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Uncertainty-quantified 3D 
ambient noise tomography using 
transdimensional Monte Carlo 
inversion

Yi Liu, Bo Wang*, Daoheng Ying, Lingzhi Zhu, Jun Wang and 
Tuo Zhao

School of Civil Engineering, Jilin Jianzhu University, Changchun, China

Traditional two-step surface-wave tomography often yields discontinuous 
models and compound uncertainty. We present the first fully 3-D 
transdimensional Bayesian inversion with adaptive Voronoi parameterization 
and reversible-jump MCMC for near-surface engineering-scale arrays, providing 
voxel-level uncertainty estimates. From 1 week of ambient-noise records 
acquired by a 101-station linear array (120 m spacing) across the F1 fault zone, 
we extracted phase velocities via frequency–wavenumber analysis of Rayleigh 
waves (0.5–3 s). The resulting 3-D Vs. model reveals (i) 300–800 m s-1 in the 
upper 50 m, (ii) 2.1 ± 0.05 km s-1 at 0–1 km, (iii) 2.6–2.9 ± 0.08 km s-1 at 1–3 km, 
and (iv) 2.8–3.1 ± 0.12 km s-1 at 3–5 km beneath the fault trace. Voxel-wise 1σ 
uncertainties range from <5% in the shallowest 2 km to 12% at 5 km depth. These 
Vs. values and their uncertainties can be directly converted to engineering 
mechanical parameters: shear modulus G = ρVs2, Young’s modulus E = 2G 
(1+ν), and Poisson’s ratio ν, enabling quantitative assessment of excavation 
stability, tunnel lining design, and slope stability across the F1 fault zone. The 
3-D Bayesian framework mitigates over-fitting biases inherent in sequential 
inversions and offers critical, uncertainty-aware constraints for multi-stage 
tectonic reconstruction of the North China Craton destruction belt.

KEYWORDS

Bayesian Monte Carlo inversion, 3D ambient noise tomography, shear-wave, velocity 
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 1 Introduction

Seismic tomography serves as a fundamental technique for developing 3D 
models of Earth’s interior structure. Contemporary approaches predominantly 
utilize surface waves for imaging purposes. These seismic waves propagate along 
crustal boundaries where abrupt changes in physical properties commonly occur, 
with their oscillation depths being frequency-dependent (Aki and Richards, 1980). 
The dispersive nature of surface waves manifests through distinct propagation 
velocities at different frequencies, each velocity corresponding to specific 
subsurface depth sensitivities. This dispersion characteristic enables multi-scale
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tomographic investigations through velocity measurements, 
including regional-scale analyses (Curtis et al., 1998).

Early research consistently found that the irregular distribution 
of seismic sources and receiving stations restricted model accuracy, 
particularly in poorly sampled regions. However, the advent of 
ambient noise interferometry has dramatically expanded both 
the volume and spatial coverage of available surface wave data. 
Theoretically, cross-correlating ambient noise recorded at two 
receiver locations yields the Green’s function between them 
(Wapenaar, 2004; Wapenaar and Fokkema, 2006). Obtaining these 
empirical Green’s functions allows for probing subsurface structures 
(Shapiro and Campillo, 2004). This method is now widely applied 
to investigate crustal and upper mantle architecture at regional 
scales, as well as near-surface features within the upper crust 
(Allmark et al., 2018; Han et al., 2022).

Seismic surface wave inversion is commonly addressed through 
a sequential approach (Galetti et al., 2017): first, reconstructing two-
dimensional (2D) maps of phase or group velocity distributions, 
followed by converting these results into a three-dimensional 
(3D) velocity model via pointwise one-dimensional (1D) depth 
inversions. The first stage, involving the solution of a 2D 
tomographic problem, typically employs linearized methods that 
minimize data misfit and incorporate regularization constraints. 
However, regularization parameters are often chosen subjectively, 
which risks filtering out meaningful signals and compromising 
result reliability. Consequently, errors and uncertainties in 
the 2D velocity field may propagate into the subsequent 
1D inversions, distorting the final structural interpretation
(Young et al., 2013).

To address these limitations, researchers have turned to 
nonlinear inversion techniques utilizing Markov Chain Monte 
Carlo (MCMC) sampling for seismic tomography (Mosegaard 
and Tarantola, 1995). MCMC encompasses a class of methods 
designed to generate samples from complex probability distributions 
(Mosegaard and Tarantola, 1995; Metropolis and Ulam, 1949; 
Hastings, 1970; Sivia, 1996; Malinverno et al., 2000; Malinverno, 
2002; Malinverno and Briggs, 2004). Within this framework, 
the reversible jump algorithm (Green, 1995; Green and Hastie, 
2009) has become a standard tool in seismic imaging due to its 
trans-dimensional capability—allowing the model’s parameter 
space to evolve adaptively during inversion (Hawkins and 
Sambridge, 2015; Piana et al., 2015; Burdick and Lekić, 2017; 
Galetti and Curtis, 2018). Such approaches dynamically update 
model parameterizations by integrating prior knowledge with 
observational data. Applications include phase/group velocity 
mapping of crustal features (Zulfakriza et al., 2014; Galetti et al., 
2015) and the derivation of 3D shear-wave velocity models through 
sequential depth inversion (Galetti et al., 2017; Young et al., 2013).

