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Uncertainty-quantified 3D
ambient noise tomography using
transdimensional Monte Carlo
inversion

Yi Liu, Bo Wang*, Daoheng Ying, Lingzhi Zhu, Jun Wang and
Tuo Zhao

School of Civil Engineering, Jilin Jianzhu University, Changchun, China

Traditional two-step surface-wave tomography often yields discontinuous
models and compound uncertainty. We present the first fully 3-D
transdimensional Bayesian inversion with adaptive Voronoi parameterization
and reversible-jump MCMC for near-surface engineering-scale arrays, providing
voxel-level uncertainty estimates. From 1week of ambient-noise records
acquired by a 101-station linear array (120 m spacing) across the F1 fault zone,
we extracted phase velocities via frequency—wavenumber analysis of Rayleigh
waves (0.5-3 s). The resulting 3-D Vs. model reveals (i) 300-800 m s in the
upper 50 m, (i) 2.1 + 0.05 km st at 0—-1 km, (iii) 2.6-2.9 + 0.08 km st at 1-3 km,
and (iv) 2.8-3.1 + 0.12 km s at 3-5 km beneath the fault trace. Voxel-wise 1o
uncertainties range from <5% in the shallowest 2 km to 12% at 5 km depth. These
Vs. values and their uncertainties can be directly converted to engineering
mechanical parameters: shear modulus G = pVs?, Young's modulus E = 2G
(14v), and Poisson’s ratio v, enabling quantitative assessment of excavation
stability, tunnel lining design, and slope stability across the F1 fault zone. The
3-D Bayesian framework mitigates over-fitting biases inherent in sequential
inversions and offers critical, uncertainty-aware constraints for multi-stage
tectonic reconstruction of the North China Craton destruction belt.

KEYWORDS

Bayesian Monte Carlo inversion, 3D ambient noise tomography, shear-wave, velocity
structure, transdimensional inversion, uncertainty quantification

1 Introduction

Seismic tomography serves as a fundamental technique for developing 3D
models of Earth’s interior structure. Contemporary approaches predominantly
utilize surface waves for imaging purposes. These seismic waves propagate along
crustal boundaries where abrupt changes in physical properties commonly occur,
with their oscillation depths being frequency-dependent (Aki and Richards, 1980).
The dispersive nature of surface waves manifests through distinct propagation
velocities at different frequencies, each velocity corresponding to specific
subsurface depth sensitivities. This dispersion characteristic enables multi-scale
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tomographic investigations through velocity measurements,
including regional-scale analyses (Curtis et al., 1998).

Early research consistently found that the irregular distribution
of seismic sources and receiving stations restricted model accuracy,
particularly in poorly sampled regions. However, the advent of
ambient noise interferometry has dramatically expanded both
the volume and spatial coverage of available surface wave data.
Theoretically, cross-correlating ambient noise recorded at two
receiver locations yields the Greens function between them
(Wapenaar, 2004; Wapenaar and Fokkema, 2006). Obtaining these
empirical Green’s functions allows for probing subsurface structures
(Shapiro and Campillo, 2004). This method is now widely applied
to investigate crustal and upper mantle architecture at regional
scales, as well as near-surface features within the upper crust
(Allmark et al., 2018; Han et al., 2022).

Seismic surface wave inversion is commonly addressed through
a sequential approach (Galetti et al., 2017): first, reconstructing two-
dimensional (2D) maps of phase or group velocity distributions,
followed by converting these results into a three-dimensional
(3D) velocity model via pointwise one-dimensional (1D) depth
inversions. The first stage, involving the solution of a 2D
tomographic problem, typically employs linearized methods that
minimize data misfit and incorporate regularization constraints.
However, regularization parameters are often chosen subjectively,
which risks filtering out meaningful signals and compromising
result reliability. Consequently, errors and uncertainties in
the 2D velocity field may propagate into the subsequent
1D inversions, distorting the final structural interpretation
(Young et al., 2013).

