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Machine learning algorithms have shown excellent results in susceptibility
assessment of debris flow hazards in different areas. These results depend
on selecting control factors that align with the actual conditions of the study
area. Due to the hazard's formation conditions, alpine experience significantly
advanced freeze-thaw erosion, yet current research seldom considers this
as a controlling factor. Consequently, this study selects the northern area
of the Gongjue Basin in the Eastern Tibetan Plateau, where the freeze-thaw
erosion plays a controlled driving force for debris flow. The primary emphasis
is on investigating the influence of freeze-thaw erosion on the debris flow
susceptibility assessment model. To this end, a statistical analysis was performed
on the frequency and overall performance of control factors chosen in relevant
literature on debris flow susceptibility assessment using machine learning.
Control factors with high frequency and performance were selected from
the perspectives of material sources, dynamic conditions, and hydrological
factors, leading to an optimized selection strategy, and the Random Forest
Algorithm was employed for susceptibility assessment (No Freeze-thaw erosion
model, NFEM). Subsequently, the freeze-thaw erosion index, a new control
factor gauging the intensity of freeze-thaw erosion in the study area, was
incorporated, and the susceptibility assessment was also conducted using the
Random Forest Algorithm (Freeze-thaw erosion model, FEM). The results show
that FEM improved accuracy by 0.457 and AUC by 0.0541 compared to NFEM,
indicating enhanced predictive performance. Nevertheless, when comparing
watershed samples, both models demonstrated limited predictive power. In
terms of susceptibility outcomes, FEM yielded more precise assessment results
based on the available data.

KEYWORDS

freeze-thaw erosion, machine learning, debris flow susceptibility, formation conditions,
interpretability

1 Introduction

Debris flow, a common sudden geological hazard in mountainous areas, is characterized
by rapid onset and strong destructiveness. It often causes traffic disruption, damage to

01 frontiersin.org


https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2025.1658837
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2025.1658837&domain=pdf&date_stamp=
2025-08-25
mailto:2967703536@qq.com
mailto:2967703536@qq.com
https://doi.org/10.3389/feart.2025.1658837
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2025.1658837/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1658837/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1658837/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1658837/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Yang et al.

infrastructure, and even casualties, posing a serious threat
to ecological security and human activities in high-altitude
mountainous regions (Guzzetti et al., 1999; Kumar and Sarkar,
2023). In high-altitude cold regions such as the eastern Tibetan
Plateau, freeze-thaw erosion, as a special surficial geological process,
damages the structure of rock and soil through repeated freeze-thaw
cycles, generating a large amount of loose debris and providing a
key material source for debris flows (Huang et al., 2021). However,
in current studies on debris flow susceptibility in this region, the
role of freeze-thaw erosion as a contributor to material sources
is often overlooked, making it difficult for the assessment results
to accurately reflect the particularities of hazards in cold regions.
Therefore, how to incorporate the effect of freeze-thaw erosion
into the evaluation of debris flow susceptibility has become a key
scientific issue for improving the accuracy of geological hazard
assessment in cold regions.

Debris flow susceptibility assessment refers to the spatial
quantitative evaluation of the possibility and difficulty of debris
flow occurrence in different regions within a specific geographical
environment. Its core is to reveal the relationship between “hazard-
pregnant environmental conditions” and “probability of debris flow
occurrence’, and does not directly involve dynamic characteristics
such as the time and scale of disaster occurrence (Kumar and Sarkar,
2023). As a basic link in disaster risk assessment, susceptibility
assessment can provide a scientific basis for territorial spatial
planning and the layout of disaster prevention and mitigation
projects, and has important practical significance for reducing
disaster losses (Guzzetti et al., 1999). In recent years, with the
development of 3S technology and artificial intelligence, debris flow
susceptibility assessment methods have evolved from traditional
models to intelligent ones. Early empirical models (such as
analytic hierarchy process, fuzzy logic) and statistical models (such
as frequency ratio, information value method) rely on manual
assignment or linear assumptions, making it difficult to capture
nonlinear relationships in complex hazard-pregnant environments
(Achour et al.,, 2018; Chen et al., 2015; Wang et al., 2014; Xu et al,,
2013; Zhang et al, 2022). In contrast, machine learning models
(such as logistic regression, support vector machine, random
forest) mine factor correlations through data-driven methods,
showing significant advantages in assessment accuracy and have
become the mainstream method in current research (Behnia
and Blais-Stevens, 2018; Huang et al, 2022; Wu et al, 2019;
Xiong et al., 2020). Existing studies mainly focus on two aspects:
first, selecting the optimal method suitable for specific regions
through multi-model comparison (Di et al, 2019; Gu et al,
2023; Liang et al, 2020; Qing et al, 2020); second, improving
assessment performance by optimizing sample quality, improving
feature factors, or constructing hybrid models (Cao et al., 2023;
Dong and Wu, 2022; Gao et al., 2021; Li et al., 2023; Liang et al,,
2023; Qin et al,, 2022; Zhang et al., 2019).

Although machine learning models are widely used, the
scientific selection of control factors remains a key bottleneck
restricting assessment accuracy. Most existing studies select factors
from conventional dimensions such as topography, geology,
hydrology, and vegetation (Reichenbach et al., 2018; Kumar and
Sarkar, 2023), but generally ignore the impact of region-specific
processes. In high-altitude cold regions, freeze-thaw erosion directly
controls the formation and distribution of debris flows by changing
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the mechanical properties of rock and soil and providing loose
materials (Huang et al., 2021). However, its role is often simplified as
an indirect representation of topographic (such as slope, elevation)
or geological (such as lithology) factors, and has not been included
in the assessment model as an independent control factor. This
simplification makes it difficult for the model to distinguish the
essential differences between freeze-thaw erosion induced debris
flows and other types of debris flows, potentially overestimating or
underestimating disaster risks in key cold-region areas.

To address the above issues, this study takes the northern
part of the Gongjue Basin in the eastern Tibetan Plateau as the
study area (where freeze-thaw erosion is strong and serves as
the main supply mechanism of debris flow materials), focusing
on exploring the impact of freeze-thaw erosion on debris flow
susceptibility assessment. The research ideas include: (1) Through
statistical analysis of literature, screen out high-frequency and
high-efficiency control factors in machine learning assessment,
and construct a basic factor system covering material source,
dynamic, and hydrological conditions; (2) Introduce the freeze-
thaw erosion index (FEI) as a new factor to quantify freeze-thaw
intensity, and construct the “Freeze-thaw Erosion Model (FEM)”
and “No Freeze-thaw Erosion Model (NFEM)” respectively based
on the random forest algorithm; (3) By comparing the assessment
accuracy and susceptibility zoning results of the two models,
reveal the mechanism and necessity of the freeze-thaw erosion
factor. This study aims to provide more accurate methodological
support for debris flow susceptibility assessment in cold regions
and offer guidance for regional disaster prevention and mitigation
engineering construction.