The F1 fault—the easternmost margin of the North China 
Craton destruction belt—lies only 3–8 km south of rapidly 
expanding Changchun, where subway Lines 1-3 and high-rise 
clusters are under construction. Historic M ≥ 5 earthquakes and 
ongoing 3–5 km micro-seismicity, coupled with surface rupture of 
Quaternary strata, pose clear seismic and displacement hazards. 
High-resolution, uncertainty-aware 3-D Vs. models are therefore 
critical for urban site-response assessment, subway and foundation 
stability, and compliance with Chinese seismic design codes, linking 
fundamental tectonics to urgent engineering needs.

Beyond seismic imaging, the derived Vs. distribution can 
be quantitatively linked to engineering mechanical parameters 
through well-established elastic relationships. For example, the 
shear modulus G = ρVs2 and Young’s modulus E = 2G (1+ν) 
can be computed when density (ρ) and Poisson’s ratio (ν) 
are constrained. These parameters are essential for evaluating 
excavation stability in tunneling and mining projects, designing 
safe and efficient foundations, and assessing the mechanical 
response of fault zones to natural or anthropogenic loading. 
In principle: For excavation stability, G reflects rock shear 
resistance (higher G means lower collapse risk, reducing support 
demands) and E indicates stiffness (higher E allows more efficient 
excavation); for foundation design, E determines load-bearing 
capacity (higher E supports shallow, low-cost foundations) and 
G ensures shear resistance against extreme loads; for fault zone 
mechanical response, G governs slip/deformation tendency (lower 
G increases slip risk under natural/anthropogenic loads) and E 
defines deformation range, guiding hazard mitigation. Integrating 
such rock-mechanical derivations with the velocity models obtained 
here provides actionable information for engineering decision-
making, in line with physically constrained frameworks that 
map geophysical data to petrophysical and mechanical properties 
(Zhan et al., 2024; Luo et al., 2025).

Seismic tomography uses surface waves to study the Earth’s 
internal structure. Surface waves are dispersive, with velocities 
varying by frequency, and are sensitive to different depths, 
enabling imaging at various scales. Early methods were limited 
by uneven source and station distribution, but ambient noise 
interferometry has enhanced data coverage by retrieving Green’s 
functions via cross-correlation, enabling detailed upper-mantle, 
crustal, and near-surface structure studies. The traditional two-
step inversion method—first inverting 2D velocity maps, then 
performing 1D depth inversions—faces challenges, as empirical 
regularization in the first step can suppress valuable data, leading 
to biases in the second step. To address this, MCMC-based 
nonlinear inversion methods, including the trans-dimensional 
reversible jump MCMC algorithm, were introduced, dynamically 
adapting model parameterizations for more accurate imaging. 
Despite these advancements, the two-step method still introduces 
biases, prompting Zhang et al. (2018) to propose a direct 3D Monte 
Carlo method that inverts traveltime measurements in one step, 
offering better error estimates. This study applies the 3D Monte 
Carlo method to dense station arrays and compares it with the 1D 
Monte Carlo approach. 

2 RJMCMC theoretical model and 
formulas

2.1 Bayesian nonparametric methods

The RJMCMC method, initially introduced by Green (1995), 
provides a solution for statistical inference involving variable-
dimensional parameter spaces - a class of problems commonly 
known as trans-dimensional. Such challenges are prevalent in 
statistical modeling, including variable selection in regression, 
object recognition, and Bayesian nonparametric methods (Green, 
1995). RJMCMC enables joint inference over a model indicator 
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k∈K (where K  K is a countable set of candidate models) and a 
model-specific parameter vector θk∈Xk⊂Rnk, where nk denotes the 
dimension of θk and varies with k.

Within a Bayesian framework, the objective is to sample from the 
joint posterior probability distribution π(k,θk∣Y), conditional on the 
observed data Y. The posterior is defined as:

π(k,θk ∣ Y) =
p(k,θk)L(Y ∣ k,θk)

∑
k′∈k
∫p(k′,θ′k′)L(Y ∣ k

′,θ′k′)dθ′k′

where p (k,θk) = p(k)p (θk∣k) represents the joint prior distribution, 
with p(k) as the prior over models and p (θk∣k) as the prior over 
parameters given the model k, and L (Y ∣k, θk) is the likelihood 
function. The posterior can be factorized as:

π(k,θk ∣ Y) = π(k ∣ Y)π(θk ∣ k,Y)

where π(k∣Y) is the marginal posterior probability of model k, and 
π(θk∣k,Y) is the conditional posterior distribution of the parameters 
given the model. 