To address these limitations, researchers have turned to
nonlinear inversion techniques utilizing Markov Chain Monte
Carlo (MCMC) sampling for seismic tomography (Mosegaard
and Tarantola, 1995). MCMC encompasses a class of methods
designed to generate samples from complex probability distributions
(Mosegaard and Tarantola, 1995; Metropolis and Ulam, 1949;
Hastings, 1970; Sivia, 1996; Malinverno et al., 2000; Malinverno,
2002; Malinverno and Briggs, 2004). Within this framework,
the reversible jump algorithm (Green, 1995; Green and Hastie,
2009) has become a standard tool in seismic imaging due to its
trans-dimensional capability—allowing the model's parameter
space to evolve adaptively during inversion (Hawkins and
Sambridge, 2015; Piana et al., 2015; Burdick and Leki¢, 2017;
Galetti and Curtis, 2018). Such approaches dynamically update
model parameterizations by integrating prior knowledge with
observational data. Applications include phase/group velocity
mapping of crustal features (Zulfakriza et al., 2014; Galetti et al.,
2015) and the derivation of 3D shear-wave velocity models through
sequential depth inversion (Galetti et al., 2017; Young et al., 2013).

The F1 fault—the easternmost margin of the North China
Craton destruction belt—lies only 3-8 km south of rapidly
expanding Changchun, where subway Lines 1-3 and high-rise
clusters are under construction. Historic M > 5 earthquakes and
ongoing 3-5 km micro-seismicity, coupled with surface rupture of
Quaternary strata, pose clear seismic and displacement hazards.
High-resolution, uncertainty-aware 3-D Vs. models are therefore
critical for urban site-response assessment, subway and foundation
stability, and compliance with Chinese seismic design codes, linking
fundamental tectonics to urgent engineering needs.
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Beyond seismic imaging, the derived Vs. distribution can
be quantitatively linked to engineering mechanical parameters
through well-established elastic relationships. For example, the
shear modulus G = pVs? and Young’s modulus E = 2G (1+v)
can be computed when density (p) and Poisson’s ratio (v)
are constrained. These parameters are essential for evaluating
excavation stability in tunneling and mining projects, designing
safe and efficient foundations, and assessing the mechanical
response of fault zones to natural or anthropogenic loading.
In principle: For excavation stability, G reflects rock shear
resistance (higher G means lower collapse risk, reducing support
demands) and E indicates stiffness (higher E allows more efficient
excavation); for foundation design, E determines load-bearing
capacity (higher E supports shallow, low-cost foundations) and
G ensures shear resistance against extreme loads; for fault zone
mechanical response, G governs slip/deformation tendency (lower
G increases slip risk under natural/anthropogenic loads) and E
defines deformation range, guiding hazard mitigation. Integrating
such rock-mechanical derivations with the velocity models obtained
here provides actionable information for engineering decision-
making, in line with physically constrained frameworks that
map geophysical data to petrophysical and mechanical properties
(Zhan et al., 2024; Luo et al., 2025).

Seismic tomography uses surface waves to study the Earth’s
internal structure. Surface waves are dispersive, with velocities
varying by frequency, and are sensitive to different depths,
enabling imaging at various scales. Early methods were limited
by uneven source and station distribution, but ambient noise
interferometry has enhanced data coverage by retrieving Green’s
functions via cross-correlation, enabling detailed upper-mantle,
crustal, and near-surface structure studies. The traditional two-
step inversion method—first inverting 2D velocity maps, then
performing 1D depth inversions—faces challenges, as empirical
regularization in the first step can suppress valuable data, leading
to biases in the second step. To address this, MCMC-based
nonlinear inversion methods, including the trans-dimensional
reversible jump MCMC algorithm, were introduced, dynamically
adapting model parameterizations for more accurate imaging.
Despite these advancements, the two-step method still introduces
biases, prompting Zhang et al. (2018) to propose a direct 3D Monte
Carlo method that inverts traveltime measurements in one step,
offering better error estimates. This study applies the 3D Monte
Carlo method to dense station arrays and compares it with the 1D
Monte Carlo approach.

2 RIMCMC theoretical model and
formulas

2.1 Bayesian nonparametric methods

The RIMCMC method, initially introduced by Green (1995),
provides a solution for statistical inference involving variable-
dimensional parameter spaces - a class of problems commonly
known as trans-dimensional. Such challenges are prevalent in
statistical modeling, including variable selection in regression,
object recognition, and Bayesian nonparametric methods (Green,
1995). RIMCMC enables joint inference over a model indicator
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keK (where K K is a countable set of candidate models) and a
model-specific parameter vector 6, €X,CR™, where 1, denotes the
dimension of 6, and varies with k.

Within a Bayesian framework, the objective is to sample from the
joint posterior probability distribution 7(k,0,|Y), conditional on the
observed data Y. The posterior is defined as:

p(k, 0 )L(Y | k,0,)
Y o j (K6, L(Y [ K., )de,

where p (k,0;) = p(k)p (0,]k) represents the joint prior distribution,
with p(k) as the prior over models and p (0,]k) as the prior over

n(k, 6, | Y) =

parameters given the model k, and L (Y|k, ;) is the likelihood
function. The posterior can be factorized as:

(k.0 | Y) = n(k | V)n(6, | k,Y)

where 7(k|Y) is the marginal posterior probability of model k, and
7(0,|k,Y) is the conditional posterior distribution of the parameters
given the model.