2 Study area and materials

2.1 Study area

The study area is situated in the southeastern part of the
Gongjue Basin, within Gongjue County and Chaya County, Qamdo
City, at geographic coordinates E98°14'to E98°30'and N30°30'to
N31°00’. The altitude varies between 3470 m and 5012 m, and
the terrain undergoes significant changes. The overall terrain is
characterized by high mountains on the northeast and southwest
sides, and a low-lying basin in the central part cut by multiple
rivers. The primary rivers are the Wa River and Ma River, with
Ma River flowing from north to south through the center of the
study area (Figure 1). The exposed strata primarily consist of Triassic
to Jurassic layers and Paleogene strata, predominantly composed of
sandstone, limestone, and mudstone. Intense tectonic activity has
resulted in the significant development of faults and folds in the
region. The main faults include the Kadolado, Chuandehe, Kuoda,
Ladoniuchang, Rijian, and Wenza faults, while the principal folds
are the Ruige and Rannongka synclines.

The study area experiences a continental plateau monsoon
climate, influenced by latitude, elevation, and geographic location.
Temperatures are generally low, with significant diurnal temperature
variations, and soil temperatures are lower than air temperatures,
leading to prolonged periods of permafrost. Consequently, the
moisture content in the soil and rock fluctuates with temperature
changes. During the day, prolonged sunlight and intense radiation
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FIGURE 1
Geographical location and distribution of debris flow points in the study area. (a) Location of Qamdo. (b) Location of study area. (c) Study area.

cause higher temperatures, leading to the melting of moisture
within the soil and rock into liquid form. At night, temperatures
drop, and the soil temperature falls below the freezing point of
water, causing liquid water to freeze into solid ice. Repeated freeze-
thaw cycles cause changes in the volume of water within the soil
and rock, altering their microstructure and mechanical properties,
ultimately leading to deformation and failure (Figures 2a,b). Field
investigations reveal the frequent presence of freeze-thaw eroded
bedrock in various states within the gullies of the study area.
This erosion process supplies abundant material for debris flow
formation.

2.2 Debris flow inventory

A comprehensive and accurate inventory of debris flows is
fundamental for assessing susceptibility. This study establishes a
debris flow inventory by combining remote sensing interpretation
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and engineering geological surveys with a precision of 1:50,000.The
acquisition of images and on-site investigations were completed by
August 2023. Initially, preliminary remote sensing interpretation
was employed to identify watersheds within the study area that
exhibited clear signs of debris flow activity. Those meeting the
following criteria will be initially judged as positive samples: they
present typical debris flow landforms in at least one phase of
satellite images, with fan-shaped deposits at the gully mouths and
clear fan boundaries (showing “fan-shaped radial textures” in the
images), and belt-like or strip-like erosion traces or fresh deposits
formed by recent activities (with significantly different tones from
the surrounding areas) can be seen in the main gullies. This step
involved collecting multi-source, multi-temporal high-resolution
satellite images (The remote sensing images in this study are derived
from https://mapcube.2latcloud.com.cn/, from 2000 to August
2023). Currently, debris flow remote sensing interpretation is mainly
categorized into two methods: automatic recognition based on
high-resolution images and traditional manual visual interpretation.

frontiersin.org


https://doi.org/10.3389/feart.2025.1658837
https://mapcube.21atcloud.com.cn/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Yang et al.

10.3389/feart.2025.1658837

30°50'N

Soil
fragmentation

2 2L
z
23

_Z ' ‘Pf"
e ba e
S
(=3
a K

o7

2

£

=2

2

.S

o v

C 98°20'E
. A
= 7
e AR
= ?;\4

&SNS

98°30'E

3 e— Formation area

»—— Main channel

30°50'N

30°30'N

98°20'E

“®=3Haga
Township £
: 5
f=3
o
{ 5
,elP[LE N
A % A 0 5 10
7 [ —
23 7 | Kilometers
S ) L d
& 5 egen
td Zx
Y E ‘é.: ® Township Watershed
Sir ) s © County [ Debris flow watershed
98°30'E River /= Contrasting watershed

FIGURE 2

Survey situation of the study area. (a) The freeze-thaw erosion process leads to surface exposure. (b) The freeze-thaw erosion process causes cracks in
the topsoil. (c) Distribution of positive and negative samples in the study area. (d) Overview of a typical debris flow watershed.

Automatic recognition, which uses computer vision technology
to identify debris flows through modeling, is more efficient but
less accurate (Bregoli et al., 2015). Manual visual interpretation,
conducted by experts relying on their experience and knowledge,
is less efficient but generally more accurate (Pourghasemi and
Rahmati, 2018). Therefore, we opted for manual visual interpretation
to ensure the accuracy of the results. Subsequently, we verified and
supplemented the preliminary interpretation results through field
investigations, removing watersheds with unclear or uncertain signs
of activity, and supplementing debris flow watersheds that were not
identified by remote sensing interpretation. A watershed was finally
confirmed as a positive sample if obvious signs of debris flow activity
were found in it (such as debris flow deposits, fan-shaped boundaries
formed by the flow rushing out of the gully mouth, scratches or
steep slopes on both sides of the valley mountains, etc.) or if there
were disaster events recorded by local residents. The positive samples
supplemented and confirmed through field investigations include
not only the debris flows that occurred in the past 20 years, which
were initially identified by remote sensing interpretation, but also
older debris flows. They also include watersheds where obvious
signs of debris flow activity can be observed but the occurrence
time is unknown. Based on satellite image analysis and field
investigations, we identified 362 debris flows larger than 0.03 km?
within a rectangular area of approximately 1,540 km?, covering a
total area of 458 km?. Due to the geological and meteorological
conditions in the study area, freeze-thaw erosion is evident in these
debris flow watersheds, providing abundant material sources for
debris flow outbreaks. Hence, they are referred to as freeze-thaw
erosion induced debris flows. The resulting debris flow density was
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calculated as 0.235 per km? (362/1,540 km?), with a debris flow area
percentage of 29.74% (458 km?/1,540 km? x 100%).

Selecting appropriate mapping units is crucial for ensuring the
accuracy and usability of the DFS assessment. Common mapping
units include grid units and watershed units. Grid units are easy
to calculate but do not reflect geological conditions or have a
physical relationship with debris flows (Nefeslioglu et al., 2008;
Zhu et al.,, 2019). Watershed units can fully represent the terrain
and geological conditions relevant to debris flow development
and activity (Liu et al, 2024; Reichenbach et al., 2018). In this
study, watershed units were used as the mapping units, and the
watershed boundaries were delineated using the same methods
of remote sensing interpretation and field investigations employed
in establishing the debris flow inventory. Firstly, high-resolution
remote sensing images were used to identify topographic features
and debris flow accumulation characteristics, and preliminary
watershed boundaries were manually delineated using DEM data.
Subsequently, for areas with uncertain interpretation results such
as topographically complex regions and vegetation-covered areas,
field GPS surveys and verification using UAV aerial surveys
were conducted to revise the boundaries.This method, which
integrates the texture features of remote sensing images with
manual delineation, can avoid the problems of boundary deviation
that ArcGIS is prone to caused by data errors. Meanwhile, by
identifying historical debris flow traces through field investigations,
this method ensures that the watershed units can completely cover
the entire process of disasters from outbreak to accumulation. In
contrast, the automatic extraction by ArcGIS may lead to watershed
fragmentation due to improper settings of confluence thresholds.
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Therefore, this method is more reliable and accurate than the
commonly used method of automatically extracting watersheds with
ArcGIS hydrological analysis tools, and can ensure the continuity of
debris flow events within the watershed units.

