiLSTM) effectively
captures long-range dependencies through its dual-directional
processing, enabling comprehensive utilization of inter-strata
contextual information.

In this paper, a VMD-CNN-BiLSTM cascade model is
constructed by combining VMD, CNN, and BiLSTM, and the
model structure is shown in Figure 3. Each VMD component is
independently fed into a CNN-BiLSTM model, whose output is
a subcomponent of the final DT curve; these are then summed
to reconstruct the complete acoustic profile. Specifically, the
VMD method is used to decompose different logging curves
into multiple secondary curves with different frequencies, and
construct the prediction model of logging curves with different

Frontiers in Earth Science

frequencies, for each model, firstly, the secondary logging curves
of the frequency are used as the input of CNN, and after feature
extraction of the local features by CNN, BiLSTM receives the
sequences processed by CNN, and extracts the before-and-after
correlation information of the logging data, and then, the BiLSTM
processed features are input to a fully connected layer to map
to the secondary acoustic curve of the same frequency, and
finally, the secondary acoustic curves obtained from each model
are superimposed to obtain the final acoustic reconstruction
curve.

3.5 Loss function

In this study, a composite loss function combining mean square
error (MSE) and soft dynamic time regularization loss (Soft-
DTW) (Cuturi and Blondel, 2017; Jiang et al., 2022) is used to
balance the optimization objective of local point-by-point error
and global morphological similarity in time series forecasting. The
traditional MSE loss is sensitive to point-by-point errors, but it is

05 frontiersin.org
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Boxplot of logging data distribution after data normalization.
difficult to capture the overall trends and interrelationships of the =~ across temporal data points. The formula is shown in
sequences; Soft-DTW introduces a differentiable approximation  Equation 10:
to the classical dynamic time warping algorithm through X
. . . . R )
continuous relaxation of alignment paths, thereby enabling Lysg = N z U, -y, (10)
i=1

direct integration with neural network training frameworks that
traditional DTW cannot support due to its non-differentiable
nature.

The mean square error (MSE) represents a fundamental
loss metric in regression analysis, quantifying the expected
squared deviation between predicted and observed values

Frontiers in Earth Science

Where y, is the predicted value of the ith data point, y; is the
corresponding true value, and N is the total number of data points.
While MSE offers computational
straightforward gradient computation and stable optimization
convergence, its underlying assumption of temporal independence

advantages including

frontiersin.org
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direct integration with neural network architectures for end-to-
end learning. Soft-DTW transforms the discrete path selection into
RD ‘0.8218 continuous probability distributions based on the softmax function
through the introduction of the smoothing relaxation technique,
DEN 0.9982 making the loss function microscopic. Specifically, a similarity
g P matrix M is constructed between the predicted sequence and the
2 GR . . .
8 ] actual sequence, as shown in Equation 11:
RS 15178
M. =|V.-v.]? 11
CNL 5.482 Y | i~ Yl (1
0 1 2 3 4 5 Where M;; denotes the squared Euclidean distance for the ith
Mean Absolute SHAP Value . .
and jth data points.
FIGURE 7 The accumulation matrix A is then computed by dynamic
Histogram of importance of features. . . X
programming, as shown in Equation 12:

limits its ability to capture sequential dependencies and global
morphological patterns in time-series data.

Soft Dynamic Time Regularization Loss (Soft-DTW), on the
other hand, is an improvement of traditional DTW, aiming
at solving its problem of non-trivial discrete path search. The
conventional DTW algorithm employs dynamic programming to
identify the optimal nonlinear alignment path between temporal
sequences, providing an effective measure of global morphological
similarity. However, its discrete optimization nature precludes
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Ajj=M;;+ log(exp(A,._Lj) + exp(A,.J_l) + exp(Ai_Lj_l)) (12)

Where each element A;; represents a smooth approximation
of the minimum cumulative distance from the starting point
(1,1) to (i,j).

The final Soft-DTW loss is the normalized value of the element
Ay p in the lower right corner of the accumulation matrix, where T
is the length of the sequence. This loss function is insensitive to the
time axis offset and can effectively capture the global characteristics
of the sequence such as trend and period.
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SHAP summary plot (showing the impact and direction of each log feature on DT prediction; color indicates feature magnitude).