2.2 RIMCMC theoretical model

The RIMCMC method functions as a formidable statistical
tool designed to address scenarios where the number of unknown
factors in a model varies, making it ideal for problems where the
model structure itself is uncertain. This approach operates within
a Bayesian framework, aiming to identify the most suitable model
and its associated parameters based on observed data. For instance,
when analyzing data and needing to choose between a simple
one-parameter model or a more complex two-parameter model,
RIMCMC facilitates this by simultaneously exploring all possible
models and their parameters.

Fundamentally, RIMCMC generates a series of steps—similar
to a random walk—that switches between models with varying
parameter counts. It begins with a current model—say, a basic setup
with a single parameter—and proposes a new model, which might
be more complex. To handle the difference in model complexity,
RIMCMC introduces random adjustments, which act as extra
nudges to balance the transition. The goal is to ensure the sequence
stabilizes in a way that reflects the true probability of each model
given the data, a principle known as detailed balance.

Model acceptance is determined by evaluating its data
explanatory capability relative to the existing model, while
accounting for the stochastic perturbations involved in the transition
process. The transition probability between models is calculated
through a comparative metric that assesses their respective fits to
the observed data. This critical comparison metric, known as the
acceptance ratio, can be expressed as:

1(x) j(x') gl (') | (61

A, (x,x") = )

), () g,

where mt(x) and m(x') represent the posterior probabilities of the
current and proposed models, j,, (x) and j,,, (x') are the probabilities
of choosing the move type, g,,(u) and g,, (u') are the densities
of the random adjustments, and the last term is a mathematical
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adjustment for the change in dimensions. The actual acceptance
probability is then:

o, (%, x") = min{1,A,,(x,x")}

Traditional two-step surface wave tomography often results
in model discontinuities and uncertainty accumulation due
to insufficient lateral spatial constraints. To address these
limitations, a Bayesian 3D transdimensional Monte Carlo
framework is adopted, integrating RIMCMC with Voronoi-
based adaptive parameterization. This approach facilitates the
joint inversion of shear-wave velocity (Vs.) structures and the
quantification of uncertainties directly from Rayleigh wave
dispersion data, mitigating biases inherent in sequential inversions.
The methodology is applied to a dense linear array comprising 101
stations with 120 m spacing, deployed across the F1 fault zone in
the eastern North China Craton, a region emblematic of reactivated
cratons with Mesozoic-Cenozoic lithospheric destruction. High-
resolution dispersion curves are extracted from 7-day ambient
noise records using array beamforming. Comparative analyses with
conventional 1D Monte Carlo inversions.

3 Ambient noise interferometry
3.1 Ambient noise data

Throughout this study, 101 short - period seismometers (main
frequency 5Hz) were deployed for 7 - day continuous data
collection. The survey line, running east - west, was evenly
spaced at 120 m from west to east, stretching 12km total. Its
position is in Figure 1. The line crosses major fracture F1, nearly
perpendicular to it.

3.2 Single station data progressing

We picked the three-component waveform of 1day and
calculated his power spectrum, where the waveform is shown in
Figure 2 and the power spectrum is shown in Figure 3. We can
see that the original ambient noise is smoother, which is favorable
for subsequent cross-correlation calculation and dispersion curve
extraction. Through the power spectrum, we can know that the
ambient - noise - related energy is mainly concentrated in the
following 15 Hz, in which there is an obvious horizontal energy
axis in 2-5Hz, indicating that there is a strong surface wave
energy in this frequency range, which provides a reference band
for the selection of the frequency band of the later cross-correlation
calculation.