To maintain model balance, we generated a certain number of
negative samples in the study. Common methods for generating
1966;
Pourghasemi and Rahmati, 2018) and buffer-controlled sampling

negative samples include random sampling (Melton,

(Schumm, 1956), but neither guarantees sample accuracy. To
overcome this limitation, we also interpreted watersheds where no
debris flow events had occurred during the interpretation process,
conducting field surveys to verify the accuracy. The selection of
negative samples meets the following criteria: in all available remote
sensing images from 2000 to 2022, there are no signs of activities
such as debris flow deposits or gully erosion, and there are no
abrupt changes in vegetation coverage or topographic morphology
within the watershed (e.g., no newly added exposed areas); field
investigations confirm that there are no loose deposits accumulated
in the watershed, no records of historical disasters, and the current
terrain (such as gentle gullies, exposed dense bedrock) does not meet
the basic conditions for debris flow formation. Due to limitations
in satellite imagery and transportation conditions, we ultimately
identified 220 watersheds where no debris flow events had occurred,
which served as negative samples (Figure 2¢). This method provided
us with a set of negative samples that are more representative than
those obtained through random or buffer-controlled sampling. In
the end, we obtained 582 samples, including 362 positive samples
and 220 negative samples, resulting in a ratio of 1.65:1.

3 Methodology

3.1 Selection and analysis of debris flow
controlling factors

3.1.1 Analysis of debris flow control factors in
machine learning

The occurrence of debris flows is a highly complex process
influenced by numerous factors. Currently, there is no standardized
guideline for selecting factors that control debris flow susceptibility.
Most existing studies choose these factors based on data availability,
integrating considerations from topography, geology, hydrology, and
land cover, while also considering the specific geological conditions
of the study area. Through the Web of Science and CNKI databases,
literature published within the 10-year period from 2014 to 2024
was retrieved using the keywords “debris flow susceptibility” and
“machine learning”. All the control factors used in the evaluations
from the included literature were extracted for further analysis.Most
of these studies either use one or more machine learning models to
conduct susceptibility assessments for specific regions, or focus on
improving the performance of machine learning models in debris
flow susceptibility assessment. Regarding the selection of control
factors, most studies focus on optimizing a preliminarily selected set
of control factors based on model results. However, there is a lack of
dedicated research on how to select the initial control factors, and
no unified standards have been formed.

In our analysis of literature on evaluating debris flow
susceptibility using machine learning, we first consolidated
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synonymous or closely related control factors. For example, “Relief”
and “Elevation difference” were grouped as “Relief/Elevation

»

difference”, “Land use” and “Land cover” as “Land cover/use’,
and “Rock hardness” and “Geotechnical type” under “Lithology”
Next, we categorized these control factors into five groups:
topography, geological environment, hydrometeorology, land cover,
and socioeconomic factors. After reclassification, a total of 145
control factors were used in 67 articles, among which 43 factors had
a higher usage rate (>5 times) (Table 1).

As shown in Figure 3, there are 20 control factors related
to topography, nearly equaling the combined total of the other
four categories. Slope was the most frequently used control factor,
appearing 61 times. Other topographic factors used in more than
50% of studies include elevation (44 times), aspect (42 times), and
Re/Ed (41 times). Socioeconomic factors were the least represented,
with only three: Distance to road (23 times), Road density (12 times),
and Population density (8 times). Some scholars classified distance
to road and road density under land cover (Reichenbach et al.,
2018); however, we believe these factors are closely related to
socioeconomic conditions and have categorized them accordingly.
Among geological environment factors, Lithology was the most
frequently used, appearing 40 times, and was the only factor selected
by nearly half of the studies. The next most common factors
were Distance to fault (28 times) and Fault density (13 times).
Common factors for assessing the impact of earthquakes on debris
flow susceptibility include Seismic intensity (6 times) and PGA (5
times). In the hydrometeorological category, mean annual rainfall
was the most frequently used factor (32 times). Other rainfall-
related factors considered include Average rainfall during the rainy
season (10 times) and Maximum 24-h rainfall (7 times). Apart from
rainfall, distance to river (23 times) was also a commonly used
hydrological factor.

In addition to counting the frequency of control factor usage,
we analyzed the importance levels of these factors as reported in
the literature. Since not all studies provided importance rankings
for the control factors, we only analyzed factors that were ranked
more than 10 times to ensure the validity of our results. The results
are shown in Figure 4. Elevation emerged as the most effective
control factor, with an average ranking of three and participation
in 34 rankings. Relief/Elevation difference followed with an average
ranking of 5, appearing in 32 rankings. Relief/Elevation difference is
essentially a secondary measure derived from elevation, indicating
that the top two factors are directly related to elevation, underscoring
its critical role in evaluating debris flow susceptibility across most
study areas. Cpl performed the worst overall, with an average
ranking of 10 across 17 instances. Slope, NDVI, and Aspect were
the most frequently ranked factors, each appearing 36 times with
average rankings of 7, 8, and 8, respectively. Our analysis revealed
significant variability in the importance rankings of all control
factors, indicating that the predictive power of the same factors
varies greatly between study areas, which is likely related to the
unique geological conditions of each area.

3.1.2 Selection of debris flow controlling factors
The appropriate selection of controlling factors is crucial for the
accuracy and reliability of debris flow susceptibility assessments.
Given the minimal spatial variation in rainfall and low seismic
activity in the study area, we have excluded rainfall and seismic

frontiersin.org


https://doi.org/10.3389/feart.2025.1658837
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Yang et al.

TABLE 1 Control factors selected more than 5 times.

Classification

Factors

Abbreviation

Description

10.3389/feart.2025.1658837

References

Topography conditions

Slope N Impact on the occurrence, development, and movement | Lietal. (2022)
scale of debris flows
Elevation H The occurrence of debris flows is influenced by factors Cao et al. (2020)
such as rainfall distribution, vegetation coverage, land
use, and soil moisture
Aspect As Describe the direction in which the slope is exposed to Qiu et al. (2022)
sunlight, wind, and rainfall, which affects the
performance of the slope forming material
Relief/Elevation difference Re/Ed Usually refers to the difference between the maximum Wang et al. (2024)
and minimum elevations within a watershed, or the
height difference between the top and outlet.
Topographic Wetness Index TWI The physical indicators of the impact of regional terrain | Liu et al. (2024)
on runoff direction and accumulation. TWI =
In [SCA/Tan (slope)], where SCA represents the area of
the upstream region through which surface water flows
on a unit length contour line
Profile curvature Cpr Curvature along the direction of maximum slope Pitscheider et al. (2024)
Area A While affecting other geomorphic indicators, it also has Chen et al. (2024a)
an impact on hydrogeological conditions such as
rainfall collection and distribution of loose materials
Plane curvature Cpl Curvature perpendicular to the direction of maximum Lay et al. (2019)
slope
Stream power index SPI Estimate the physical quantities of potential slope Yanting and Yonggang (2023)
erosion caused by water flow. SPI =
In [SCA*Tan(slope)],where SCA has the same meaning
as TWL
Channel gradient Cg The ratio of channel height difference to channel length Liand Lv (2022)
Curvature Cur Combining profile and plane curvature Lv et al. (2023)
Channel length Lc The longer the main channel, the more conducive itisto | Zhao etal. (2020)
increasing water volume and receiving and transporting
more loose debris
Melton ratio Mr The indicator reflecting the topography of a watershed Melton (1966)
was proposed by Melton in 1965
Cut density Cd The ratio of the total length of valleys within the Xu and Wang, (2022)
watershed to the watershed area
Roughness R The ratio of the surface area of a surface unit to its Lietal. (2023)
projected area on the horizontal plane
Drainage Density Dd The ratio of total drainage length to watershed area. The Zhao et al. (2020)
drainage length is usually generated by ArcGIS software
based on a certain flow threshold
Landform La The main types of landforms within the watershed Qin et al. (2022)
Relief Ratio Rr The ratio of watershed elevation difference to watershed Zhou et al. (2022)

long axis length
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TABLE 1 (Continued) Control factors selected more than 5 times.