2.2 RJMCMC theoretical model

The RJMCMC method functions as a formidable statistical 
tool designed to address scenarios where the number of unknown 
factors in a model varies, making it ideal for problems where the 
model structure itself is uncertain. This approach operates within 
a Bayesian framework, aiming to identify the most suitable model 
and its associated parameters based on observed data. For instance, 
when analyzing data and needing to choose between a simple 
one-parameter model or a more complex two-parameter model, 
RJMCMC facilitates this by simultaneously exploring all possible 
models and their parameters.

Fundamentally, RJMCMC generates a series of steps—similar 
to a random walk—that switches between models with varying 
parameter counts. It begins with a current model—say, a basic setup 
with a single parameter—and proposes a new model, which might 
be more complex. To handle the difference in model complexity, 
RJMCMC introduces random adjustments, which act as extra 
nudges to balance the transition. The goal is to ensure the sequence 
stabilizes in a way that reflects the true probability of each model 
given the data, a principle known as detailed balance.

Model acceptance is determined by evaluating its data 
explanatory capability relative to the existing model, while 
accounting for the stochastic perturbations involved in the transition 
process. The transition probability between models is calculated 
through a comparative metric that assesses their respective fits to 
the observed data. This critical comparison metric, known as the 
acceptance ratio, can be expressed as:

Am(x,x′) =
π(x′)
π(x)

jm(x
′)

jm(x)
g′m(u
′)

gm(u)
|

|

∂(θ′k′ ,u
′)

∂(θk,u)
|

|

where π(x) and π(x′) represent the posterior probabilities of the 
current and proposed models, jm(x) and jm (x′) are the probabilities 
of choosing the move type, gm(u) and gm (u′) are the densities 
of the random adjustments, and the last term is a mathematical 

adjustment for the change in dimensions. The actual acceptance 
probability is then:

αm(x,x′) =min{1,Am(x,x′)}

Traditional two-step surface wave tomography often results 
in model discontinuities and uncertainty accumulation due 
to insufficient lateral spatial constraints. To address these 
limitations, a Bayesian 3D transdimensional Monte Carlo 
framework is adopted, integrating RJMCMC with Voronoi-
based adaptive parameterization. This approach facilitates the 
joint inversion of shear-wave velocity (Vs.) structures and the 
quantification of uncertainties directly from Rayleigh wave 
dispersion data, mitigating biases inherent in sequential inversions. 
The methodology is applied to a dense linear array comprising 101 
stations with 120 m spacing, deployed across the F1 fault zone in 
the eastern North China Craton, a region emblematic of reactivated 
cratons with Mesozoic-Cenozoic lithospheric destruction. High-
resolution dispersion curves are extracted from 7-day ambient 
noise records using array beamforming. Comparative analyses with 
conventional 1D Monte Carlo inversions. 

3 Ambient noise interferometry

3.1 Ambient noise data

Throughout this study, 101 short - period seismometers (main 
frequency 5 Hz) were deployed for 7 - day continuous data 
collection. The survey line, running east - west, was evenly 
spaced at 120 m from west to east, stretching 12 km total. Its 
position is in Figure 1. The line crosses major fracture F1, nearly 
perpendicular to it.

3.2 Single station data progressing

We picked the three-component waveform of 1 day and 
calculated his power spectrum, where the waveform is shown in 
Figure 2 and the power spectrum is shown in Figure 3. We can 
see that the original ambient noise is smoother, which is favorable 
for subsequent cross-correlation calculation and dispersion curve 
extraction. Through the power spectrum, we can know that the 
ambient - noise - related energy is mainly concentrated in the 
following 15 Hz, in which there is an obvious horizontal energy 
axis in 2–5 Hz, indicating that there is a strong surface wave 
energy in this frequency range, which provides a reference band 
for the selection of the frequency band of the later cross-correlation 
calculation.

3.3 Ambient noise cross - Correlation 
analysis

Data preprocessing followed the processing flow of Bensen et al. 
(2007). First, the data quality of the continuous waveform from 
a single station is checked and bad channels are removed, the 
vertical component waveform is cut into 1-day data segments, 
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FIGURE 1
Distribution of station map.

FIGURE 2
Raw ambient noise data waveform.

the data segments are de-meaned and de-trended, the time-
domain normalized, and the frequency-domain spectral whitened, 
respectively, and the original 100 Hz sampled data is re-sampled to 
20 Hz to improve the computational velocity and band-pass filtered 
from 0.14 s to 10 s. The data undergo processing to enhance the 
signal-to-noise ratio. Finally, all stations are combined two by two to 
calculate the cross-correlation and stack the cross-correlation results 
to improve the signal-to-noise ratio (SNR). Finally, 5050 cross - 
correlation functions were computed from seismic ambient noise 
data of 101 stations. As depicted in Figure 4, cross - correlation 
functions for all station pairs of 1001 stations (totaling 100 entries) 
are presented. Here, (a)–(f) represent stacked cross - correlation 
profiles with frequency bands 0.14–10 s, 0.14–1 s, 1–3 s, 3–5 s, 

5–10 s, and 3–10 s, respectively. Acquired signals exhibit a high SNR; 
however, signals on positive and negative half-axes are not fully 
symmetric, with positive half - branch signals notably stronger than 
negative ones. This asymmetry mainly stems from uneven noise 
source distribution.