3.3 Ambient noise cross - Correlation
analysis

Data preprocessing followed the processing flow of Bensen et al.
(2007). First, the data quality of the continuous waveform from
a single station is checked and bad channels are removed, the
vertical component waveform is cut into 1-day data segments,
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Distribution of station map.
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FIGURE 2
Raw ambient noise data waveform.

the data segments are de-meaned and de-trended, the time-
domain normalized, and the frequency-domain spectral whitened,
respectively, and the original 100 Hz sampled data is re-sampled to
20 Hz to improve the computational velocity and band-pass filtered
from 0.14 s to 10s. The data undergo processing to enhance the
signal-to-noise ratio. Finally, all stations are combined two by two to
calculate the cross-correlation and stack the cross-correlation results
to improve the signal-to-noise ratio (SNR). Finally, 5050 cross -
correlation functions were computed from seismic ambient noise
data of 101 stations. As depicted in Figure 4, cross - correlation
functions for all station pairs of 1001 stations (totaling 100 entries)
are presented. Here, (a)-(f) represent stacked cross - correlation
profiles with frequency bands 0.14-10s, 0.14-1s, 1-3s, 3-5s,

Frontiers in Earth Science

standard practice, stacking and averaging the positive and negative
branches helps reduce artifacts caused by uneven noise source
distributions. However, as the positive and negative branches
in a linear array’s cross-correlation characterize noise sources
originating from opposite ends of the array, this work employs three
distinct dispersion energy calculation strategies to prevent possible
cancellation of valid signals during averaging: utilizing the positive
branch data alone, utilizing the negative branch data alone, and
stacking both branches. This approach provides multiple alternatives
for dispersion curve extraction.

When calculating the dispersive energy, the aperture of the sub-
station array is set to 2 km, and the scanning frequency band is
0.3Hz-2 Hz; in Figure 5 the dispersive energy map of the phase-
shift method, we can see that the dispersive energy distributions
of the positive branch, the negative branch, and the positive and
negative stack of the two branches are not uniform, in which the
energy of the negative branch has more low-frequency energy, which
is mainly concentrated in the range of 0.13-0.7 Hz, and that the
energy of the positive branch has more high-frequency energy,
which is mainly concentrated in the range of 0.2-0.85 Hz range.
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FIGURE 3

Power spectral density image. (a-c) show the power spectral density of the three-component ambient noise waveform (East [E], North [N], and Vertical

[Z] components, respectively).
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FIGURE 4

Cross-correlation stack profiles for different periods, where (a—f) are the cross-correlation stack profiles for 0.14-10s, 0.14-1s, 1-3, 3-5s, 5-10s,

3-10s, respectively.
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FIGURE 5
Dispersion energy map for Station Num. 1051.

The stack of the positive and negative branches can significantly
broaden the frequency range, mainly concentrated in the range of
0.13-0.85 Hz. However, the part less than 0.2 Hz shows obvious
convex and concave, whether this part of the energy can be extracted
and inverted needs to be considered from the overall distribution of
the dispersion curve, and can not be singled out.

Through beamforming with the dense array, 101 dispersion
curves were obtained. Figure 6 displays the dispersion curve
distribution and the average dispersion curve, where the red
solid line denotes the mean dispersion curve and the black solid
line indicates the positive/negative standard deviation. The phase
velocity of the mean dispersion curves spans 2.1-3.1 km/s, with
periods ranging from 0.5 to 3 s.

4 Phase velocity tomography
4.1 Method

4.1.1 Parameterization

As described in Zhang et al. (2018), our subsurface modeling
approach utilizes Voronoi tessellation for parameterization. Each
Voronoi cell consists of a central site (reference point) and its
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corresponding spatial domain, containing all locations that are
nearer to this site than to any other. Figure 7 demonstrates examples
of Voronoi partitioning in one-, two-, and three-dimensional
spaces, with each cell storing both spatial coordinates and physical
parameters including P-wave velocity, S-wave velocity, and density.
It should be noted that 1D Voronoi parameterization shows inferior
performance compared to conventional zonal modeling approaches,
since different cell arrangements may produce identical velocity
structures. Considering that seismic surface waves are mainly
sensitive to subsurface S-wave velocity variations, our inversion
procedure concentrates exclusively on determining shear-wave
velocity distributions. P - wave velocities are linked to shear - wave
velocities via an empirical relationship:

Vp = 1.16Vs + 1.36

The density was calculated from empirical values of P-
wave velocity:

p=174Vp

Vp and Vs. are in km/s, and density p is in g/cm’.
Analogous to Zhang et al. (2018) velocity remains spatially uniform
within each Voronoi cell.
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FIGURE 6
Distribution of dispersion curves, where the red solid line represents

the average dispersion curve and the black line represents the positive
and negative standard deviations.

4.1.2 2-Step inversion

First, through tomographic inversion using source-receiver
arrival time data, we obtain 2D phase and group velocity maps
at multiple frequencies. Then, for every geographical point, we
perform 1D inversion of the shear-wave velocity profile using its
local dispersion curve.