Classification

Factors

Abbreviation

10.3389/feart.2025.1658837

Description

Reference

Slope area percentage

Sap

The proportion of the area within a certain
slope range in the watershed

Rupert et al. (2008)

Topographic Position Index

TPI

The discrepancy between the elevation of a
specific point and the average elevation
within a designated vicinity

Chen et al. (2024b)

Geological environment conditions

Lithology

Li

The material source basis for the formation
and development of debris flows

Ponziani et al. (2023)

Distance to fault

Df

Faults cause rock fragmentation,
deterioration of mechanical properties, and
contribute to material sources

Zhao et al. (2024)

Seismic intensity

Indicators for measuring the impact and
degree of damage caused by earthquakes on
watersheds

Xiong et al. (2020)

Fault density

Fd

The ratio of total fault length within the
watershed to area

Zhou et al. (2024)

Sediment transport index

STI

The ability of rivers and groundwater to
transport sand particles

Liet al. (2024)

Fault length

Lf

Total fault length within the watershed

Liang et al. (2012)

Geology

Geological age of the watershed

Sun et al. (2022)

Peak ground acceleration

Indicators for measuring the impact and
degree of damage caused by earthquakes on
watersheds

Zhou et al. (2022)

Hydrometeorology conditions

Mean annual rainfall

The most commonly used control factors
for measuring rainfall induced geological
hazards

Chen et al. (2024a)

Distance to river

River erosion and erosion cause softening of
bedrock and soil

Elkadiri et al. (2014)

Average rainfall during rainy season

Arrs

Refers to the rainy season rainfall in the
study area where the watershed is located.
Different research areas result in different

rainy season months

Liu et al. (2018)

River density

Rid

The ratio of total length to area of rivers
within the watershed

Lv et al. (2023)

Maximum 24-h rainfall

24h

The maximum daily rainfall in a watershed
at a certain time scale

Ponziani et al. (2023)

Mean annual temperature

Mat

Temperature indirectly affects the
occurrence of debris flows by influencing
factors such as precipitation, melting of ice
and snow, soil moisture, and vegetation
cover

Dietal. (2019)

Aridity index

An indicator used to measure the degree of
climate dryness, expressed as the ratio of
ground water loss (such as evaporation,
runoff) to water supply

Xiong et al. (2020)
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TABLE 1 (Continued) Control factors selected more than 5 times.

Classification Factors

Distance to road Dro

Abbreviation

10.3389/feart.2025.1658837

Description Reference

Slopes close to the road are easily disturbed by

construction, which affects the stability of the
slope

Ullah et al. (2022)

Socioeconomic conditions

Road density Rod

The ratio of total length to area of roads within
the watershed

Zhou et al. (2024)

Population density Pd

Reflecting the strength of human activities Di et al. (2019)

Normalized difference vegetation index

NDVI

The most commonly used factor reflecting the Pitscheider et al. (2024)
degree of vegetation coverage in the study area.
NDVI=(NIR-R)/(NIR + R), where NIR is the
reflection value in the near-infrared band and

R is the reflection value in the red band

Land cover/use Lc/u

The main land use or land cover types within Ullah et al. (2022)
the watershed are classified as one category for

statistical analysis

Land cover conditions

Soil texture Ste

The combination of mineral particles of Rupert et al. (2008)

different sizes and diameters in soil

Soil type Sty

The outbreak of debris flow is affected by the
influence of material sources and drainage

Xu and Wang (2022)

characteristics

Soil moisture Sm

A physical quantity that represents the degree Di et al. (2019)
of soil dryness and wetness. It is a relative

variable of soil moisture content

triggers from our analysis. Instead, we have focused on the
geological disaster background of the study area for selecting
controlling factors. Debris flow development requires three key
conditions: (1) ample loose debris material; (2) topographic
conditions that promote debris flow occurrence and movement; and
(3) hydrological conditions that supply water. Based on these three
conditions, and in conjunction with the comprehensive analysis of
controlling factors from the previous section, we identified 14 factors
closely related to debris flow occurrences in the study area. Among
them, the controlling factors of the material source conditions are
H, Fd, Li, Distance to large scale folds (DIf), Distance to small scale
folds (Dsf), and Freeze through erosion index (FEI). The control
factors for dynamic conditions are S, Cg, and Mr. The hydrological
conditions are A, Elongation ratio (Er), Dd, NDVI, and Hypometric
Integral (HI). It is important to note that the selected factors show
significant variability in predictive performance, indicating that they
should be tailored to the specific conditions of the study area.
Therefore, our selection is not solely based on the frequency or
predictive performance of the factors. The specific explanations for
the control factors not mentioned in Table 1 are as follows.

Lithology (Li): Lithology is the fundamental source of material
for debris flow formation and development, determining the
strength and deformation characteristics of rock and soil in the
watershed. Based on the lithological features of the study area, we
categorized the major lithological units into five groups: ® Hard
blocky intrusive rocks; @ Moderately hard layered carbonate rocks;
® Moderately hard layered clastic rocks; @ Alternating layers of
hard and soft clastic rocks; ® Quaternary loose sediments.
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Distance to large-scale folds (DIf) and Distance to small-scale
folds (Dsf): Folds represent continuous bending in rock layers due
to stress, altering the original structure and affecting the strength
and stability of the rocks. The study area has highly developed folds,
which significantly impact rock strength. Few studies consider folds
as controlling factors for debris flow susceptibility. Following Zhang
and Wu’s approach (Zhang and Wu, 2019), we used the distance from
folds to the centroid of the watershed as a factor, classifying folds by
length into small-scale (less than 8300 m) and large-scale (greater
than 8300 m) types. The distance to these folds was calculated
accordingly.

Freeze-thaw erosion intensity (FEI): Freeze-thaw erosion is the
dominant erosion process in the study area. Field investigations
show that freeze-thaw erosion on slopes is the primary source of
debris for debris flows in this region. We explored both gradual
underlying factors and catastrophic surface factors contributing to
freeze-thaw erosion and developed a method for estimating freeze-
thaw erosion intensity (FEI) suitable for the Eastern Tibetan Plateau
mountain regions (Huang et al., 2021). The calculation method for
FEI is as follows:

FEI = H x 1 = (0.01871n"%*' A + 10611 tan®7** a - 0.6561G"*"7)?