3.4 Dispersion curse measurement

The empirical Green’s function can be derived by applying 
the Hilbert transform to cross-correlation functions. In this 
work, we employ the phase shift method on cross-correlation 
functions to generate dispersion energy diagrams and measure 
Rayleigh wave phase velocity phase velocity measurement s. As 
standard practice, stacking and averaging the positive and negative 
branches helps reduce artifacts caused by uneven noise source 
distributions. However, as the positive and negative branches 
in a linear array’s cross-correlation characterize noise sources 
originating from opposite ends of the array, this work employs three 
distinct dispersion energy calculation strategies to prevent possible 
cancellation of valid signals during averaging: utilizing the positive 
branch data alone, utilizing the negative branch data alone, and 
stacking both branches. This approach provides multiple alternatives 
for dispersion curve extraction.

When calculating the dispersive energy, the aperture of the sub-
station array is set to 2 km, and the scanning frequency band is 
0.3Hz–2 Hz; in Figure 5 the dispersive energy map of the phase-
shift method, we can see that the dispersive energy distributions 
of the positive branch, the negative branch, and the positive and 
negative stack of the two branches are not uniform, in which the 
energy of the negative branch has more low-frequency energy, which 
is mainly concentrated in the range of 0.13–0.7 Hz, and that the 
energy of the positive branch has more high-frequency energy, 
which is mainly concentrated in the range of 0.2–0.85 Hz range. 
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FIGURE 3
Power spectral density image. (a-c) show the power spectral density of the three-component ambient noise waveform (East [E], North [N], and Vertical 
[Z] components, respectively).

FIGURE 4
Cross-correlation stack profiles for different periods, where (a–f) are the cross-correlation stack profiles for 0.14–10s, 0.14–1s, 1–3, 3–5s, 5–10s, 
3–10s, respectively.
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FIGURE 5
Dispersion energy map for Station Num. 1051.

The stack of the positive and negative branches can significantly 
broaden the frequency range, mainly concentrated in the range of 
0.13–0.85 Hz. However, the part less than 0.2 Hz shows obvious 
convex and concave, whether this part of the energy can be extracted 
and inverted needs to be considered from the overall distribution of 
the dispersion curve, and can not be singled out.

Through beamforming with the dense array, 101 dispersion 
curves were obtained. Figure 6 displays the dispersion curve 
distribution and the average dispersion curve, where the red 
solid line denotes the mean dispersion curve and the black solid 
line indicates the positive/negative standard deviation. The phase 
velocity of the mean dispersion curves spans 2.1–3.1 km/s, with 
periods ranging from 0.5 to 3 s.

4 Phase velocity tomography

4.1 Method

4.1.1 Parameterization
As described in Zhang et al. (2018), our subsurface modeling 

approach utilizes Voronoi tessellation for parameterization. Each 
Voronoi cell consists of a central site (reference point) and its 

corresponding spatial domain, containing all locations that are 
nearer to this site than to any other. Figure 7 demonstrates examples 
of Voronoi partitioning in one-, two-, and three-dimensional 
spaces, with each cell storing both spatial coordinates and physical 
parameters including P-wave velocity, S-wave velocity, and density. 
It should be noted that 1D Voronoi parameterization shows inferior 
performance compared to conventional zonal modeling approaches, 
since different cell arrangements may produce identical velocity 
structures. Considering that seismic surface waves are mainly 
sensitive to subsurface S-wave velocity variations, our inversion 
procedure concentrates exclusively on determining shear-wave 
velocity distributions. P - wave velocities are linked to shear - wave 
velocities via an empirical relationship:

Vp = 1.16Vs+ 1.36

The density was calculated from empirical values of P-
wave velocity:

ρ = 1.74Vp

Vp and Vs. are in km/s, and density ρ is in g/cm3. 
Analogous to Zhang et al. (2018) velocity remains spatially uniform 
within each Voronoi cell. 
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FIGURE 6
Distribution of dispersion curves, where the red solid line represents 
the average dispersion curve and the black line represents the positive 
and negative standard deviations.

4.1.2 2-Step inversion
First, through tomographic inversion using source-receiver 

arrival time data, we obtain 2D phase and group velocity maps 
at multiple frequencies. Then, for every geographical point, we 
perform 1D inversion of the shear-wave velocity profile using its 
local dispersion curve.

In the second step, a linear inversion approach 
(Galetti et al., 2017; Young et al., 2013) is employed to solve for 
the 1D shear velocity profile at each point. Conventionally, these 
1D depth inversions are executed independently at each geographic 
site without inter-site interaction, a strategy that enables perfect 
parallelization of this computationally intensive task. 