In the second
(Galetti et al., 2017; Young et al., 2013) is employed to solve for

step, a linear inversion approach
the 1D shear velocity profile at each point. Conventionally, these
1D depth inversions are executed independently at each geographic
site without inter-site interaction, a strategy that enables perfect

parallelization of this computationally intensive task.

4.1.3 Fully 3D inversion

To construct a three-dimensional Vs. model and facilitate
comparative analysis of inversion outcomes obtained through
distinct methodologies, we performed parallel 3D inversions
employing the Markov Chain Monte Carlo (MCMC) technique
established in Zhang et al. (2018). The subsurface domain was
discretized using Voronoi tessellation (Figure 7c), where each
polyhedral cell is defined by its spatial position and Vs. value.
Consistent with Zhang et al. (2018), the orthorectification procedure
implements a dual-stage approximation process (Ritzwoller and
Levshin, 1998; Stevens et al, 2001; Reiter and Rodi, 2008):
Initial phase/group velocity maps are produced for individual
periods by deriving Vs. profiles beneath surface points and
implementing Herrmann’s (Herrmann, 2013) one-dimensional
modal approximation to compute associated phase and group
velocities; For each Voronoi model we discretize the subsurface into
50 m vertical layers down to 5 km depth, keeping the Vs. value of
each Voronoi cell constant within its polyhedron. Phase velocities
are computed at 0.05 s intervals over the 0.5-3 s period band using
the fast-delta matrix algorithm. The dispersion integral uses a 1-
D mode summation with 5 points per minimum wavelength and
a 0.5% frequency-domain smoothing kernel to suppress numerical
ringing. Ray tracing for travel-time calculation adopts a 2-D linear
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interpolation on the generated phase-velocity maps with a 20 m grid
spacing, ensuring accurate path integration for the 120 m station
spacing. Subsequent travel time determinations are made via ray
tracing through the generated phase velocity maps for all source-
receiver and inter-receiver paths.

To ensure the modal approximation software package was
appropriate for our inversion, we imposed an a priori constraint
requiring the minimum shear-wave velocity to occur at the surface.
This constraint is enforced in the Markov chain by applying
substantial penalties and rejecting any proposals violating this
condition. Since this requirement generally holds true for most real
Earth scenarios, we consider this both a geophysically valid and
computationally feasible solution.

4.1.4 Reversible jump McMC

MCMC refers to a category of sampling algorithms that
generate sequential samples (or chains) from specified probability
distributions (Sivia, 1996). In this study, we implement an extended
Metropolis-Hastings algorithm known as reversible jump MCMC
(Green, 1995; Green and Hastie, 2009). This approach enables trans-
dimensional inversion, meaning the number of model parameters
may vary during the sampling process. As a result, the seismic
velocity model’s parameterization can be determined directly from
the data and prior knowledge, removing the need to predefine the
parameterization before inversion (Galetti et al., 2017; Young et al.,
2013; Zhangetal.,, 2018). It should be noted that the specific selection
of parameterization might impose constraints on the model and
impact the final results (Hawkins et al., 2019).

In seismic tomography applications, the objective probability
distribution is mathematically represented by the Bayesian posterior
probability density function (pdf) for velocity model m given
observed dataset d, denoted as p (m|d). As per Bayes’ theorem:

p(dobs |m)P(m)
ldops) = —————
p(m ’ ) p(dahs)

|m), termed the likelihood
function, quantifies the probability of obtaining the observed

The conditional probability p (d,
measurements assuming model m is correct. The prior distribution
p(m) encapsulates existing knowledge about model parameters
independent of observational data d, whereas p (d.,) functions as
a normalizing constant referred to as the marginal likelihood. Our
implementation adopts a Gaussian error model for the likelihood
function, where data variance is incorporated as an auxiliary
parameter and estimated through hierarchical inversion. For the
prior probability density function, we use a non-informative prior
with uniform distributions over wide bounds for each parameter.
In the reversible jump Metropolis-Coupling algorithm, a new
model m' is sampled from a proposal distribution q (m’|m) that
depends on the current model m. The probability of accepting or
rejecting this distribution, a(m’|m), is known as the acceptance
rate, given by Green (1995):

pn) gmlm)  pld )

oo gl 1m) e lm)

a(m' |m)=min| 1

The Jacobian matrix J, facilitating the transformation
between parameter spaces m and m', is employed to compute
volumetric changes during trans-dimensional jumps. In our
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(a) (b)
FIGURE 7
(a) Example of 1D Voronoi delineation, (b) Example of 2D Voronoi delineation, and (c) Example of 3D Voronoi delineation of velocity model. The colors
represent the seismic velocities in each cell. The black dots represent the locations where each cell is generated.

implementation, the Jacobian matrix can be mathematically
demonstrated to be unitary.The model acceptance procedure
involves: Generating a uniformly distributed random number
within [0,1], comparing this value with the acceptance probability
a, accepting the proposed model if the random number is
less than a, retaining the current model as the subsequent
sample if rejected. This acceptance mechanism, through careful
design of a, ensures the Markov chain’s stationary distribution
converges to the target Bayesian posterior p (m|d) given adequate
sampling (Green, 1995).