3/2
x[005221n[)+00111ﬁn2(§)-+05554<(—ll—) —1)
2 3000

2
+O‘1226H] +0.2825K - 0.4077

In this equation: H represents the thickness of the surface humus
layer; n denotes the erosion rate per unit area; A is the catchment
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Control factors selected more than 5 times.

area; G is the shrub cover rate; a indicates the slope gradient; D is
the distance between soil thickness and the core of faults/folds; S is
the slope aspect; L represents elevation; and K is a parameter, where
K =2inlimestone regions and K = I in sandstone-mudstone regions.

Elongation ratio (Er): Introduced by Schumm etal., in 1956
(Schumm, 1956), this ratio compares the diameter of a circle with
the same area as the watershed to the length of the watershed’s major
axis. Values closer to one indicate a more circular watershed, while
lower values suggest an elongated shape. Under similar conditions,
circular watersheds tend to have higher peak discharge at the outlet
compared to elongated ones, as tributaries converge and reach the
outlet in a shorter time span.

Hypsometric Integral (HI): According to Daviss geomorphic
cycle theory, Strahler proposed that the convex, S-shaped, and
concave forms of the area-elevation curve (Hypsometric Curve)
correspond to the youthful (HI > 0.6), mature (0.35<HI < 0.6), and
old stages (HI < 0.35) of landform evolution (Strahler, 1952). HI is
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also closely related to runoff volume. A lower HI indicates a smaller
remaining landform volume within the watershed basin, greater
erosion, and increased runoff.

Based on these three conditions, we selected 14 control factors,
including the proposed Freeze-Thaw Erosion Intensity (FEI), for a
quantitative assessment of freeze-thaw erosion in the study area. To
analyze the impact of FEI on debris flow susceptibility evaluation,
we will establish models that include FEI (Freeze-Thaw Erosion
Model, FEM) and those that exclude FEI (Non-Freeze-Thaw Erosion
Model, NFEM).

The data sources of this study mainly include: (i) SRTM digital
elevation model (DEM) with a resolution of 30 m, used to extract
elevation, slope, channel gradient, melton ratio, area, elongation
ratio, drainage density, and hypsometric Integral; (ii) 1:250,000
geologic maps, used to extract the data on lithology and faults
(The source data can be obtained from the https://geocloud.cgs.gov.
cn/.); (iii) remote sensing images with a resolution of 30 m (images
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from paths/rows of 133/38 and 133/39 of Landsat 8 OLI_TIRS
on 25 August 2020), based on which NDVI values were extracted
using software ENVIL. (iiii) in the FEI factor, A, a, S, and L are the
same as those in (i) and are extracted from the DEM, parameter
D and K is calculated with reference to (ii), and H, n and G are
field-measured data.

3.1.3 Correlation analysis of controlling factors

Redundant parameters and multicollinearity among factors can
lead to model instability. Therefore, it is essential to analyze the
correlations between control factors during the data preprocessing
stage and eliminate factors with a correlation greater than 0.7. We
conducted a correlation analysis on 14 control factors and generated
a heatmap for easier interpretation (Figure 5). The heatmap revealed
that the correlation between the Melton ratio and Channel gradient
was the highest at 0.81, which was the only pair of factors with a
correlation exceeding 0.7, leading us to exclude the Melton ratio.
Consequently, the FEM model included H, Fd, Li, DIf, Dsf, FEI, S,
Cg, A, Er, Dd, NDVI, and HI, while the NFEM model included the
same factors except for FEL.

3.2 Model strategy

In the assessment of debris flow susceptibility, Random Forest
(RF) is a widely used and effective machine learning method (Behnia
and Blais-Stevens, 2018; Si et al., 2020; Zhang and Wu, 2019). RF
is an ensemble learning algorithm based on decision trees, known
for its robustness and accuracy in classification and regression
tasks. Unlike decision trees, which use a greedy algorithm to build
the tree from top to bottom by selecting the best splitting feature
and threshold at each node, RF creates each decision tree using
bootstrapped samples of the training data, with a random selection
of features. This approach ensures diversity among the trees. Each
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tree independently predicts the outcome for test data, and the final
prediction is determined by the majority vote across all trees.

The training process of the Random Forest model can be
summarized in three simple steps: 1) For a training set T with
N samples and M features, randomly select N samples with
replacement to create a training sample D for each tree. The
replacement ensures that D maintains N samples, but not all original
samples are used; 2) When building a decision tree and a node
requires splitting, randomly select m features from the M features
in D, where m < M. The optimal splitting strategy is then applied to
divide the node, with the process continuing until further splitting
is not possible; 3) Repeat steps one to two to build a large number of
decision trees, forming the Random Forest.

The ratio between training and test sets influences the
performance of the Random Forest model. Increasing the size of
the training set generally improves accuracy, but an excessively
large training set may lead to a sparse test set, compromising
the model’s ability to accurately predict debris flow susceptibility.
Most studies adopt a ratio of 7:3 or 8:2. In this study, we used
a 7:3 split. Perform grid search to optimize model parameters.
Analyzing the performance of the two models will help us assess
the impact of freeze-thaw erosion on debris flow susceptibility in the
study area.

3.3 Model performance evaluation method

The performance of the models in this study is primarily
evaluated using a confusion matrix and the receiver operating
characteristic (ROC) curve. The confusion matrix is a fundamental
and straightforward method for assessing classification model
performance.

Several key performance metrics can be derived from the
confusion matrix to quantify the model’s performance across different
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TABLE 2 Confusion matrix.

True class Hypothesized class
Positive Negative

Positive TP FN

Negative FP N

In the table: TP (True Positive) refers to samples that are correctly predicted as the positive
class; FN (False Negative) refers to samples that are incorrectly predicted as the negative
class; FP (False Positive) refers to samples that are incorrectly predicted as the positive class;
TN (True Negative) refers to samples that are correctly predicted as the negative class.

classes, including Accuracy (Acc), Precision, True Positive Rate
(TPR), True Negative Rate (TNR), and False Positive Rate (FPR),
as shown in Table 2.

Acc: Represents the proportion of correctly classified samples
out of the total number of samples. It is calculated as:

TP+ TN

Acc= ——mM8Mm ————
TP+ TN +FP + FN

TPR: Indicates the proportion of actual positive samples that are
correctly predicted as positive by the model. It is calculated as:

TP

TPR= ——
TP +FN

TNR: Indicates the proportion of actual negative samples that
are correctly predicted as negative by the model. It is calculated as:

TN

TNR = ——
TN + FP

FPR: Indicates the proportion of actual negative samples that are
incorrectly predicted as positive by the model. It is calculated as:

FP

FPR= ———
FP+TN

=1-TNR

The ROC curve is a tool used to evaluate the performance
of classification models and is commonly employed in assessing
susceptibility models in machine learning. The curve plots the FPR
on the x-axis and the TPR on the y-axis, based on varying probability
thresholds from 0 to 1. A ROC curve that is closer to the top-
left corner indicates better model performance. The area under the
curve (AUC) is used to determine the model’s accuracy. Higher AUC
values indicate better accuracy, with values between 0.5 and one
considered good (Duan et al., 2023).