The MSE is finally combined with Soft-DTW to construct the
composite loss function, as shown in Equation 13:

Ligtar = ALygsg + (1 =A) - Loy prw (13)

Where A is used to regulate the weights of the two losses as
hyperparameters of the model.

4 Experiment and result analysis
4.1 Experimental data

The data of this experiment comes from the open-source logging
dataset of Xu et al. (2024), which includes four wells, GY1, C21,
SYY1, and YX58, in GL block, and the purpose layer of this
experiment is the QSK layer, and the total depth of the four wells
is about 1,542 m. The logging curves include the natural gamma
(GR), the deep lateral resistivity (RD), the shallow lateral resistivity
(RS), the density (DEN), the neutron (CNL), as input features, and
acoustic time difference curve (DT) as prediction curve, with a
longitudinal sampling rate of 0.125 m.

4.1.1 Data preprocessing

Data standardization process is crucial, the main purpose is to
eliminate the influence of the magnitude of different logging curves
and to ensure the fair contribution of individual logging curve
features to the model results during the model training process. It
helps to improve the prediction accuracy and convergence speed
of the model. The standardization method used this time is the
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min-max normalization method, and the normalization formula
is shown in Equation 14:

Xi = Xmin
X

x= (14)

Xmax = Xmin

Where x and x; are the values of the same data point after
normalization and before normalization, respectively, and x,,,,, and
X in are the maximum and minimum values in the features.

After the data processing, the dimensional differences of each
well logging curve were eliminated, and the input features had a
range of magnitudes of [0,1], while also ensuring the distributional

characteristics of the original data (Figures 4, 5).

4.1.2 Feature selection

The accuracy of logging curve reconstruction directly depends
on the type of input curve, and optimizing the DT-sensitive curve
is the key step. SHAP (SHapleyAdditiveexPlanations), as a powerful
feature interpretation tool, can quantify the degree of each feature’s
contribution to the model output and the interaction effect between
features through the game-theoretic method (Wu etal., 2025). In this
logging curve reconstruction analysis, the correlation of different
logging curves is first evaluated based on the Person correlation
coeflicient, and then the influence mechanism of five logging curve
features on the target variable DT is analyzed through the XGBoost
model combined with the SHAP value, and the sensitive parameters
used for DT prediction are screened by combining the two methods.

The magnitude of linear correlation of different logging
curves was quantified by Person correlation coefficient
analysis, and Figure 6 shows that different logging curves show

different positive and negative correlations with DT curves, CNL
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SHAP interaction heatmap.

has the highest correlation coefficient of 0.83 with DT, followed by
DEN, which has a negative correlation with a coefficient of 0.58,
and the rest of the curves show correlation coeflicients of less than
0.5 with DT.

The multilinear-nonlinear relationship was further explored
by the XGBoost-SHAP method. According to the characteristic
importance plot (Figure 7), the mean absolute value of the SHAP
value of CNL is the highest (5.43), indicating that it has the most
significant influence on the DT prediction, which is consistent
with the geologic law to a certain extent, because the neutron
curve directly reflects the formation porosity characteristics, and
the acoustic time difference is also closely related to the formation
porosity. The significance of RS and GR is the next highest, with
the significance of 1.52 and 1.30, respectively. DEN and RD have
relatively lower importance, 0.99 and 0.82, respectively, probably
because they are more complexly affected by lithology and fluid
properties, and their direct correlation with DT is weaker.

The SHAP summary plot (Figure 8) further reveals the direction
of the relationship between the eigenvalues and the model output.
High values of CNL (red) correspond to positive SHAP values,
indicating that high neutron porosity leads to an increase in the DT
value. High values of RS and GR also had a positive effect on DT,
while DEN showed a negative correlation.

The dependence plot and SHAP interaction effect heatmap
(Figures 9, 10) indicate that there are significant nonlinear
interaction effects among different logging parameters. The
synergistic interaction between CNL and RS demonstrates the
most pronounced effect (interaction strength = 0.408), indicating
their combined influence on DT substantially exceeds the sum of
their individual contributions, revealing a non-additive effect. The
interaction strength between GR and CNL ranks second at 0.367,
while that between RS and RD reaches 0.362. These results suggest
a significant interaction enhancement effect between lithology -
related curves and porosity - related curves.

Based on the importance of a single feature and the feature
interaction effect, CNL, RS, and GR are preferred as the key features
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for predicting DT, although the interaction effect of RD with RS
is also stronger, considering that the same resistivity curve will
introduce redundant information, the inclusion of RD logging curve
is not considered.