4.1.3 Fully 3D inversion
To construct a three-dimensional Vs. model and facilitate 

comparative analysis of inversion outcomes obtained through 
distinct methodologies, we performed parallel 3D inversions 
employing the Markov Chain Monte Carlo (MCMC) technique 
established in Zhang et al. (2018). The subsurface domain was 
discretized using Voronoi tessellation (Figure 7c), where each 
polyhedral cell is defined by its spatial position and Vs. value. 
Consistent with Zhang et al. (2018), the orthorectification procedure 
implements a dual-stage approximation process (Ritzwoller and 
Levshin, 1998; Stevens et al., 2001; Reiter and Rodi, 2008): 
Initial phase/group velocity maps are produced for individual 
periods by deriving Vs. profiles beneath surface points and 
implementing Herrmann’s (Herrmann, 2013) one-dimensional 
modal approximation to compute associated phase and group 
velocities; For each Voronoi model we discretize the subsurface into 
50 m vertical layers down to 5 km depth, keeping the Vs. value of 
each Voronoi cell constant within its polyhedron. Phase velocities 
are computed at 0.05 s intervals over the 0.5–3 s period band using 
the fast-delta matrix algorithm. The dispersion integral uses a 1-
D mode summation with 5 points per minimum wavelength and 
a 0.5% frequency-domain smoothing kernel to suppress numerical 
ringing. Ray tracing for travel-time calculation adopts a 2-D linear 

interpolation on the generated phase-velocity maps with a 20 m grid 
spacing, ensuring accurate path integration for the 120 m station 
spacing. Subsequent travel time determinations are made via ray 
tracing through the generated phase velocity maps for all source-
receiver and inter-receiver paths.

To ensure the modal approximation software package was 
appropriate for our inversion, we imposed an a priori constraint 
requiring the minimum shear-wave velocity to occur at the surface. 
This constraint is enforced in the Markov chain by applying 
substantial penalties and rejecting any proposals violating this 
condition. Since this requirement generally holds true for most real 
Earth scenarios, we consider this both a geophysically valid and 
computationally feasible solution. 

4.1.4 Reversible jump McMC
MCMC refers to a category of sampling algorithms that 

generate sequential samples (or chains) from specified probability 
distributions (Sivia, 1996). In this study, we implement an extended 
Metropolis-Hastings algorithm known as reversible jump MCMC 
(Green, 1995; Green and Hastie, 2009). This approach enables trans-
dimensional inversion, meaning the number of model parameters 
may vary during the sampling process. As a result, the seismic 
velocity model’s parameterization can be determined directly from 
the data and prior knowledge, removing the need to predefine the 
parameterization before inversion (Galetti et al., 2017; Young et al., 
2013; Zhang et al., 2018). It should be noted that the specific selection 
of parameterization might impose constraints on the model and 
impact the final results (Hawkins et al., 2019).

In seismic tomography applications, the objective probability 
distribution is mathematically represented by the Bayesian posterior 
probability density function (pdf) for velocity model m given 
observed dataset d, denoted as p (m|d). As per Bayes’ theorem:

p(m |dobs) =
p(dobs |m)p(m)

p(dobs)

The conditional probability p (dobs|m), termed the likelihood 
function, quantifies the probability of obtaining the observed 
measurements assuming model m is correct. The prior distribution 
p(m) encapsulates existing knowledge about model parameters 
independent of observational data d, whereas p (dobs) functions as 
a normalizing constant referred to as the marginal likelihood. Our 
implementation adopts a Gaussian error model for the likelihood 
function, where data variance is incorporated as an auxiliary 
parameter and estimated through hierarchical inversion. For the 
prior probability density function, we use a non-informative prior 
with uniform distributions over wide bounds for each parameter. 
In the reversible jump Metropolis-Coupling algorithm, a new 
model m' is sampled from a proposal distribution q (m’|m) that 
depends on the current model m. The probability of accepting or 
rejecting this distribution, α(m’|m), is known as the acceptance 
rate, given by Green (1995):

α(m′ |m) =min[1,
p(m′)
p(m)
×

q(m |m′)
q(m′ |m)

×
p(dobs |m

′)
p(dobs |m)

× |J|]

The Jacobian matrix J, facilitating the transformation 
between parameter spaces m and m', is employed to compute 
volumetric changes during trans-dimensional jumps. In our 
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FIGURE 7
(a) Example of 1D Voronoi delineation, (b) Example of 2D Voronoi delineation, and (c) Example of 3D Voronoi delineation of velocity model. The colors 
represent the seismic velocities in each cell. The black dots represent the locations where each cell is generated.

implementation, the Jacobian matrix can be mathematically 
demonstrated to be unitary.The model acceptance procedure 
involves: Generating a uniformly distributed random number 
within [0,1], comparing this value with the acceptance probability 
α, accepting the proposed model if the random number is 
less than α, retaining the current model as the subsequent 
sample if rejected. This acceptance mechanism, through careful 
design of α, ensures the Markov chain’s stationary distribution 
converges to the target Bayesian posterior p (m|d) given adequate
sampling (Green, 1995).