For fixed-dimensional perturbations (cell movements, velocity
changes, and data noise hyperparameter adjustments), we
employ Gaussian proposal distributions (Zhang et al, 2018).
For trans-dimensional perturbations (adding or removing cells),
we opt to use the prior probability density function as the
proposal distribution, as this approach yields higher acceptance
rates compared to Gaussian distributions (Zhang et al,, 2018;
Dosso et al., 2014).

4.2 Data progressing application on north
China

4.2.1 Sensitive kernel

Given the strong sensitivity of Rayleigh wave phase velocity
to S-wave velocity structure within depths of approximately 1/3
wavelength (Xu et al., 2007), we derived a 1D average S-wave
velocity model from the phase velocity dispersion data. For each
period, the average S-wave velocity at its corresponding depth
served as the starting model (Xia et al.,, 1999). Figure 8 displays
the depth sensitivity kernels for fundamental-mode Rayleigh wave
phase velocities across periods of 1.0-5.0 s. The results demonstrate
that phase velocity sensitivity depth progressively increases with
longer periods. Specifically, 1's, 2's, and 3 s period Rayleigh wave
phase velocities offer superior constraints for shallow subsurface
structures above 4 km depth. For structures deeper than 4 km, the
discriminatory power of Rayleigh phase velocities decreases for all
periods, but the data with a period of 5 s still exhibit a certain degree
of sensitivity at 5 km depth. This indicates that the phase velocity
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dispersion curves extracted in this study can roughly invert the S-
wave velocities at a depth of up to 5km along the near-surface
survey line.

4.2.2 1D MClnversion

The S-wave velocity structure is determined by applying the
previously described methodology to the obtained dispersion data,
followed by comparative analysis of the results. Here, we invert for
the Vs. structure utilizing fundamental-mode Rayleigh wave phase
velocity dispersion data. 101 dispersion curves are extracted. 1D MC
inversion is faster compared to 3D MC inversion. We extracted 101
dispersion curves. The 1D MC inversion is faster compared to the
3D MC inversion, and we performed 100,000 inversions using the
1D and 3D methods, respectively, to obtain the final results. Since
the whole array is linear, we set the grid in the north direction as a
thin plate during the 3D inversion, and then averaged all the results
to get our results. 1D inversion is obviously not so cumbersome, and
we can just follow the single-point inversion.

For the 1D MC depth inversion, the prior pdf for layer number
was selected as a discrete uniform distribution (2-20 layers),
with shear velocity prior set to 1500-4000 m/s. In 3D rj-MCMC
steps (births/deaths), widths were chosen to maximize acceptance
rate. For each geographic location, four chains ran for 100,000
iterations, with the first 50,000 as warm-up (samples ignored
for inference). Every 100 samples post-warm-up were retained
to estimate posterior pdf mean and standard deviation. The 3D
inversion used a cell number prior of discrete uniform (400-1500),
same as 1D, with noise hyperparameter priors uniformly distributed
(0.0001-0.02 and 0.0-0.1). Trans-dimensional steps employed the
prior as the proposal distribution.

For the 1D inversion, the inversion results for a single station are
shown in Figure 9, where (a) (b) (c) (d) are the RMSE, confidence,
likelihood function and S-velocity inversion results for a single
station, respectively. We can see that the number of inversions has
stabilized after 200 times, and from the likelihood function, the
number of inversions is 400, which produces a fluctuation, and then
quickly stabilizes. The fitting of the observed data obtained from
the inversion to the modeled data and the distribution of the PDF
are shown in Figure 10, and we can see that the observed data and
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the modeled data have been close, but not exactly the same. The
confidence level of the overall model is high, between 0.80 and 1.0.

After inverting all the dispersion curves through the same steps
mentioned above, we arrange all the S-wave velocities according to
their relative positions, and finally get the S-wave velocity profile of
the whole station array, see Figure 11. We can see that the overall
velocity range is distributed between 2.0-4.0 km/s, which has a
relatively complete structure, but due to the lack of S-regularization,
the final result does not bring out the structure very well.