4.1.3 Dataset construction

In sequence prediction research, the sliding window method can
fully utilize the contextual relevance of long sequence data and is the
core method for constructing training samples. The deep sequence
data is divided by the sliding window method to construct the
sample format that meets the input requirements.

As shown in Figure 11, a fixed window length w and step length
s are used for sample set construction, the input features are CNL,
RS and GR curves, and the labels are DT curves, and the DT
values of the next depth point are predicted with consecutive input
curves (CNL, RS, GR) of length w along the direction of increasing
depth, and one sample can be constructed within the window for
each moving step. A total of 11,986 sample sets were systematically
constructed for model development and evaluation. The dataset
from wells C21 and GY1 was partitioned into training (80%) and
validation (20%) subsets, with the former employed for parameter
optimization and the latter for real-time prediction monitoring and
overfitting prevention. For independent model assessment, wells
SYY1 and YX58 were reserved as hold-out test sets to evaluate
practical application performance.

4.2 Evaluation metrics

This study employs a comprehensive set of quantitative metrics
to assess the model’s performance in curve reconstruction tasks.
Four key evaluation indicators are utilized: Mean Squared Error
(MSE), Mean Absolute Error (MAE), Coeflicient of Determination
(R?), and Mean Absolute Percentage Error (MAPE). Among
these metrics, MSE and MAE primarily measure the magnitude
of absolute deviations between the reconstructed curves and
their corresponding ground truth values. The former emphasizes
the overall degree of dispersion, while the latter highlights the
magnitude of the average deviation. To evaluate the model’s curve-
fitting capability from the perspective of variance interpretation,
the R? quantifies how well the reconstructed curves explain the
variance in the original data. MAPE is a relative error measure
that eliminates the impact of dimensions. The formula for MSE is
shown in Equation 10 and the calculations for the other indicators
are shown in Equations 15-17:

m
1 .
MAE = _Z|)’i_)’i| (15)
mia

mos Y2
R2:1——‘;10:’ )’1)2 (16)
iZl()")’f)

m — 9.
MAPE = lz’u x 100% (17)
mi3l Vi

Where m is the number of samples, y; denotes the true value of
the ith sample, and y, is the corresponding model prediction.

Lower values of MSE, MAE, and MAPE indicate higher
reconstruction accuracy, while an R* value closer to 1 reflects better
curve-fitting performance.
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Algorithmic process.
4.3 Experimental process 4.4 Model training
The workflow for reconstructing the DT curve based on the The experiment was run on Windowll operating system,

model proposed in this paper is shown in the Figure 12. First,  using Python programming language and Tensorflow deep
preprocessing is performed on the collected curves, including  learning framework, using a computer configuration of NVIDIA
outlier removal and normalization. Then, the optimized CNL, RTX 3090 with 16G video memory. The model uses the
RS, and GR curves are decomposed using VMD. Additionally, — above combination function as the loss function and the
the DT curve to be predicted also undergoes decomposition. On ~ Adam optimizer, and the individual hyperparameters of the
this basis, prediction models are established for each component experiment are set as follows, with the Batchsize set to 32, the
IME. Finally, all predicted values are superimposed to obtain  initial learning rate set to 0.01, A set to 0.7, and 64 training
the final reconstructed curve. iterations.
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Scatterplot of raw and predicted acoustic curve values for SYY1 well. Scatterplot of raw and predicted acoustic curve values for YX58 well.

Figure 13 shows the trend of the loss values of different  of the number of training times, the loss values of the model are
component prediction models after VMD decomposition with the = decreasing, and gradually converge to a stable state, and finally
number of iterations, and it can be seen that with the increase reach the convergence state.
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TABLE 1 Evaluation metrics performance of different models on
the test set.