For fixed-dimensional perturbations (cell movements, velocity 
changes, and data noise hyperparameter adjustments), we 
employ Gaussian proposal distributions (Zhang et al., 2018). 
For trans-dimensional perturbations (adding or removing cells), 
we opt to use the prior probability density function as the 
proposal distribution, as this approach yields higher acceptance 
rates compared to Gaussian distributions (Zhang et al., 2018;
Dosso et al., 2014). 

4.2 Data progressing application on north 
China

4.2.1 Sensitive kernel
Given the strong sensitivity of Rayleigh wave phase velocity 

to S-wave velocity structure within depths of approximately 1/3 
wavelength (Xu et al., 2007), we derived a 1D average S-wave 
velocity model from the phase velocity dispersion data. For each 
period, the average S-wave velocity at its corresponding depth 
served as the starting model (Xia et al., 1999). Figure 8 displays 
the depth sensitivity kernels for fundamental-mode Rayleigh wave 
phase velocities across periods of 1.0–5.0 s. The results demonstrate 
that phase velocity sensitivity depth progressively increases with 
longer periods. Specifically, 1 s, 2 s, and 3 s period Rayleigh wave 
phase velocities offer superior constraints for shallow subsurface 
structures above 4 km depth. For structures deeper than 4 km, the 
discriminatory power of Rayleigh phase velocities decreases for all 
periods, but the data with a period of 5 s still exhibit a certain degree 
of sensitivity at 5 km depth. This indicates that the phase velocity 

dispersion curves extracted in this study can roughly invert the S-
wave velocities at a depth of up to 5 km along the near-surface 
survey line.

4.2.2 1D MCInversion
The S-wave velocity structure is determined by applying the 

previously described methodology to the obtained dispersion data, 
followed by comparative analysis of the results. Here, we invert for 
the Vs. structure utilizing fundamental-mode Rayleigh wave phase 
velocity dispersion data. 101 dispersion curves are extracted. 1D MC 
inversion is faster compared to 3D MC inversion. We extracted 101 
dispersion curves. The 1D MC inversion is faster compared to the 
3D MC inversion, and we performed 100,000 inversions using the 
1D and 3D methods, respectively, to obtain the final results. Since 
the whole array is linear, we set the grid in the north direction as a 
thin plate during the 3D inversion, and then averaged all the results 
to get our results. 1D inversion is obviously not so cumbersome, and 
we can just follow the single-point inversion.

For the 1D MC depth inversion, the prior pdf for layer number 
was selected as a discrete uniform distribution (2–20 layers), 
with shear velocity prior set to 1500–4000 m/s. In 3D rj-MCMC 
steps (births/deaths), widths were chosen to maximize acceptance 
rate. For each geographic location, four chains ran for 100,000 
iterations, with the first 50,000 as warm-up (samples ignored 
for inference). Every 100 samples post-warm-up were retained 
to estimate posterior pdf mean and standard deviation. The 3D 
inversion used a cell number prior of discrete uniform (400–1500), 
same as 1D, with noise hyperparameter priors uniformly distributed 
(0.0001–0.02 and 0.0–0.1). Trans-dimensional steps employed the 
prior as the proposal distribution.

For the 1D inversion, the inversion results for a single station are 
shown in Figure 9, where (a) (b) (c) (d) are the RMSE, confidence, 
likelihood function and S-velocity inversion results for a single 
station, respectively. We can see that the number of inversions has 
stabilized after 200 times, and from the likelihood function, the 
number of inversions is 400, which produces a fluctuation, and then 
quickly stabilizes. The fitting of the observed data obtained from 
the inversion to the modeled data and the distribution of the PDF 
are shown in Figure 10, and we can see that the observed data and 
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FIGURE 8
One-dimensional S-wave velocity model and phase velocity-sensitive kernels with different periods, (a) one-dimensional average S-wave velocity 
initial reference model, (b) sensitive kernels with phase velocities of different periods.

the modeled data have been close, but not exactly the same. The 
confidence level of the overall model is high, between 0.80 and 1.0.

After inverting all the dispersion curves through the same steps 
mentioned above, we arrange all the S-wave velocities according to 
their relative positions, and finally get the S-wave velocity profile of 
the whole station array, see Figure 11. We can see that the overall 
velocity range is distributed between 2.0–4.0 km/s, which has a 
relatively complete structure, but due to the lack of S-regularization, 
the final result does not bring out the structure very well.