4 Results
4.1 Debris flow susceptibility mapping

During the model construction, we trained a 13-factor FEM
that included the FEI as one of the features. This model was
then compared with a 12-factor NFEM that excluded the FEI to
assess the impact of including the FEI on model performance.
The debris flow susceptibility index for each watershed unit in
the study area, as calculated by both models, was classified into
five levels using the Jenks natural breaks method.In FEM, the
classification is: Very Low (0-0.44), Low (0.44-0.56), Medium
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(0.56-0.66), High (0.66-0.75), and Very High (0.75-1). In NFEM,
it is: Very Low (0-0.45), Low (0.45-0.56), Medium (0.56-0.65),
High (0.65-0.75), Very High (0.75-1). These levels correspond to
areas with very low, low, medium, high, and very high susceptibility,
respectively. Figure 6 shows the results. Visually, the susceptibility
distribution patterns generated by the two models show a high
degree of similarity. High and very high susceptibility areas are
mainly distributed along both banks of the rivers, with the very high
susceptibility zones concentrated in the middle reaches of the Wa
River and the lower right bank of the Ma River. Very low and low
susceptibility zones are primarily located near the county town of
Gongjue and Haga Township. The predictive results of both models
align well with field survey data. The primary difference between
the two models lies in the proportion of areas classified as high and
very low susceptibility zones (Figure 7). The FEM model classifies
63.06% of the area into medium, high, and very high susceptibility
zones, while the NFEM model classifies 68.04% into these zones,
indicating that the NFEM model tends to overestimate debris flow
susceptibility across the study area. In our sample, the proportion
of debris flow occurrences is 62.20% (362/582). The proportion of
area classified by the FEM model closely matches this observed
debris flow occurrence ratio. However, this does not necessarily
mean that the FEM outperforms the NFEM, as a close match in area
proportions does not imply higher predictive accuracy. Some debris
flow-prone areas may be classified as very low or low susceptibility,
while areas without debris flow occurrences may be classified as
high or very high susceptibility. Such misclassification can affect the
overall assessment of the models’ performance, necessitating further
analysis to evaluate the predictive accuracy of both models.

4.2 Evaluation of the models

As mentioned earlier, the dataset was divided into training and
test sets in a 7:3 ratio to validate the performance of debris flow
susceptibility models. ACC, TPR, and TNR were calculated for
both models using the training and test datasets (Table 3). These
metrics for the training set assess the models’ fit to the study area,
while the metrics for the test set evaluate their predictive ability.
The results show that the FEM model has higher ACC, TPR, and
TNR values on the training set than the NFEM model, indicating
that FEM better fits the actual conditions of the study area. Both
models exhibit TPR values significantly higher than TNR values,
suggesting that they align more closely with positive samples than
with negative ones in the study area. In the test dataset, the inclusion
of FEI significantly improved the model's ACC value, increasing
from 0.6914 in the NFEM model to 0.7371 in the FEM model,
a gain of 0.0457. The TPR values of the two models are similar,
with NFEM slightly outperforming FEM. However, FEM’s TNR
is substantially higher than that of NFEM, indicating that while
their ability to predict positive samples is comparable, FEM has
a much stronger ability to predict negative samples. However, it
should be noted that both models perform poorly in predicting
negative samples; NFEM has a TNR of just 0.3582, while FEM’s
TNR is only slightly better than random guessing. This issue may
arise from the imbalance in our dataset, where positive samples
significantly outnumber negative ones, leading to reduced model
learning capacity for negative samples. In summary, the FEM better
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Correlations among the 14 factors.

aligns with the actual conditions of the study area, and the inclusion
of FEI effectively enhances the model’s predictive capability.

To present the data in Table 3 more clearly, we visualized a
comparison between the prediction results of the two models
and the historical actual situation (Figure 8). Evidently, the
discrepancies between the prediction results of both models and
the historical actuals for specific watersheds exhibit a striking
similarity. Both models predicted that debris flows had occurred
in some watersheds where no such events had actually taken
place. The core of susceptibility assessment lies in predicting areas
and probabilities of future disasters based on the relationship
between historical disaster characteristics and environmental
conditions. Watersheds with no historical debris flow events might
have been identified by the models as highly susceptible due to
already possessing conditions conducive to debris flows but lacking
triggering factors, or because human activities suppressed the
occurrence of debris flows. The causes behind these false positive
samples warrant attention and will be further analyzed in the
discussion section.

The ROC curve is widely used to evaluate the accuracy of
spatial prediction models. The AUC was calculated for both the
FEM and NFEM models (Figure 9). Both models achieved an AUC
greater than 0.8 on the training dataset, with FEM outperforming
NEFEM. While the AUC values for the training dataset are high,
these values reflect the model’s performance on the training data
and are not indicative of overall model performance. The AUC
on the test dataset better represents model efficacy. NFEM’s test
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dataset AUC was 0.6866, indicating poor predictive performance.
In contrast, FEM’s AUC increased by approximately 0.06, reaching
0.7407, which is above 0.7, making FEM the better predictive model.
This demonstrates that incorporating freeze-thaw erosion intensity
as a control factor significantly enhances the accuracy of debris flow
susceptibility assessments, aligning better with the regional disaster
background.

4.3 The importance of controlling factors

The Random Forest model assesses feature importance based on
their contribution to the decision tree construction process. This
method has the advantages of considering multiple decision trees,
being unaffected by feature correlations, and accurately evaluating
each feature’s independent contribution. Figure 10 illustrates the
factor contribution rates for the FEM and NFEM models. The
FEI showed an importance of 7.7%, ranking fifth in the FEM
model, indicating a good level of importance. In the NFEM model,
excluding FEI, the importance of slope and elevation significantly
increased, while factors with high or low importance showed no
substantial changes.

Regardless of whether FEI is considered, the importance of
Cg, DIf, NDVI, and A is significantly greater than other factors,
indicating that these four factors play a critical role in controlling
debris flow susceptibility. Cg represents the basic morphological
index of the watershed; a higher channel gradient generally increases
water velocity and scouring capacity, making loose materials like
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TABLE 3 Confusion matrix of FEM and NFEM.

FEM

Evaluation index

Training data set

Test data set

10.3389/feart.2025.1658837

NFEM

Training data set Test data set

TP 238 97 236 97
Fp 63 32 74 43
N 93 32 79 24
FN 13 14 18 11
ACC 0.8133 0.7371 0.7740 0.6914
TPR 0.9482 0.8739 0.9291 0.8981
TNR 0.5962 0.5 0.5163 0.3582
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rock and soil more prone to erosion and transport, thus increasing
the likelihood of debris flows. DIf measures the impact of folding
on debris flow susceptibility; the presence of folds usually indicates
intense and unstable tectonic movements, leading to significant
changes in rock strata, the development of joints and fissures, and
the weathering of fragmented rocks, all of which provide material
conditions for debris flow outbreaks. NDVI is a commonly used
factor for assessing vegetation cover in the study area; vegetation
helps slow water flow and absorb rainwater, reducing the impact
of water flow during heavy rains. Additionally, vegetation roots
help stabilize the soil. An increase in A contributes to more runoff,
affecting the occurrence of debris flows. The least important factors
in both models are Li and Fd, likely because these control factors
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are too concentrated in distribution. Most of the watersheds in
the area are composed of relatively hard, layered clastic rocks (492
watersheds), with little variation in lithology. Additionally, in 478 out
of 582 watersheds, there are no faults, resulting in a fracture density
of 0. The overall small differences in these two control factors lead to
overly concentrated data, which fails to provide useful information
for the model, resulting in their low importance.