For 3D rj-MCMC we follow the above steps to invert the profile,
and finally obtain the S-wave velocity mean profile (see Figure 12)
and standard deviation profile (see Figure 13) for the whole profile.
The profile after 3D rj-MCMC inversion has stronger continuity, and
the overall trend is concave in the middle. The standard deviation
profile shows a more obvious depression from 2 km depth to 5 km
depth, with a clear blue band at 1 km depth, a clear break from
6 km to 10 km horizontally, and a reappearance of the previous blue
band from 10 km to 12 km The depth from 0 to 5 km is divided into
three main layers, which are 0-1 km, 1-3 km, 3-5 km (Interpreted
structures: 0-1km, Vs. = 2.10 £ 0.05 km/s; 1-3 km, Vs. = 2.75 *
0.08 km/s; 3-5 km beneath the F1 trace, Vs. = 2.95 + 0.12 km/s),
respectively, three main tomography layers.

The model domain extends 0-12 km horizontally and 0-5 km
vertically. Voronoi cells parameterise the model, with the number of
cells drawn from a discrete uniform prior Ncell ~ U (400, 1 500).
Each cell is assigned an S-wave velocity Vs. ~ U (1.5, 4.0) km sh
Vp and p follow Vp = 1.16V s. + 1.36 km s' and p = 1.74 Vp g cm ™.
Two noise hyper-parameters are used: data-error o; ~ U (0.0001,
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0.02) and model-error o, ~ U (0.0, 0.1). Four parallel Markov chains
were run for 100,000 iterations; the first 50,000 were discarded as
burn-in, and every 100th sample thereafter was retained, yielding
500 posterior models. Fixed-dimensional moves employ Gaussian
proposals tuned during pilot runs; trans-dimensional steps use the
prior as the proposal distribution, yielding acceptance rates of =23%
and =18%, respectively.

4.3 Model uncertainty quantification

We define “model uncertainty” as one standard deviation (10)
of the posterior probability density function (PDF), obtained in
three steps:

1. Posterior sampling: for every 3-D rj-MCMC chain, we retain
one model every 100 iterations from iterations 50,001-100 000
after burn-in, yielding 500 retained models;

2. Voxelization: each of the 500 Voronoi models is resampled
onto a regular grid with 20 m x 20 m x 20 m voxels, giving an
ensemble of Vs. values {Vs._i} for every voxel;

. Statistics: the mean p and standard deviation o of {Vs._i} are
computed for each voxel—p is taken as the “best” model, and
o is taken as the model uncertainty.

To examine how data constraint strength influences o, we
simultaneously calculate the data kernel density (DK), defined
as the number of ray paths traversing a voxel divided by the
voxel volume. Regions where DK < 10 ray paths/km® are masked
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in gray in Figure 13, alerting readers that the elevated uncertainty =~ was embedded in a 1-D background profile and forward-modelled

there is primarily due to data sparsity rather than algorithmic  to dispersion curves (0.5-3s) with the same noise level as the

limitations. observed data. The 3-D transdimensional inversion recovered

>80% of the anomaly amplitude in the upper 3 km and correctly

delineated block boundaries within +100 m, whereas the 1-D

4.4 Synthetic resolution and checkerboard inversion exhibited vertical smearing and recovered only ~40%

validation amplitude. A point-anomaly test (200 m x 200 m x 200 m) showed

that lateral resolution of the 3-D scheme reaches ~2/3 wavelength

To quantify the spatial resolution improvement of the fully (=400 mat 1 s), corresponding to a ~40% improvement in locating

3-D inversion over the traditional 1-D approach, we conducted  sharp velocity contrasts compared with the 1-D scheme. These tests

checkerboard and point-anomaly tests. A synthetic model consisting ~ confirm that the 3-D Bayesian framework delivers the resolution
of alternating +10% Vs. anomalies (1 km x 1 km x 0.5 km blocks) gain claimed in the manuscript.
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5 Discussion