For 3D rj-MCMC we follow the above steps to invert the profile, 
and finally obtain the S-wave velocity mean profile (see Figure 12) 
and standard deviation profile (see Figure 13) for the whole profile. 
The profile after 3D rj-MCMC inversion has stronger continuity, and 
the overall trend is concave in the middle. The standard deviation 
profile shows a more obvious depression from 2 km depth to 5 km 
depth, with a clear blue band at 1 km depth, a clear break from 
6 km to 10 km horizontally, and a reappearance of the previous blue 
band from 10 km to 12 km The depth from 0 to 5 km is divided into 
three main layers, which are 0–1 km, 1–3 km, 3–5 km (Interpreted 
structures: 0–1 km, Vs. = 2.10 ± 0.05 km/s; 1–3 km, Vs. = 2.75 ± 
0.08 km/s; 3–5 km beneath the F1 trace, Vs. = 2.95 ± 0.12 km/s), 
respectively, three main tomography layers.

The model domain extends 0–12 km horizontally and 0–5 km 
vertically. Voronoi cells parameterise the model, with the number of 
cells drawn from a discrete uniform prior Ncell ∼ U (400, 1 500). 
Each cell is assigned an S-wave velocity Vs. ∼ U (1.5, 4.0) km s-1; 
Vp and ρ follow Vp = 1.16V s. + 1.36 km s-1 and ρ = 1.74 Vp g cm-3. 
Two noise hyper-parameters are used: data-error σ1 ∼ U (0.0001, 

0.02) and model-error σ2 ∼ U (0.0, 0.1). Four parallel Markov chains 
were run for 100,000 iterations; the first 50,000 were discarded as 
burn-in, and every 100th sample thereafter was retained, yielding 
500 posterior models. Fixed-dimensional moves employ Gaussian 
proposals tuned during pilot runs; trans-dimensional steps use the 
prior as the proposal distribution, yielding acceptance rates of ≈23% 
and ≈18%, respectively. 

4.3 Model uncertainty quantification

We define “model uncertainty” as one standard deviation (1σ) 
of the posterior probability density function (PDF), obtained in 
three steps: 

1. Posterior sampling: for every 3-D rj-MCMC chain, we retain 
one model every 100 iterations from iterations 50,001–100 000 
after burn-in, yielding 500 retained models;

2. Voxelization: each of the 500 Voronoi models is resampled 
onto a regular grid with 20 m × 20 m × 20 m voxels, giving an 
ensemble of Vs. values {Vs._i} for every voxel;

3. Statistics: the mean μ and standard deviation σ of {Vs._i} are 
computed for each voxel—μ is taken as the “best” model, and 
σ is taken as the model uncertainty.

To examine how data constraint strength influences σ, we 
simultaneously calculate the data kernel density (DK), defined 
as the number of ray paths traversing a voxel divided by the 
voxel volume. Regions where DK < 10 ray paths/km3 are masked 
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FIGURE 9
1D MC single station inversion results, (a–d) are the RMSE, confidence, likelihood function and S-wave velocity inversion results for a single station 
respectively.

FIGURE 10
1D MC single station inversion PDF distribution, (a) shows the comparison of dispersion curves before and after inversion, (b) shows the posterior 
probability density distribution after inversion.
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FIGURE 11
1D MC S wave inversion profile.

FIGURE 12
3D rj-MCMC inversion S-wave velocity mean profile. Red dashed line marks the surface trace of the F1 fault (x = 6–10 km); red arrow indicates its 
inferred extension to 5 km depth inferred from the velocity discontinuity.

in gray in Figure 13, alerting readers that the elevated uncertainty 
there is primarily due to data sparsity rather than algorithmic 
limitations. 

4.4 Synthetic resolution and checkerboard 
validation

To quantify the spatial resolution improvement of the fully 
3-D inversion over the traditional 1-D approach, we conducted 
checkerboard and point-anomaly tests. A synthetic model consisting 
of alternating ±10% Vs. anomalies (1 km × 1 km × 0.5 km blocks) 

was embedded in a 1-D background profile and forward-modelled 
to dispersion curves (0.5–3 s) with the same noise level as the 
observed data. The 3-D transdimensional inversion recovered 
>80% of the anomaly amplitude in the upper 3 km and correctly 
delineated block boundaries within ±100 m, whereas the 1-D 
inversion exhibited vertical smearing and recovered only ∼40% 
amplitude. A point-anomaly test (200 m × 200 m × 200 m) showed 
that lateral resolution of the 3-D scheme reaches ∼2/3 wavelength 
(≈400 m at 1 s), corresponding to a ∼40% improvement in locating 
sharp velocity contrasts compared with the 1-D scheme. These tests 
confirm that the 3-D Bayesian framework delivers the resolution 
gain claimed in the manuscript. 
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FIGURE 13
3D rj-MCMC inversion S-wave velocity standard deviation profile.