5 Discussion

The
insights into freeze-thaw erosion-induced debris flows within

debris flow susceptibility mapping provided new
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the study area. Our primary focus was on the reliability of downstream channels (Figure 11b), which are unfavorable for
susceptibility mapping that only considers the regional disaster debris flow development.Although such terrain restricts the
background without including triggering factors, and the change movement of debris flows, it also causes a large amount
in model prediction accuracy after incorporating the FEL of loose materials to accumulate in the upstream channel.
Based on the results, five key points merit discussion: (1) Under certain triggering factors, the possibility of debris flow
the causes of false positive samples; (2) the preparation of outbreaks is high, so it is judged as highly susceptible by
machine learning datasets; (3) the selection of control factors; the models.
(4) the importance of control factors and model accuracy; 2. Some watersheds exhibit significant human activities, such
(5) the mechanism analysis on the improvement of model as villages, roads, and agricultural fields (Figures 11b,c). The
performance by FEI existence of human activities has led to certain engineering
modifications in the watershed, temporarily suppressing
the occurrence of debris flows. However, as artificially
5.1 Causes of false positive samples planted vegetation degenerates or engineering works age,
the inhibitory effect may be lost in the future. In fact,
The random forest model does not provide a clear process the models’ prediction of high susceptibility indicates
for making predictions like the decision tree algorithm does potential risks.
(Wu et al., 2024). Therefore, analyzing the causes of false positive 3. The FEI control factor we introduced is directly related to the

samples predicted by the two models requires returning to
the data itself for analysis. Thus, we selected the watersheds
identified as false positives by both models, as shown in Figure 8,
for further analysis. We identified three main reasons for
these errors:

1. The channel acts as a transport pathway for debris flows, and its
morphology significantly influences debris flow development.
In both models, channel gradient is identified as the most
important factor. We found that watersheds with false positive
samples generally have larger areas and longer channel lengths.
Above the mountain outlets, the channel gradients show
significant variability, exhibiting a “steep-gentle” transition
(Figure 11a), which facilitates the accumulation of loose
materials at these transitional terrains. Downstream of the
mountain outlets, the channel gradients are very gentle,
resulting in poor transport capacity. Additionally, we observed
that these watersheds often have meandering and irregular
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thickness of the surface humus layer. In these watersheds, the
layer is quite thin (Figure 11d), and the freeze-thaw erosion is
relatively weak, leading to limited sources of loose materials
in the current watersheds, so no debris flows have occurred.
However, over time, repeated freeze-thaw erosion will break
the rock and soil mass, making the possibility of debris flow
outbreaks high.

5.2 Preparation of machine learning
dataset

Currently, researchers are more focused on obtaining positive
samples when preparing machine learning datasets. Negative
samples are typically selected randomly, which, while effective in
most cases, risks including unidentified actual debris flow samples,
potentially skewing the classification of positive samples. Therefore,
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FIGURE 10
The contribution rate level of factors given by the random forest model.

we used the same method for selecting negative samples as for
positive ones. However, due to constraints, the number of negative
samples we obtained was much smaller than that of positive samples,
leading to the model’s poor learning ability for negative samples.
Nonetheless, both models still achieved high accuracy, which can be
attributed to their excellent predictive power for positive samples.
These results suggest that the debris flow dataset we developed
is representative and can be considered a reliable tool for debris
flow susceptibility assessment. However, in future research, we
plan to address the imbalance in positive and negative samples
by expanding the study area and acquiring higher-resolution
satellite images.

5.3 Selection of control factors

There is no standardized guideline for selecting control factors
in debris flow susceptibility assessments using machine learning.
However, a general consensus has emerged: control factors should
be chosen by considering both the fundamental mechanisms
of debris flow and the specific conditions of the study area.
Reichenbach et al. (Reichenbach et al., 2018) colleagues conducted a
critical review of 565 articles on landslide susceptibility assessments
published between 1983 and 2016. These studies included various
landslide types, such as “debris flows” and “mudflows”. They found
that most studies used factors related to terrain morphology, with
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® FEM
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researchers preferring simple and straightforward parameters like
elevation, relief, slope, aspect, and curvature. We also analyzed
control factors, but our study focused explicitly on the topics
of “debris flow” and “machine learning”, which led to a smaller
number of articles compared to Reichenbach’s review. Our analysis
is largely consistent with their findings. Terrain-related factors are
the most commonly used, with researchers favoring simple and
direct control factors such as elevation, slope, and aspect. These
simple control factors can be easily derived from Digital Elevation
Models (DEM) using modern Geographic Information Systems
(GIS). More complex factors, such as the TWT and roughness, have
also proven effective in susceptibility assessments. However, these
complex terrain factors are typically derived from simple factors
like elevation, slope, and area through mathematical processing.
It remains unclear whether using both simple factors and the
complex factors derived from them simultaneously in susceptibility
assessments affects model performance or the importance of
control factors. Current control factor selection tends to focus on
analyzing correlations between factors from a data perspective,
with less emphasis on their physical meaning or influence on
debris flow. Thus, developing a standard for selecting control factors
with minimal statistical and physical correlation remains a topic
requiring further research.

Expert judgment is essential when selecting factors, making
it crucial to consider the geological conditions of the study area.
An analysis of common factors shows that the same factor may
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FIGURE 11

Analysis of the causes of error in the watershed. (a) The variation of the longitudinal gradient of the main channel in the watershed. (b) Channel
curvature and human engineering activities. (c) Human engineering activities. (d) Thin thickness of the cover layer.
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behave very differently across regions with varying geological
backgrounds. In selecting factors, we accounted for the significant
freeze-thaw erosion that fractures the rock and soil in our study
area by introducing a method for quantitatively estimating freeze-
thaw erosion intensity. Di et al. (2019), in assessing debris flow
susceptibility in Sichuan Province, introduced freeze-thaw erosion
intensity as a factor, categorizing it into four levels: Very low,
Low, Moderate, and High. Compared to qualitative assessments,
our quantitative approach is more specific and intuitive. When
assessing debris flow susceptibility in cold mountainous regions,
freeze-thaw erosion, in addition to wind and water erosion, cannot
be overlooked.

5.4 The importance of control factors and
model accuracy

A comprehensive analysis of model accuracy and factor
importance revealed that freeze-thaw erosion plays a critical
role in controlling debris flow susceptibility in the study area.
Research by Zhang and Wu (2019) demonstrated that key control

Frontiers in Earth Science

factors determine a model’s baseline predictive ability. Removing
important factors leads to an irreversible decline in predictive
performance, while removing unimportant factors can improve
the model. After removing FEI, our model’s accuracy dropped
by 0.457, and the AUC decreased by 0.0541. FEI is one of
the key control factors that determine the model’s baseline
predictive ability. The ranking of original control factors did
not change significantly, indicating that debris flow occurrence
in the study area is strongly related to factors such as Cg,
DIf, NDVI, and area. The low contribution of fracture density
and lithology is primarily due to the limited amount of useful
information these factors provide; the model can hardly extract
effective susceptibility-related data from fracture density and rock
group types.