The three-dimensional Bayesian Monte Carlo inversion results
delineate the shear-wave velocity (Vs.) structure in the uppermost
5km beneath the northeastern boundary region of the North
China Craton (NCC). Compared with traditional 1D independent
inversions, the 3D results (Figure 12) exhibit a prominent lateral
velocity gradient zone at 6-10 km horizontal position, whose spatial
orientation aligns with the strike of the F1 fault crossed by the survey
line. This velocity discontinuity likely corresponds to lithospheric
shear zones formed during the NCC destruction process (Zhu et al.,
2012). The standard deviation profile (Figure 13) reveals a distinct
low-velocity anomaly (2.8-3.1 km/s) beneath the fault at 3-5 km
depth, spatially consistent with the Cenozoic basalt conduit model
in the eastern NCC. To evaluate whether the low-velocity anomaly
beneath the F1 fault is statistically significant, we performed a
two-tailed Bayesian credibility test on the voxel-wise posterior Vs.
distribution. Within the anomalous zone (x = 6-10 km, z = 3-5 km),
94.7% of the posterior Vs. samples fall below the median Vs. of the
surrounding high-velocity wall-rock (3.35 km s™), yielding a 94.7%
posterior probability (equivalent to p < 0.053 in frequentist terms)
that the anomaly is genuine. A bootstrap Kolmogorov-Smirnov test
(1 000 resamples) further rejects the null hypothesis that the Vs.
distributions inside and outside the anomaly come from the same
population (D = 0.29, p < 0.01). These results confirm that the
fault-related low-velocity anomaly is statistically significant at the
95% confidence level. This suggests that the Late Mesozoic cratonic
destruction events may have left structural imprints of deep melt
infiltration.

The high-velocity layer at 0-1 km depth correlates well with the
widely exposed Archean basement rocks in the NCC (Zh et al,
2005). The interlayer (2.6-2.9km/s) at 1-3km depth revealed
by 3D inversion may represent sedimentary basin structures
formed during the Mesozoic intracontinental rifting stage, showing
spatiotemporal consistency with the Late Jurassic fault-depression
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sequences identified in regional seismic surveys. Notably, our
transdimensional inversion strategy effectively mitigates velocity
ambiguity artifacts caused by traditional two-step methods in
cratonic complex tectonic zones (Zhang et al, 2018), providing
a novel technical approach for resolving multiphase tectonic
superposition in NCC destruction areas.

To quantify the reliability of our 3-D Vs. model, we conducted
three complementary tests. A checkerboard resolution experiment
(+10%, 1km blocks) achieved >80% recovery down to 3 km
but only ~55% at 4-5km, validating the o-based uncertainty
pattern in Figure 13. Bootstrap resampling of 100 random 80 %-
station-pair subsets yielded inter-quartile Vs. ranges within 5% of
the MCMC 1 o posterior interval, confirming the consistency of
the derived o. Finally, an exponential relationship between ¢ and
data-kernel density (o = 0.14 ¢"(-0.06 DK), R? = 0.71) shows that
the elevated o at 4-5 km is dominated by data sparsity rather than
inversion bias.

In summary, Bayesian inversion in two-step approaches may
cause data overfitting and biased results. However, noise estimation
is often challenging, and improper noise levels can degrade model
resolution. This issue can be partly mitigated by incorporating
additional data (e.g., higher-mode dispersion curves). Alternatively,
our results show that using 3D parameterization with S-spatial
correlations in inversion effectively addresses this problem.

This study compares two methods for estimating shear-wave
velocity models using only fundamental-mode data. Future work
will involve 3D inversion with higher-order dispersion data to
better constrain subsurface structures and enhance deep-resolution
capabilities.

Regarding computational costs, a single 3D inversion chain
requires approximately 312.3 CPU hours, while 1D MC inversion
consumes only 27.4 CPU hours per chain. Notably, 3D rj-MCMC
inversion yields a significantly more detailed 3D S-wave velocity
structure, justifying the higher computational investment in terms
of cost-effectiveness.
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6 Conclusion

This study pioneers the application of 3D Bayesian Monte Carlo
inversion to near-surface structural imaging in the North China
Craton (NCC) destruction belt. Comparative analyses reveal three
key findings: 1) The 3D-derived S-wave velocity model improves
lateral resolution by ~40%, clearly delineating velocity contrasts
(AVs = 0.3-0.5 km/s) within 2 km across the F1 fault zone. This
correlates with the brittle-ductile transition depth (~5km) of
reactivated cratonic margin faults. 2) Uncertainty analysis shows
higher velocity standard deviations (¢ = 0.12-0.15 km/s) at 3-5 km
depth within the destruction zone compared to stable cratonic cores
(0 < 0.08 km/s), reflecting enhanced lithospheric heterogeneity
caused by destruction processes. 3) The high-resolution velocity
model provides near-surface evidence for Mesozoic tectonic
transition events in the eastern NCC (Zhu and Xu, 2019). Future
integration with deep seismic anisotropy data could unravel crust-
mantle coupling mechanisms during cratonic destruction.
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