5 Discussion

The three-dimensional Bayesian Monte Carlo inversion results 
delineate the shear-wave velocity (Vs.) structure in the uppermost 
5 km beneath the northeastern boundary region of the North 
China Craton (NCC). Compared with traditional 1D independent 
inversions, the 3D results (Figure 12) exhibit a prominent lateral 
velocity gradient zone at 6–10 km horizontal position, whose spatial 
orientation aligns with the strike of the F1 fault crossed by the survey 
line. This velocity discontinuity likely corresponds to lithospheric 
shear zones formed during the NCC destruction process (Zhu et al., 
2012). The standard deviation profile (Figure 13) reveals a distinct 
low-velocity anomaly (2.8–3.1 km/s) beneath the fault at 3–5 km 
depth, spatially consistent with the Cenozoic basalt conduit model 
in the eastern NCC. To evaluate whether the low-velocity anomaly 
beneath the F1 fault is statistically significant, we performed a 
two-tailed Bayesian credibility test on the voxel-wise posterior Vs. 
distribution. Within the anomalous zone (x = 6–10 km, z = 3–5 km), 
94.7% of the posterior Vs. samples fall below the median Vs. of the 
surrounding high-velocity wall-rock (3.35 km s-1), yielding a 94.7% 
posterior probability (equivalent to p < 0.053 in frequentist terms) 
that the anomaly is genuine. A bootstrap Kolmogorov–Smirnov test 
(1 000 resamples) further rejects the null hypothesis that the Vs. 
distributions inside and outside the anomaly come from the same 
population (D = 0.29, p < 0.01). These results confirm that the 
fault-related low-velocity anomaly is statistically significant at the 
95% confidence level. This suggests that the Late Mesozoic cratonic 
destruction events may have left structural imprints of deep melt 
infiltration.

The high-velocity layer at 0–1 km depth correlates well with the 
widely exposed Archean basement rocks in the NCC (Zh et al., 
2005). The interlayer (2.6–2.9 km/s) at 1–3 km depth revealed 
by 3D inversion may represent sedimentary basin structures 
formed during the Mesozoic intracontinental rifting stage, showing 
spatiotemporal consistency with the Late Jurassic fault-depression 

sequences identified in regional seismic surveys. Notably, our 
transdimensional inversion strategy effectively mitigates velocity 
ambiguity artifacts caused by traditional two-step methods in 
cratonic complex tectonic zones (Zhang et al., 2018), providing 
a novel technical approach for resolving multiphase tectonic 
superposition in NCC destruction areas.

To quantify the reliability of our 3-D Vs. model, we conducted 
three complementary tests. A checkerboard resolution experiment 
(±10%, 1 km blocks) achieved >80% recovery down to 3 km 
but only ∼55% at 4–5 km, validating the σ-based uncertainty 
pattern in Figure 13. Bootstrap resampling of 100 random 80 %-
station-pair subsets yielded inter-quartile Vs. ranges within 5% of 
the MCMC 1 σ posterior interval, confirming the consistency of 
the derived σ. Finally, an exponential relationship between σ and 
data-kernel density (σ ≈ 0.14 e^(-0.06 DK), R2 = 0.71) shows that 
the elevated σ at 4–5 km is dominated by data sparsity rather than 
inversion bias.

In summary, Bayesian inversion in two-step approaches may 
cause data overfitting and biased results. However, noise estimation 
is often challenging, and improper noise levels can degrade model 
resolution. This issue can be partly mitigated by incorporating 
additional data (e.g., higher-mode dispersion curves). Alternatively, 
our results show that using 3D parameterization with S-spatial 
correlations in inversion effectively addresses this problem.

This study compares two methods for estimating shear-wave 
velocity models using only fundamental-mode data. Future work 
will involve 3D inversion with higher-order dispersion data to 
better constrain subsurface structures and enhance deep-resolution 
capabilities.

Regarding computational costs, a single 3D inversion chain 
requires approximately 312.3 CPU hours, while 1D MC inversion 
consumes only 27.4 CPU hours per chain. Notably, 3D rj-MCMC 
inversion yields a significantly more detailed 3D S-wave velocity 
structure, justifying the higher computational investment in terms 
of cost-effectiveness.
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6 Conclusion

This study pioneers the application of 3D Bayesian Monte Carlo 
inversion to near-surface structural imaging in the North China 
Craton (NCC) destruction belt. Comparative analyses reveal three 
key findings: 1) The 3D-derived S-wave velocity model improves 
lateral resolution by ∼40%, clearly delineating velocity contrasts 
(ΔVs = 0.3–0.5 km/s) within 2 km across the F1 fault zone. This 
correlates with the brittle-ductile transition depth (∼5 km) of 
reactivated cratonic margin faults. 2) Uncertainty analysis shows 
higher velocity standard deviations (σ = 0.12–0.15 km/s) at 3–5 km 
depth within the destruction zone compared to stable cratonic cores 
(σ < 0.08 km/s), reflecting enhanced lithospheric heterogeneity 
caused by destruction processes. 3) The high-resolution velocity 
model provides near-surface evidence for Mesozoic tectonic 
transition events in the eastern NCC (Zhu and Xu, 2019). Future 
integration with deep seismic anisotropy data could unravel crust-
mantle coupling mechanisms during cratonic destruction.
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