Model MSE MAE MAPE R2
SVR 64.21 6.33 6.4% 0.31
Random 58.60 6.01 6.0% 0.37
Forest
LSTM 50.83 5.73 5.7% 0.46
VMD-CNN- 30.30 420 4.1% 0.67
BiLSTM

4.5 Application effect analysis

The trained model is applied to two test wells, thus
demonstrating the practical application effect of the model.
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Figures 14, 15 respectively present the scatter plots comparing
the predicted and measured values of the acoustic time difference
(DT) for the SYY-1 well and the YX58 well. The scattered points
are mainly distributed near the 45° diagonal line, indicating a good
linear consistency between the two. Specifically, for Figure 14 (SYY-
1 well), the coefficient of determination R? is 0.8783, and the slope
of the regression equation is 0.8231; for Figure 15 (YX58 well),
the coefficient of determination R? is 0.7142, and the slope of the
regression equation is 0.6354. There is a certain difference in the
prediction results of the two wells. This is because the similarity of
the logging curves between the YX58 well and the training well is
lower than that of the SYY1 well, and at the same time, the formation
thickness of the YX58 well is much smaller than that of the training
well (Wu et al., 2024), reflecting the differences in sedimentary
characteristics. Therefore, the difference in the prediction results
of the two wells is acceptable. Furthermore, single-well logging
curves are plotted. In the DT curve track of Figure 16, the blue and
yellow curves denote the true and predicted values, respectively.
The results demonstrate that the proposed method achieves accurate
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predictions for the acoustic curves in both wells. Specifically, the
predicted curve closely follows the overall trend of the true curve,
effectively capturing its amplitude variations. Furthermore, the
model reliably reproduces key features, including peak and valley
positions, indicating strong agreement between predictions and
ground truth. This indicates that the model can effectively uncover
the correlations among different logging curves, and learn the
local undulation characteristics, long-distance variation trends, and
sequential correlations of the curves.

4.6 Comparison experiments

To validate the effectiveness of the proposed method, we
conducted comparative experiments against several conventional

Frontiers in Earth Science

machine learning approaches, including Support Vector Regression
(SVR), and standard LSTM models. The
performance metrics of these models on the validation set are

Random Forest,

presented in Table 1, enabling a comprehensive evaluation of their
relative strengths and limitations.

From the data in the table, it can be seen that the VMD-CNN-
BiLSTM model shows the optimal performance with MSE of 30.30,
MAE of 4.20, MAPE of 0.041, and the fitting effect of R? reaches
0.67. Compared with the other models, it has reduced the error
metrics, significantly improved the prediction accuracy, and the best
reconstruction of acoustic wave curves.

The performance of the models can be further visualized from
the corresponding test well prediction curve plots (Figure 17), where
the green curve represents the predicted value and the blue curve
represents the true labeled value. The SVR model exhibits significant
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deviations from the true curves in both morphological structure
and absolute values, particularly in high-variability segments
where prediction errors are most pronounced. While the Random
Forest model demonstrates measurable improvement over SVR,
it still shows limitations in capturing fine-scale variations. The
LSTM model achieves superior performance overall, faithfully
reconstructing the general trend of true curves across most depth
intervals. However, its predictive accuracy diminishes in zones of
rapid curve fluctuation, notably around the 2000 m depth region
where complex patterns emerge. The VMD-CNN-BIiLSTM model
is the closest to the real labeled curves, and it can reconstruct the
overall trend of the curves and the local peaks and valleys in the
whole depth range. The results show that the VMD-CNN-BiLSTM
model has better application in logging curve reconstruction.

5 Conclusion

Aiming at the problems of missing and distorted data caused
by irresistible factors during the acquisition of logging curves,
this paper applies a VMD-CNN-BIiLSTM cascade network model
for DT reconstruction considering logging curves as a kind of
depth sequence data, which has a good application in sequence
prediction tasks. Through comprehensive feature selection, we
identified CNL, GR, and RS curves as optimal input features due
to their strong correlation with target variables. The variational
mode decomposition (VMD) method was employed to decompose
these curves into intrinsic mode functions. Distinct prediction
models were then developed for each frequency component, with
the final reconstruction achieved through superposition of all modal
predictions.

This method breaks through the limitations of traditional
feature selection based on linear correlation and point-to-point
prediction in machine learning. It introduces the XGBoost-SHAP
method to screen important features in a way that is interpretable,
and innovatively implements a time series modeling model based
on feature decomposition. Compared with traditional machine
learning and simple long short-term memory neural networks, this
method achieves better reconstruction results. Additionally, this
method can be extended to reconstruct other well logging curves by
adjusting parameters, and can also be used to train and predict well
logging curve for other strata by adjusting the data set. This research
to some extent can provide certain reference significance for tasks
such as well logging curve reconstruction or completion.
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