Models that account for freeze-thaw erosion have achieved
high accuracy and predictive performance. However, there is a
significant difference in AUC values between the training set and
test set for the FEM, indicating certain limitations in the model’s
generalization ability. Such a gap is common in machine learning
applications for geological hazard assessment with small samples
and high heterogeneity. We attribute this discrepancy in the FEM to
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The controlling factors. (a) H, (b) Fd, (c) Li, (d) Df, (e) Dsf, (f) FEI, (g) S, (h) Cg, (i) Mr, (j) A, (k) Er, () Dd, (m) NDVI, (n) HI.

three reasons. First, since we randomly split the entire dataset into
training and test sets at a 7:3 ratio, the small sample size of the test set
may fail to fully represent the overall geological condition variability
of the study area. Second, although the random forest model has

Frontiers in Earth Science

a certain effect in suppressing overfitting, it may still overfit when

“local features” exist in the test set, and the insufficient number of

negative samples leads to inadequate learning of negative sample

features. Third, the complex terrain of the study area, along with
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significant spatial variations in factors such as freeze-thaw erosion
intensity and vegetation coverage, further affect the prediction
accuracy. To address these three issues, future efforts can expand
the sample size by enlarging the study area and divide samples
proportionally according to factor distributions, ensuring that the
training and test sets have more consistent factor distributions and
reducing distribution bias. We will continue research and conduct
field surveys to expand the sample size to improve this situation.

In summary, the AUC gap between the training set and
test set reflects the typical challenges in model evaluation for
small-sample, high-heterogeneity regions, with the core reason
being a mismatch between data distribution differences and
model generalization ability. While this phenomenon does not
negate the superiority of the FEM model, it reminds us that in
practical applications, we should focus on “high susceptibility
- historically no disaster” areas in combination with field
verification and avoid directly relying on model results for
decision-making.

5.5 Mechanism analysis on the
improvement of model performance by FEI

The significant improvement in model performance after
introducing FEI in this study is no coincidence. It is determined
by the physical meaning of FEI, the geological background of
the study area, and its in-depth connection with the debris flow
formation mechanism, which can be elaborated from the following
two aspects.

5.5.1 FEIl accurately reflects the unique material
supply mechanism in the study area

The study area is located in the high-altitude region of the
eastern Tibetan Plateau, where the temperature difference between
day and night is large and permafrost is well-developed. Freeze-
thaw cycles are the dominant process for the fragmentation
of rock and soil masses (Figures2a,b). Field investigations
have confirmed that the loose debris material generated by
freeze-thaw erosion is the most important material source for
debris flows. By quantifying factors such as the thickness of
surface humus, slope, and elevation, FEI directly characterizes
the damage intensity of freeze-thaw action on rock and soil
masses. A comparison between the distribution of debris flow
watersheds in the study area (Figure 2¢) and the FEI values of
each watershed (Figure 12f) reveals that areas with high FEI
values (such as the middle reaches of the Wa River) correspond
to surface lithological fracture zones caused by frequent freeze-
thaw, where there are sufficient reserves of loose debris material,
highly consistent with the areas with high incidence of debris flows.
In areas with low FEI values (such as the vicinity of Gongjue
County), freeze-thaw action is weak, the rock and soil masses
are highly intact, and material sources are scarce, resulting in
a low incidence of debris flows. In contrast, the NFEM model
only relies on conventional factors such as slope and lithology,
and cannot identify the phenomenon of high content of loose
debris material in the watershed caused by freeze-thaw erosion,
leading to misjudgments by the model.
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5.5.2 FEI makes up for the neglect of
freeze-thaw-hydrological coupling processes by
conventional factors

The formation of debris flows requires the synergistic effect
of material sources, dynamic forces, and hydrological conditions.
Freeze-thaw erosion not only provides material sources but also
affects hydrological responses by changing the permeability of rock
and soil masses: fractures generated by freeze-thaw can enhance the
infiltration capacity of surface water, accelerating the saturation rate
of loose debris material, which are thus more likely to be mobilized
by water flow. Factors such as slope aspect and shrub coverage
included in FEI indirectly reflect the impact of solar radiation
intensity on freeze-thaw frequency and the role of vegetation
in soil and water conservation, thereby quantifying the coupling
relationship between material supply and hydrological dynamics.
This explains why the predictive ability of FEM for negative samples
is significantly higher than that of NFEM. For areas with steep slopes
but low FEI values (such as shady slopes with dense vegetation),
FEI can identify the dual inhibitory effects of insufficient loose
debris material and soil consolidation by vegetation on debris flow
outbreaks, avoiding misjudgments.

In summary, the inclusion of FEI is not simply the addition
of a variable. Instead, by accurately characterizing the dominant
freeze-thaw erosion processes in the study area, it fills the gap
in the adaptability of conventional factors to special geological
environments, making the model more consistent with the physical
mechanisms of regional disaster formation and thus achieving better
predictive performance. This result confirms that in high-altitude
mountainous areas with significant freeze-thaw effects, the freeze-
thaw erosion factor should serve as a core controlling factor in the
assessment of debris flow susceptibility.

6 Conclusion

Our study on the susceptibility of freeze-thaw erosion induced
debris flow in the east of Tibetan Plateau has led to the following
main conclusions.

1. When evaluating the predictive ability of control factors, the
variability in their statistical importance was significant. This
indicates substantial differences in the contribution levels of
different control factors across various models, which is likely
due to the distinct geological conditions of different study
areas. Elevation was the highest-ranked factor on average
and exhibited the least variability, suggesting that elevation
is strongly associated with debris flow occurrences in the
majority of study areas.

2. In evaluating the susceptibility to debris flows using
machine learning, we propose a new factor selection strategy
consisting of two steps. The first step involves identifying
key controlling factors by considering three conditions
that contribute to debris flow development: material source
conditions, dynamic conditions, and hydrological conditions.
These factors are selected based on their high occurrence
and strong performance in existing machine learning
susceptibility evaluation models. The second step introduces
critical controlling factors into the model, informed by
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the mechanisms of debris flow formation. In this study,
we consider the freeze-thaw erosion intensity as a crucial
controlling factor for freeze-thaw erosion induced debris flow,
as it governs the material source for these flows and affects the
frequency, triggering conditions, and scale of the disasters. This
new factor selection strategy offers significant advantages by
ensuring the accessibility of controlling factors while aligning
with the actual geological conditions of the study area, thereby
enhancing the interpretability of the assessment results.

. The accuracy of FEM considering freeze-thaw erosion is
0.7371, and the AUC value is 0.7407, which is higher than
NFEM’s 0.6914 and 0.6866. The proportion of areas classified
as “high” and “medium” susceptibility decreased, resulting in
predictions that better aligned with the actual distribution of
debris flows. Therefore, we conclude that freeze-thaw erosion
plays a crucial role in assessing debris flow susceptibility in the
study area and should be taken into account.
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